Of Tool Or Work Holder Position Patents (Class 451/9)
  • Patent number: 7090559
    Abstract: A tool for gripping ophthalmic lenses including a vacuum gripper, a shaft associated with said vacuum gripper, the shaft having two ends and being slidably attached at one end thereof to a support structure, a resilient member which biases the vacuum gripper in a direction away from said support structure and a locking member which locks the shaft in a desired position during a lens gripping operation. Another embodiment of the present invention includes a lens hold down mechanism for holding lenses in a lens tray. Another embodiment of the present invention includes an electronic communications scheme for a robotic manufacturing operation. Another embodiment of the present invention includes an ophthalmic lens manufacturing cell layout wherein ophthalmic edging machines have an opening that faces away from a robotic arm. Another embodiment of the present invention includes an arrangement for holding an ophthalmic edging machine within an ophthalmic manufacturing cell.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: August 15, 2006
    Assignee: AIT Industries Co.
    Inventors: Matthew Vulich, Bhaven Patel, Santiago Albert
  • Patent number: 7090560
    Abstract: Systems and methods control abrading operations of an abrading machine by sensing characteristics of an abrading article installed on the abrading machine. When a problem is discovered by sensing the article, appropriate actions may be taken. As one example, the abrading article may be sensed to determine whether the abrading article has been installed with an abrasive side facing the wrong direction. An alert allows an operator to reinstall the article. As another example, the abrading article may be sensed to determine whether splicing tape is present to hold two pieces of abrading tape together. The article may be advanced until the splicing tape is beyond an abrading zone. As another example, the abrading article may be sensed to determine whether the abrading article has stopped moving while the article drive is advancing because the article has broken. An alert allows an operator to repair the break.
    Type: Grant
    Filed: July 28, 2004
    Date of Patent: August 15, 2006
    Assignee: 3M Innovative Properties Company
    Inventor: Daniel A. Billig
  • Patent number: 7086930
    Abstract: A nozzle assembly and method is configured to apply coherent jets of coolant in a tangential direction to the grinding wheel in a grinding process, at a desired temperature, pressure and flowrate, to minimize thermal damage in the part being ground. Embodiments of the present invention may be useful when grinding thermally sensitive materials such as gas turbine creep resistant alloys and hardened steels. Flowrate and pressure guidelines are provided to facilitate optimization of the embodiments.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: August 8, 2006
    Assignee: Saint-Gobain Abrasives, Inc.
    Inventor: John A. Webster
  • Patent number: 7081039
    Abstract: Both a grinder system and a corresponding grinding method are based on a module, embodied preferably as a program or program segment, which, preferably automatically, defines the geometry of the corner cutting edge and the corner cutting face of a metal-cutting tool on the basis of predetermined peripheral conditions. The axial rake angle of the face-end cutting edge and the axial rake angle of the circumferential cutting edge as well as a desired effective profile can serve as the predetermined peripheral conditions. Further peripheral conditions may be a smooth transition of the cutting faces between the face-end chip cutting face, corner cutting face and circumferential cutting face. Tools are obtained that have a long service life and with which at the same time good machining quality can be achieved.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: July 25, 2006
    Assignee: Walter Maschinenbau GmbH
    Inventors: Christian Dilger, Mikhail Simakov
  • Patent number: 7070478
    Abstract: Systems and methods for monitoring characteristics of a polishing pad used in polishing a micro-device workpiece are disclosed herein. In one embodiment, a method for monitoring a characteristic of a polishing pad includes applying ultrasonic energy to the polishing pad and determining a status of the characteristic based on a measurement of the ultrasonic energy applied to the polishing pad. In one aspect of this embodiment, applying ultrasonic energy includes applying ultrasonic energy from a transducer. The transducer can be carried by a conditioner, a fluid arm, a micro-device workpiece carrier, or a table. In another aspect of this embodiment, determining the status of the characteristic includes determining a thickness, density, surface contour, roughness, or texture of the polishing pad.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: July 4, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Jason B. Elledge, Nagasubramaniyan Chandrasekaran
  • Patent number: 7052370
    Abstract: A rotation axis of a work spindle and a rotation axis of a spindle primary-axis portion are rotated relative to each other and feeding of a work-piece to a tool is accordingly adjusted, whereby warpage of the tool in accordance with a change in machining condition is corrected. A revolution volume of the relative rotation is compared and calculated in process based on data entered in advance, a result of measurement by a displacement sensor and information such as a machining position, and controlled in real time until the end of machining. The relative rotation is driven by an actuator such as a piezoelectric element, at a resolution even as fine as in seconds. The data entered in advance can be sequentially updated in accordance with monitoring of a processed product.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: May 30, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tomoaki Nakasuji, Masahiko Hasegawa, Yoshinori Hirai
  • Patent number: 7052215
    Abstract: A cutting tool with a sensor according to the present invention includes an electrically conductive substrate, an insulation film provided on a surface of the electrically conductive substrate, and a sensor circuit of an electrically conductive film provided on the insulation film. The insulation film includes two consecutive insulation layers. Even if the plural insulation layers each have defects such as cracks and pinholes which possibly impair the insulation property impair the insulation film, the defects present in the plural layers are unlikely to be continuous. Therefore, the insulation film has an improved insulation reliability, thereby ensuring proper function of the sensor circuit in the cutting tool.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: May 30, 2006
    Assignee: Kyocera Corporation
    Inventor: Tsuyoshi Fukano
  • Patent number: 7052364
    Abstract: A technique for in situ monitoring of polishing processes and other material removal processes employs a quartz crystal nanobalance embedded in a wafer carrier. Material removed from the wafer is deposited upon the surface of the crystal. The resulting frequency shift of the crystal gives an indication of the amount of material removed, allowing determination of an instantaneous removal rate as well as a process endpoint. The deposition on the quartz crystal nanobalance may be controlled by an applied bias. Multiple quartz crystal nanobalances may be used. In a further embodiment of the invention, the quartz crystal nanobalance is used to detect defect-causing events, such as a scratches, during the polishing process.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: May 30, 2006
    Assignee: Cabot Microelectronics Corporation
    Inventors: Jian Zhang, Ian W. Wylie
  • Patent number: 7052369
    Abstract: Systems and methods for detecting a presence of blobs on a specimen are provided. One method may include scanning measurement spots across a specimen during polishing of the specimen. The method may also include determining if the blobs are present on the specimen at the measurement spots. Each of the blobs may include unwanted material disposed upon a contiguous portion of the measurement spots. In some instances, the blobs may include copper. In some embodiments, scanning the measurement spots may include measuring an optical property and/or an electrical property of the specimen at the measurement spots. Another embodiment includes dynamically determining a signal threshold distinguishing a presence of the blobs from an absence of the blobs. An additional embodiment includes determining an endpoint of polishing if, for example, blobs are not determined to be present on the specimen.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: May 30, 2006
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 7044830
    Abstract: A chopping control process, for controlling a machine tool during chopping, i.e., shaping or cutting a workpiece, is allowed without adding an extra axis dedicated just to the chopping, i.e., a chopping dedicated axis. To correct a chopping operation (i.e., an operation of shaping or cutting a workpiece), for a movement error in the contour control (i.e., control of contour along which the workpiece is cut) with a positioning axis or rotation axis, an interpolation processing part 12 and an axis control processing part 13 are provided with a function of generating the movement data for performing the chopping operation by controlling two or more axes at the same time and a function of correcting the chopping operation.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: May 16, 2006
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Makoto Sakagami, Masaki Ryu
  • Patent number: 7040955
    Abstract: The methods and devices described below allow users of CMP tools to quickly calibrate Spindle Force, Wafer Force, and Retaining Ring Force using mechanisms, load cells, a control computer, and force equations. The control computer can test a variety of pressures in the inflatable seal or the inflatable membrane, depending on the wafer carrier configuration, to determine a unique calibration in real time for the particular wafer carrier that is being tested and used during the polishing process.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: May 9, 2006
    Assignee: Strasbaugh
    Inventors: William Kalenian, Thomas A. Walsh
  • Patent number: 7033248
    Abstract: Systems and methods for monitoring characteristics of a polishing pad used in polishing a micro-device workpiece are disclosed herein. In one embodiment, a method for monitoring a characteristic of a polishing pad includes applying ultrasonic energy to the polishing pad and determining a status of the characteristic based on a measurement of the ultrasonic energy applied to the polishing pad. In one aspect of this embodiment, applying ultrasonic energy includes applying ultrasonic energy from a transducer. The transducer can be carried by a conditioner, a fluid arm, a micro-device workpiece carrier, or a table. In another aspect of this embodiment, determining the status of the characteristic includes determining a thickness, density, surface contour, roughness, or texture of the polishing pad.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: April 25, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Jason B. Elledge, Nagasubramaniyan Chandrasekaran
  • Patent number: 7018270
    Abstract: Improperly mounted wafer saw blades can damage wafers cut or diced with the blades. Embodiments of this invention employ sensors to measure a distance to the blade to help indicate if the blade is improperly mounted. In one method of the invention, a the distance to the blade face is measured as the blade is rotated and a variance in this measured distance is determined. If the variance is no greater than a predetermined maximum, the blade may be used to cut the wafer. In one apparatus of the invention, a wafer saw include a blade and a sensor. The sensor is adapted to monitor a distance to a face of the rotating blade. A processor coupled to the sensor may indicate if the distance to the face of the blade as it rotates deviates too far from a baseline position of the blade face.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: March 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Neo Chee Peng, Tan Hock Chuan, Ho Kian Seng, Chew Beng Chye, Lim Guek Har, Tan Kok Chua
  • Patent number: 7016143
    Abstract: The present invention uses Electronic Lapping Guides (ELG's), which are patterned on every tape head, as servo format verifiers. This is implemented by specifically placing the ELG's at the appropriate locations to match the servo signal track locations and thus be usable to verify the servo format patterns on the formatted tape. According to another aspect of the present invention, tape head components which have faulty read sensors, servo sensors, or write elements which have valid ELG's may be used for the servo format verification purpose.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: March 21, 2006
    Assignee: International Business Machines Corporation
    Inventors: Leif Stefan Kirschenbaum, Mark Allen Taylor
  • Patent number: 7011566
    Abstract: Monitoring the process of planarizing a workpiece, e.g., conditioning a CMP pad, can present some difficulties. Aspects of this invention provide methods and systems for monitoring and/or controlling such a planarization cycle. For example, a control system may monitor the proximity of a workpiece holder and an abrasion member by measuring the capacitance between a first sensor associated with the workpiece holder and a second sensor associated with the abrasion member. This exemplary control system may adjust a process parameter of the planarization cycle in response to a change in the measured capacitance. This can be useful in endpointing the planarization cycle, for example. In certain applications, the control system may define a pad profile based on multiple capacitance measurements and use the pad profile to achieve better planarity of the planarized surface.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: March 14, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Nagasubramaniyan Chandrasekaran
  • Patent number: 7008297
    Abstract: A chemical mechanical polishing apparatus has a polishing pad, a carrier to hold a substrate against a first side of the polishing surface, and a motor coupled to at least one of the polishing pad and carrier head for generating relative motion therebetween. An eddy current monitoring system is positioned to generate an alternating magnetic field in proximity to the substrate, an optical monitoring system generates a light beam and detects reflections of the light beam from the substrate, and a controller receives signals from the eddy current monitoring system and the optical monitoring system.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: March 7, 2006
    Assignee: Applied Materials Inc.
    Inventors: Nils Johansson, Boguslaw A. Swedek, Manoocher Birang
  • Patent number: 7001244
    Abstract: A polishing apparatus is provided for accurately detecting the relative displacement between an upper wheel and a lower wheel and thus for reliably polishing workpieces to a desired thickness. The polishing apparatus includes an upper wheel for pressing at least one workpiece, a lower wheel for supporting the workpiece, non-contact-type displacement-detection device for detecting the relative displacement between the upper wheel and the lower wheel, and a reference table for providing a displacement-detection reference position. The non-contact-type displacement-detection device is joined to the upper wheel so as to move therewith. The reference table is disposed at a position opposing the displacement-detection device and also is integrally connected to the lower wheel.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: February 21, 2006
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toru Nishikawa, Takeshi Inao
  • Patent number: 6976900
    Abstract: The present invention discloses a method, system and apparatus for use in a roll grinding machine. Data is read from an RFID tag automatically by providing an RF read/write sensor on a movable cylinder rod. The RF sensor is held away from the work roll area while the work roll is loaded or removed. When the work roll is placed in the position for grinding, a signal to rotate the roll is sent to the grinding machine, and also operates to advance the cylinder rod. An RFID tag embedded in the work roll and containing identification and other data related to the work roll, is read by a read/write sensor, and the data is then transferred from the sensor to a serial control interface, which converts the data and transmits the information to the grinding machine control desk and the computer control management data base.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: December 20, 2005
    Assignee: United States Steel Corp.
    Inventor: William F. Bolz
  • Patent number: 6974364
    Abstract: Methods and apparatuses for analyzing and controlling performance parameters in planarization of microelectronic substrates. In one embodiment, a planarizing machine for mechanical or chemical-mechanical planarization includes a table, a planarizing pad on the table, a carrier assembly, and an array of force sensors embedded in at least one of the planarizing pad, a sub-pad under the planarizing pad, or the table. The force sensor array can include shear and/or normal force sensors, and can be configured in a grid pattern, concentric pattern, radial pattern, or a combination thereof.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: December 13, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Brian Marshall
  • Patent number: 6966817
    Abstract: A wafer grinder withholds a lateral force and adjusts a tilt of worktable with precision. The wafer grinder is used to grind a wafer; that is, the tilt angle of wafer can be adjusted so that wafer is ground with precision. The wafer grinder has a housing module, a rotary worktable module, air pressure spindle module and an adjustment module.
    Type: Grant
    Filed: February 11, 2004
    Date of Patent: November 22, 2005
    Assignee: Industrial Technology Research Institute
    Inventors: Kuo-Yu Tang, Jung-Hong Huang, Lei-Yi Chen
  • Patent number: 6964598
    Abstract: In one embodiment, a semiconductor substrate (38) is uniformly polished using a polishing pad (16) that has a first polishing region (26), a second polishing region (28), and a third polishing region (30). The semiconductor substrate (38) is aligned to the polishing pad (16), such that the center of the semiconductor substrate (38) overlies the second polishing region (28), and the edge of the semiconductor substrate overlies the first polishing region (26) and the third polishing region (30). During polishing, the semiconductor substrate (38) is not radially oscillated over the surface of the polishing pad, and as a result a more uniform polishing rate is achieved across the semiconductor substrate (38). This allows the semiconductor substrate (38) to be uniformly polished from center to edge, and increases die yield because die located on the semiconductor substrate (38) are not over polished.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: November 15, 2005
    Assignee: Chartered Semiconductor Manufacturing Limited
    Inventors: Lup San Leong, Feng Chen, Charles Lin
  • Patent number: 6960120
    Abstract: The invention is directed to chemical-mechanical polishing pads comprising a transparent window. In one embodiment, the transparent window comprises an inorganic material and an organic material, wherein the inorganic material comprises about 20 wt. % or more of the transparent window. In another embodiment, the transparent window comprises an inorganic material and an organic material, wherein the inorganic material is dispersed throughout the organic material and has a dimension of about 5 to 1000 nm, and wherein the transparent window has a total light transmittance of about 30% or more at at least one wavelength in the range of about 200 to 10,000 nm. In yet another embodiment, the transparent window comprises an inorganic/organic hybrid sol-gel material. In an additional embodiment, the transparent window comprises a polymer resin and a clarifying material, wherein the transparent window has a total light transmittance that is substantially higher than a window comprising only the polymeric resin.
    Type: Grant
    Filed: February 10, 2003
    Date of Patent: November 1, 2005
    Assignee: Cabot Microelectronics Corporation
    Inventor: Abaneshwar Prasad
  • Patent number: 6953382
    Abstract: Methods and apparatus are provided for conditioning of polishing surfaces utilized during CMP processing. The method comprises contacting the polishing surface and a conditioning surface with a first force, one of the surfaces coupled to a support member that has an axis. The polishing surface and/or the conditioning surface is moved at a constant velocity. Torque exerted by the support member about the axis to effect a relative position between the conditioning surface and the polishing surface is measured and used to obtain a process variable. The process variable is compared to a setpoint value for the relative position of the conditioning surface and the polishing surface. A second force is calculated and the polishing surface and the conditioning surface then are contacted with the second force, if the process variable differs from the setpoint value by more than an allowed tolerance.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: October 11, 2005
    Assignee: Novellus Systems, Inc.
    Inventors: Nikolay Korovin, Robert J. Stoya
  • Patent number: 6951503
    Abstract: A system for measuring and scanning a CMP polishing pad thickness is described. The system includes a first sensor arm capable of being moved in a direction substantially parallel with and at a substantially constant distance from a top surface of the CMP polishing pad. The system also includes a first proximity sensor mounted on the first sensor arm. The first proximity sensor being oriented toward the top surface of the CMP polishing pad. The first proximity sensor being capable of measuring a first distance between the first proximity sensor and the top surface of the CMP polishing pad. The system can also include a second sensor arm capable of being moved in a direction parallel with and at a substantially constant distance from a bottom surface of the CMP polishing pad and a second proximity sensor mounted on the second sensor arm, the second proximity sensor being oriented toward the bottom surface of the CMP polishing pad.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: October 4, 2005
    Assignee: Lam Research Corporation
    Inventors: Yehiel Gotkis, Simon McClachie
  • Patent number: 6949007
    Abstract: A fabricating system. A processing tool executes a film removal process on a wafer using a chemical mechanism. A metrology tool monitors surface characteristics of the wafer to obtain a measured film thickness thereof before and after a first removal process, wherein the first removal process lasts a first processing duration. The controller, coupled to the processing and metrology tools, determines whether the difference between the measured film thickness and a preset film thickness exceeds a preset value, and determines a second processing duration of a second removal process according to the measured and preset film thickness and the first processing duration.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: September 27, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Hwa Wang, Chii-Ping Chen
  • Patent number: 6945845
    Abstract: Conductive elements of a chemical mechanical polishing system may generate undesired eddy currents under the influence of a time-dependent magnetic field used in an eddy current monitoring system. To improve the accuracy of an eddy current monitoring system, elements that may contribute an undesired signal to the sensed eddy current signal may be fabricated from a non-conductive material such as plastic or ceramic. In some implementations, elements may be fabricated from non-magnetic materials.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: September 20, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Doyle E Bennett, Sandeep R Koppikar, Jeffrey Drue David, Boguslaw A Swedek, Nils Johansson
  • Patent number: 6945844
    Abstract: A saw cutting pattern is dynamically established for a semiconductor dicing saw based on detection of the saw blade contacting a wafer or a portion of a wafer. The dynamic cutting pattern may terminate cuts if the saw blade no longer contacts the wafer or a portion of a wafer. Thus, irregular shaped wafers may be cut without requiring that an entire predefined cutting pattern be carried out and/or without previously mapping the shape of the wafer or portion of a wafer. A map of the wafer or a portion of a wafer may also be generated based on the detection of the saw blade contacting the wafer during a first cutting pass and may be used during a second cutting pass.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: September 20, 2005
    Assignee: Cree, Inc.
    Inventor: Edward J. Hubbell, III
  • Patent number: 6939209
    Abstract: A reliable, inexpensive “back side” thinning process and apparatus therefor, capable of globally thinning an integrated circuit die to a target thickness of 10 microns, and maintaining a yield of at least 80%, for chip repair and/or failure analysis of the packaged die. The flip-chip packaged die is exposed at its backside and mounted on a lapping machine with the backside exposed. The thickness of the die is measured at at least five locations on the die. The lapping machine grinds the exposed surface of the die to a thickness somewhat greater than the target thickness. The exposed surface of the die is polished. The thickness of the die is again measured optically with high accuracy. Based on the thickness data collected, appropriate machine operating parameters for further grinding and polishing of the exposed surface are determined. Further grinding and polishing are performed. These steps are repeated until the target thickness is reached.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: September 6, 2005
    Assignee: Credence Systems Corporation
    Inventors: Chun-Cheng Tsao, John Valliant
  • Patent number: 6939199
    Abstract: Improperly mounted wafer saw blades can damage wafers cut or diced with the blades. Embodiments of this invention employ sensors to measure a distance to the blade to help indicate if the blade is improperly mounted. In one method of the invention, a the distance to the blade face is measured as the blade is rotated and a variance in this measured distance is determined. If the variance is no greater than a predetermined maximum, the blade may be used to cut the wafer. In one apparatus of the invention, a wafer saw include a blade and a sensor. The sensor is adapted to monitor a distance to a face of the rotating blade. A processor coupled to the sensor may indicate if the distance to the face of the blade as it rotates deviates too far from a baseline position of the blade face.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: September 6, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Neo Chee Peng, Tan Hock Chuan, Ho Kian Seng, Chew Beng Chye, Lim Guek Har, Tan Kok Chua
  • Patent number: 6939200
    Abstract: A method of predicting the lapping property of a charged lapping plate uses samples with a known lap surface. The samples are lapped on the plate and a non-invasive sensor is used to determine the lapping rate under a fixed load and rotation speed. The total frictional force of the samples is measured during the lapping to calculate the friction and Preston coefficients of the plate. The samples are held in place while the plate rotates and the sensor measures the distance to the plate. The plate rotates for a specific time so that adequate removal of the pad material has occurred. The lapping rate is determined from a change in the gap distance over a time interval. The lapping rate and friction are then assessed to determine if the plate is lapping worthy.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: September 6, 2005
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Jacey Robert Beaucage, Paul Arthur Goddu, Huey-Ming Tzeng
  • Patent number: 6939202
    Abstract: An apparatus and method are provided for detecting wear in substrate retainers used for chemical mechanical planarization processes. A substrate retainer is provided that is adapted to enable a sensor to detect when the wear edge of the retainer has worn to a critical wear threshold so that the retainer may be replaced prior to failure.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: September 6, 2005
    Assignee: Intel Corporation
    Inventors: Kevin E. Heidrich, Liam S. Roberts
  • Patent number: 6935922
    Abstract: Methods and systems for generating a two-dimensional map of a characteristic at relative or absolute locations of measurement spots on a specimen during polishing are provided. One method includes scanning a specimen with a measurement device during polishing to generate output signals at measurement spots on the specimen. The method may also include determining a characteristic of polishing at the measurement spots from the output signals. In addition, the method may include determining relative or absolute locations of the measurement spots on the specimen. The method may further include generating a two-dimensional map of the characteristic at the relative or absolute locations of the measurement spots on the specimen. In some embodiments, the relative locations of the measurement spots may be determined from a representative scan path of the measurement device and an average spacing between starting points on individual scans.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: August 30, 2005
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 6934595
    Abstract: In a system and method to reduce wafer breakages in a wafer handling system, the position of a wafer on a platen is monitored and closing of the platen on a vacuum chamber is prevented if a misaligned wafer is detected. In one embodiment the wafer position is monitored by monitoring the air pressure in vacuum channels of a platen faceplate.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: August 23, 2005
    Assignee: National Semiconductor Corp.
    Inventor: Allan Daniel O'Brien
  • Patent number: 6929529
    Abstract: The present invention relates to a polishing apparatus for polishing a workpiece such as a semiconductor wafer. The polishing apparatus has a processing section including a polishing section (1) for polishing a semiconductor wafer (6) and a cleaning section (10) for cleaning a polished semiconductor wafer, a receiving section (40) for supplying a semiconductor wafer (6) to be polished to the processing section and receiving a polished semiconductor wafer (6), and a cleaning chamber (20) disposed between the processing section and the receiving section and defined by partitions (102, 103) with shutters (22, 24) which separate the processing section and the receiving section from each other.
    Type: Grant
    Filed: August 17, 2001
    Date of Patent: August 16, 2005
    Assignee: Ebara Corporation
    Inventors: Masao Yoshida, Masahiko Sekimoto
  • Patent number: 6915795
    Abstract: A method and system for dicing a semiconductor wafer providing a structure with greatly reduced backside chipping and cracking, as well as increased die strength. Semiconductor chip structures obtained from wafers diced according to this invention are also encompassed.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: July 12, 2005
    Assignee: International Business Machines Corporation
    Inventors: Donald W. Brouillette, Robert F. Cook, Thomas G. Ference, Wayne J. Howell, Eric G. Liniger, Ronald L. Mendelson
  • Patent number: 6913512
    Abstract: A material removal optimizing system for a wood surface treating apparatus with a plurality of individual work stations arranged serially along an endless conveyor. Each station includes a working abrasive head along with an elevation adjustment mechanism for adjustably positioning the contact surface of each abrasive head at a desired working distance from the opposed surface of the workpiece traveling along the endless conveyor. An incoming workpiece dimension indicator is positioned at the infeed end, and additional workpiece dimension indicators are positioned downstream from each work station, with each dimension indicator being positioned to measure the dimensional deviation of the workpiece from a datum plane after it has passed through its preceding individual work station.
    Type: Grant
    Filed: June 7, 2004
    Date of Patent: July 5, 2005
    Inventor: Howard W. Grivna
  • Patent number: 6913511
    Abstract: An apparatus, as well as a method, determines an endpoint of chemical mechanical polishing a metal layer on a substrate. The method of the apparatus includes bringing a surface of a substrate into contact with a polishing pad that has a window; causing relative motion between the substrate and the polishing pad; directing a light beam through the window, the motion of the polishing pad relative to the substrate causing the light beam to move in a path across the substrate; detecting light beam reflections from the substrate and a retaining ring; generating reflection data associated with the light beam reflections; dividing the reflection data into a plurality of radial ranges; and identifying the predetermined pattern from the reflection data in the plurality of radial ranges to establish the endpoint.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: July 5, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Andreas Norbert Wiswesser, Judon Tony Pan, Boguslaw Swedek
  • Patent number: 6905392
    Abstract: A system for polishing a substrate has a controller, pressure source, a platen, and a carrier for handling the substrate. The carrier must be able to detect if a substrate is present. In either the case of a false detection of substrate presence or the failure to detect substrate presence, the likely result is damaged substrates, wasted polishing consumables, and down time of the manufacturing facility. Detection is achieved by the substrate causing movement of a plunger and by such movement resulting in a pressure differential that is detected. The reliability of this detection is improved by one or more of a precise relationship of the plunger to a plate that applies pressure to the substrate, a controlled seal that is ensured of being broken when the plunger is moved by the presence of a substrate, and proper spring pressure applied to the plunger to prevent spurious plunger movement.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: June 14, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian E. Bottema, Keven A. Cline, Morris S. Poteet
  • Patent number: 6905393
    Abstract: A method for establishing different parameters of a surface of a work piece during machining of the surface using a spindle supporting a tool and displacement sensors for measuring displacement to which the spindle is subjected during machining. The method involves machining work pieces with different back off times to create sets of sensor signals representing spindle deflections. The machined work pieces are measured and then the stored sensor signals are compared with the measurement results of the same work pieces. Transfer constants are calculated representing the influence of the total deflection of the machine stiffness on the sensor signals. Displacement sensor signals obtained upon machining subsequent work pieces are processed with the transfer constants to give a series of sensor signals representing the true total deflection of the loaded and running machine stiffness chain to permit calculation of different parameters of the subsequently machined work pieces.
    Type: Grant
    Filed: October 6, 2003
    Date of Patent: June 14, 2005
    Assignee: Aktiebolaget SKF
    Inventor: Bo Göransson
  • Patent number: 6902468
    Abstract: The invention relates to an installation for the machining of the edges of spectacle lenses, comprising at least one CNC-controlled processing machine (1) for machining a spectacle lens, at least one device (3, 4) for determining the optical values, the optical focus, the axis position of a cylindrical or prismatic polish, the position of the near portion and/or the position of a progression channel of a spectacle lens (6) that is configured as a continuous vision lens. The installation also comprises at least one handling device (9) for removing blanks (6) from a conveyer device (8), for inserting a blank into the device, for removing said blank from said device, for introducing a blank into a respective processing machine, for removing a finished machined spectacle lens from the respective processing machine (1) and for replacing said lens on the conveyer device (8).
    Type: Grant
    Filed: March 10, 2001
    Date of Patent: June 7, 2005
    Assignee: WECO Optik GmbH
    Inventors: Joerg Luderich, Fritz Kötting, Ralf Werner
  • Patent number: 6896588
    Abstract: Light is incident on a semiconductor wafer polish surface and an adjacent reference surface (80). The reflected light from each surface is detected by a detector (35) positioned beneath the surfaces. The signals derived from each source of reflected light is analyzed in a electronic system (37) and an endpoint for a chemical mechanical polish process is determined as a function of both signals.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: May 24, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Barry Lanier, Brian E. Zinn
  • Patent number: 6890402
    Abstract: A substrate holding apparatus comprises a substrate holder body having a substrate holding side facing a polishing surface and holding a substrate on the substrate holding side and a retainer ring fixedly secured to the substrate holder body. The retainer ring is arranged to surround an outer periphery of the substrate held by the substrate holder body so that the retainer ring engages with the polishing surface radially outside the substrate as the polishing of the substrate is effected. The substrate holder body is provided with a membrane having inside and outside surfaces. The inside surface cooperates with a surface of the substrate holder body to define a fluid pressure chamber to which a fluid pressure is applied. The outer surface engages with the substrate held by the substrate holder body.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: May 10, 2005
    Assignee: Ebara Corporation
    Inventors: Yoshihiro Gunji, Hozumi Yasuda, Keisuke Namiki, Hiroshi Yoshida
  • Patent number: 6887127
    Abstract: A polishing apparatus is provided for accurately detecting the relative displacement between an upper wheel and a lower wheel and thus for reliably polishing workpieces to a desired thickness. The polishing apparatus includes an upper wheel for pressing at least one workpiece, a lower wheel for supporting the workpiece, non-contact-type displacement-detection device for detecting the relative displacement between the upper wheel and the lower wheel, and a reference table for providing a displacement-detection reference position. The non-contact-type displacement-detection device is joined to the upper wheel so as to move therewith. The reference table is disposed at a position opposing the displacement-detection device and also is integrally connected to the lower wheel.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: May 3, 2005
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toru Nishikawa, Takeshi Inao
  • Patent number: 6884146
    Abstract: Systems and methods for characterizing a polishing process are provided. One method includes scanning a specimen with two or more measurement devices during polishing. In one embodiment, the two or more measurement devices may include a reflectometer and a capacitance probe. In another embodiment, the two or more measurement devices may include an optical device and an eddy current device. An additional embodiment relates to a measurement device for scanning a specimen during polishing. The device includes a light source and a scanning assembly. The scanning assembly is configured to scan light from the light source across the specimen during polishing. Another measurement device includes a laser light source coupled to a first fiber optic bundle and a detector coupled to a second fiber optic bundle. An additional method includes scanning a specimen with different measurement devices during different steps of a polishing process.
    Type: Grant
    Filed: February 4, 2003
    Date of Patent: April 26, 2005
    Assignee: KLA-Tencor Technologies Corp.
    Inventors: Kurt Lehman, Charles Chen, Ronald L. Allen, Robert Shinagawa, Anantha Sethuraman, Christopher F. Bevis, Thanassis Trikas, Haiguang Chen, Ching Ling Meng
  • Patent number: 6878038
    Abstract: A chemical mechanical polishing apparatus has a polishing pad, a carrier to hold a substrate against a first side of the polishing surface, and a motor coupled to at least one of the polishing pad and carrier head for generating relative motion therebetween. An eddy current monitoring system is positioned to generate an alternating magnetic field in proximity to the substrate, an optical monitoring system generates a light beam and detects reflections of the light beam from the substrate, and a controller receives signals from the eddy current monitoring system and the optical monitoring system.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: April 12, 2005
    Assignee: Applied Materials Inc.
    Inventors: Nils Johansson, Boguslaw A. Swedek, Manoocher Birang
  • Patent number: 6875080
    Abstract: A method for directional force correction of pneumatic tires that simultaneously corrects radial and tangential force exerted by the tire. The method allows for the correction of tangential force regardless of the rotational direction of the tire. This invention accomplishes this end through an improved force correction technique, wherein at least two rotary grinders are employed. In the inventive method, the rotational direction of one grinder is reversed in relation to the rotational direction of the other grinder(s). Therefore, at least one grinder will engage the tire in an “up-grinding” manner, and at least one grinder will engage the tire in a “down-grinding” manner. The result is that across the width of the tire's tread surface, some tread blocks will have a “heel-to-toe” appearance, while others will appear “toe-to-heel.” The effect is that, no matter what direction the tire is rotating while in use on an automobile, tangential force variation has been reduced.
    Type: Grant
    Filed: August 9, 2002
    Date of Patent: April 5, 2005
    Assignee: Continental Tire North America, Inc.
    Inventors: George E. Gast, Jr., Kenneth J. Gormish, Gary Paul Zolton, Henry Buel Edwards, II
  • Patent number: 6872122
    Abstract: A method of detecting a substrate in a carrier head for a chemical mechanical polishing system includes connecting a chamber in a carrier head to a pressure source, measuring the pressure in the chamber as a function of time, calculating the derivative of the pressure in the chamber, and determining whether the substrate is adjacent a substrate receiving surface in the carrier head from the derivative.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: March 29, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Steven M. Zuniga
  • Patent number: 6872132
    Abstract: Systems and methods for monitoring characteristics of a polishing pad used in polishing a micro-device workpiece are disclosed herein. In one embodiment, a method for monitoring a characteristic of a polishing pad includes applying ultrasonic energy to the polishing pad and determining a status of the characteristic based on a measurement of the ultrasonic energy applied to the polishing pad. In one aspect of this embodiment, applying ultrasonic energy includes applying ultrasonic energy from a transducer. The transducer can be carried by a conditioner, a fluid arm, a micro-device workpiece carrier, or a table. In another aspect of this embodiment, determining the status of the characteristic includes determining a thickness, density, surface contour, roughness, or texture of the polishing pad.
    Type: Grant
    Filed: March 3, 2003
    Date of Patent: March 29, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Jason B. Elledge, Nagasubramaniyan Chandrasekaran
  • Patent number: 6860791
    Abstract: An apparatus and method of chemical mechanical polishing (CMP) of a wafer employing a device for determining, in-situ, during the CMP process, an endpoint where the process is to be terminated. This device includes a laser interferometer capable of generating a laser beam directed towards the wafer and detecting light reflected from the wafer, and a window disposed adjacent to a hole formed through a platen. The window provides a pathway for the laser beam during at least part of the time the wafer overlies the window.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: March 1, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Manoocher Birang, Allan Gleason
  • Patent number: 6857937
    Abstract: A head is fabricated using photolithography, and the head is purposely powered up during a material removal process, such as lapping, so that the head's expansion (that would be formed on being powered up during normal usage in a drive) is planarized. Specifically, the head is energized in a manner identical (or similar) to energization of circuitry in the head during normal operation in a drive, even though fabrication of the head has not yet been completed. When energized, a shape that the head would have during normal operation is replicated (or approximated). Therefore, the head's shape includes a expansion of the pole tip region, although the head is only partially fabricated. Thereafter, a portion of the head in the expansion is partially or completely removed, by lapping while energized. The depth of material removal from the head is monitored e.g.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: February 22, 2005
    Assignee: Komag, Inc.
    Inventor: Christopher H. Bajorek