Preparing Catalyst Or Precursor Patents (Class 502/104)
  • Patent number: 6613850
    Abstract: A method for feeding a boron compound, which comprises feeding at least one boron compound selected from (1) to (3) described below in the state suspended or slurried in a solvent continuously to a reactor; a boron compound in the form of fine particles being one or more boron compounds selected from (1) to (3) described below and having a maximum particle diameter of 50 &mgr;m or less; a catalyst component for olefin polymerization consisting of said boron compound in the form of fine particles; a method for producing a boron compound in the form of fine particles which comprises dissolving one or more boron compounds selected from (1) to (3) described below in an aromatic hydrocarbon solvent and then precipitating in an aliphatic hydrocarbon solvent; and a method for producing a boron compound in the form of fine particles which comprises pulverizing one or more boron compounds selected from (1) to (3) described below so that their maximum particle diameter is 50 &mgr;m or less.
    Type: Grant
    Filed: November 23, 1998
    Date of Patent: September 2, 2003
    Assignee: Sumitomo Chemical Comoany, Limited
    Inventors: Hideki Sato, Hiroaki Katayama, Kazuki Wakamatsu
  • Patent number: 6613712
    Abstract: The invention provides for compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein the composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted solid oxide compound treated with boron and fluoride.
    Type: Grant
    Filed: November 24, 1999
    Date of Patent: September 2, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Elizabeth A. Benham, Anthony P. Eaton, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 6613852
    Abstract: This invention provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer. This invention also provides catalyst compositions that are useful for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises a post-contacted organometal compound, a post-contacted organoaluminum compound, and a post-contacted fluorided silica-alumina.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: September 2, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Anthony P. Eaton, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Patent number: 6613713
    Abstract: The present invention relates to transition metal organometallic compounds with an indenyl ligand attached in position 2 and fused in position 5,6, to a process for the production thereof and to the use thereof as catalysts for the (co)polymerization of olefinic and/or diolefinic monomers.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: September 2, 2003
    Assignee: Bayer Aktiengesellschaft
    Inventors: Sigurd Becke, Heinrich Lang, Thomas Weiss
  • Patent number: 6605560
    Abstract: This invention is generally directed toward a supported catalyst system useful for polymerizing olefins. The method for supporting the catalyst of the invention provides for a supported metallocene catalyst formed by vacuum or pressurized impregnation.
    Type: Grant
    Filed: March 13, 1997
    Date of Patent: August 12, 2003
    Assignee: Univation Technologies, LLC
    Inventor: Main Chang
  • Patent number: 6600011
    Abstract: This invention relates to a method for purifying and drying a polymer hydrogel. This invention is based in part upon the discovery that rapid drying of polymer hydrogels can eliminate the problem of unacceptable levels of soluble oligomers caused by prolonged thermal treatment. Rapid drying techniques allow drying hydrogels containing more water than was previously considered possible without a loss in product quality. Furthermore, it was discovered that slurries comprising polymer hydrogels and large quantities of water can be spray dried and that spray drying can be conducted with only minimal oligomer formation.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: July 29, 2003
    Assignee: Genzyme Corporation
    Inventors: Peter D. McDonnell, Gary S. Rea, Peter W. Thomas, Mark F. Larrousse, Richard V. Bodmer, Jr.
  • Patent number: 6596842
    Abstract: Process comprising treating a double metal cyanide complex catalyst with sound waves and/or electromagnetic radiation, process for polymerising alkylene oxide in which such catalyst is used, and double metal cyanide complex catalyst which catalyst has been treated with sound waves and/or electromagnetic radiation.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: July 22, 2003
    Assignee: Shell Oil Company
    Inventors: Michiel Barend Eleveld, Johan Paul Smit, Robert Adrianus Wilhelmus Grotenbreg, Riemer Alberts De Groot
  • Patent number: 6586358
    Abstract: The present invention relates to a bidenitate diimino-complex of nickel or palladium containing at least one group OSi(R)3 wherein each R, equal to or different from each other, is selected from the group consisting of: C1-C20 alkyl, C3-C20 cycloalkyl, C6-C20 aryl, C2-C20 alkenyl, C7-C20 arylalkyl, C7-C20 alkylaryl, C8-C20 arylalkenyl, and C8-C20 alkenylaryl, linear or branched, preferably each R is independently methyl, ethyl or propyl. The present invention also relates to the process for the preparation of bidentate diimino complexes of nickel and palladium as well as the process for their use in olefin polymerization.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: July 1, 2003
    Assignee: Repsol Quimica, S.A.
    Inventors: Luis Mendez Llatas, Antonio Muñoz-Escalona Lafuente, Juan Campora Perez, Ernesto Carmona Guzman, Manuel Lopez Reyes
  • Patent number: 6583242
    Abstract: A supported olefin polymerization catalyst system and a method of making it are disclosed. The catalyst system comprises: (a) a support having mean particle size less than about 30 microns chemically treated with alumoxane; (b) an organometallic complex comprising a Group 3 to 10 transition or lanthanide metal, M, and at least one indenoindolyl ligand that is &pgr;-bonded to M; and (c) an activator. Chemical treatment with alumoxane and support mean particle size less than 30 microns are key to making supported indenoindolyl containing catalysts having high activity.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: June 24, 2003
    Assignee: Equistar Chemicals, LP
    Inventors: Shaotian Wang, Norma J. Maraschin, Debra L. Beran, William J. Sartain
  • Patent number: 6576583
    Abstract: This invention provides a process for producing a catalyst composition comprising contacting at least one group 4 metallocene, at least one organoaluminum compound, and at least one solid. The solid is selected from the group consisting of titanium tetrafluoride, zirconium tetrafluoride, and a treated solid oxide compound. The treated solid oxide compound comprises a solid oxide compound having titanium tetrafluoride or zirconium tetrafluoride deposited on the surface of the solid oxide compound. The solid oxide compound comprises oxygen and at least one element selected from the group consisting of groups 2-9 and 11-17 of the Periodic Table of Elements, including lanthanides and actinides. This invention also provides the catalyst composition produced by this process.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: June 10, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Marvin M. Johnson, Bruce B. Randolph, Kathy S. Collins, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Publication number: 20030096926
    Abstract: A transition metal catalyst component for polymerization, composed of a metal complex comprising specific ligands and a specific substituted boron group and having a bridging group, which exhibits a very high activity for an olefin type (co)polymerization or an olefin-aromatic vinyl compound copolymerization, whereby the molecular weight of a copolymer obtainable, is high. A method for producing an olefin (co)polymer and an aromatic vinyl compound-olefin copolymer, by means thereof.
    Type: Application
    Filed: November 14, 2001
    Publication date: May 22, 2003
    Inventors: Toru Arai, Toshiaki Otsu, Masataka Nakajima
  • Patent number: 6562918
    Abstract: A catalyst for olefin polymerization, which is obtained by contacting (A) a compound of a transition metal of Groups 4 to 6 of the Periodic Table, (B) an organoaluminiumoxy compound, and optionally (C) a carrier with each other, and for which they are exposed to elastic waves at least in any step of contacting them with each other. Preferably, the elastic waves are ultrasonic waves falling between 1 and 1000 kHz. Provided are high-activity metallocene catalysts for olefin polymerization. As having high polymerization activity, they are favorable to vapor-phase or slurry polymerization for producing olefinic polymers.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: May 13, 2003
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Yutaka Minami, Masami Kanamaru
  • Publication number: 20030087755
    Abstract: A method of making a solid procatalyst composition for use in a Ziegler-Natta olefin polymerization catalyst composition, said method comprising:
    Type: Application
    Filed: February 20, 2002
    Publication date: May 8, 2003
    Inventors: Linfeng Chen, Thomas L. Nemzek, Richard A. Kemp
  • Patent number: 6559087
    Abstract: A method for the treatment of catalyst or catalyst support material in an apparatus in which the treatment is carried out continuously in such a way that the physical and/or chemical conditions change during entry of the catalyst or catalyst support material into the apparatus and/or during exit thereof from the apparatus and/or the catalyst or catalyst support material is transported in the apparatus through zones (5, 6, 7) having different physical and/or chemical conditions.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: May 6, 2003
    Assignee: Basell Polyolefins GmbH
    Inventors: Paulus De Lange, Rainer Karer, Philipp Rosendorfer, Kaspar Evertz, Wolfgang Micklitz, Hans-Jacob Feindt
  • Patent number: 6559253
    Abstract: The invention is directed to olefin polymerization processes using bridged hafnocene catalyst complexes comprising highly substituted noncoordinating anions that are surprisingly stable under high temperature olefin polymerization processes such that olefin copolymers having significant amount of incorporated comonomer can be prepared with high molecular weights. More specifically, the invention is a polymerization process for ethylene copolymers having a melt index of about 0.87 to about 0.930 comprising contacting, under homogeneous polymerization conditions at a reaction temperature at or above 140° C. to 225° C.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: May 6, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Donna J. Crowther, Bernard J. Folie, John F. Walzer, Jr., Rinaldo S. Schiffino
  • Patent number: 6555494
    Abstract: Novel, highly effective catalyst compositions are described in which a low cost co-catalyst can be employed at very low aluminum loadings. Such compounds are composed of a cation derived from d-block or f-block metal compound, such as a metallocene, by loss of a leaving group, and an aluminoxate anion derived by transfer of a proton from a stable or metastable hydroxyaluminoxane to such leaving group. These catalyst compositions have extremely high catalytic activity and typically have high solubility in paraffinic solvents. Moreover they yield reduced levels of ash and result in improved clarity in polymers formed from such catalysts. Surprisingly, when isolated and stored, and optionally purified, under anhydrous inert conditions and surroundings, the catalyst compounds are more stable than if kept in solution. Thus these catalyst compounds can be stored, shipped, and used under inert anhydrous conditions as preformed catalysts thus simplifying the polymerization operations.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: April 29, 2003
    Assignee: Albemarle Corporation
    Inventors: Feng-Jung Wu, Jamie R. Strickler
  • Patent number: 6555495
    Abstract: This invention relates to a method to support one or more catalyst compounds comprising contacting the catalyst compounds with a pretreatment agent comprising an aluminum alkyl and or an alumoxane in solution and thereafter contacting the combination with a supported activator.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: April 29, 2003
    Assignee: Univation Technologies, LLC
    Inventors: Thomas Henry Peterson, Eric Lucas
  • Patent number: 6551956
    Abstract: The present invention relates to a catalytic composition for the polymerization of olefins combining a number of catalytic components for the polymerization of olefins and to a process for preparing it. The catalytic component according to the invention is obtained by impregnation of a prepolymer with a solution of a catalytic component for the polymerization of olefins. The invention brings about control of the combination of different catalytic components and provides for improvement in the control of the quality of the polymers manufactured by virtue of the catalytic action of the combined catalytic components.
    Type: Grant
    Filed: October 17, 1997
    Date of Patent: April 22, 2003
    Assignee: Elf Atochem
    Inventor: Jean Malinge
  • Patent number: 6551957
    Abstract: The present invention relates to a catalyst composition and a method for making the catalyst composition of a polymerization catalyst and a carbonyl compound. The invention is also directed to the use of the catalyst composition in the polymerization of olefin(s). In particular, the polymerization catalyst system is supported on a carrier. More particularly, the polymerization catalyst comprises a bulky ligand metallocene-type catalyst system.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: April 22, 2003
    Assignee: Univation Technologies, LLC
    Inventor: Timothy T. Wenzel
  • Patent number: 6548441
    Abstract: This invention provides a catalyst composition for polymerizing at least one monomer to produce a polymer, wherein said catalyst composition comprises an organometal compound, an organoaluminum compound, and a treated solid oxide compound comprising nickel, a halogen, and a solid oxide compound.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: April 15, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Max P. McDaniel, Kathy S. Collins, Anthony P. Eaton, Elizabeth A. Benham, Michael D. Jensen, Joel L. Martin, Gil R. Hawley
  • Publication number: 20030069372
    Abstract: An olefin polymerization catalyst is described which includes: (A) a solid catalyst component being prepared by copulverizing a magnesium compound, an aluminum compound, an electron donor and a titanium compound, and (B) an organoaluminum compound. The present invention is also directed to a process for preparing polyolefins using the aforesaid catalyst system to polymerize olefins.
    Type: Application
    Filed: October 9, 2001
    Publication date: April 10, 2003
    Applicant: Formosa Plastics Corporation, U.S.A.
    Inventors: Bing Lu, Honglan Lu, Chih-Jian Chen
  • Patent number: 6544922
    Abstract: A catalyst system useful to polymerize and co-polymerize polar and non-polar olefin monomers is formed by in situ reduction with a reducing agent of a catalyst precursor comprising {Cp*MRR′n}+{A}− wherein Cp* is a cyclopentadienyl or substituted cyclopentadienyl moiety; M is an early transition metal; R is a C1-C20 hydrocarbyl; R′ are independently selected from hydride, C1-C20 hydrocarbyl, SiR″3, NR″2, OR″, SR″, GeR″3, and SnR″3 containing groups (R″=C1-C10 hydrocarbyl); n is an integer selected to balance the oxidation state of M; and A is a suitable non-coordinating anionic cocatalyst or precursor. This catalyst system may form stereoregular olefin polymers including syndiotactic polymers of styrene and methylmethacrylate and isotactic copolymers of polar and nonpolar olefin monomers such as methylmethacrylate and styrene.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: April 8, 2003
    Assignee: Northwestern University
    Inventors: Tobin J. Marks, Lubin Luo, Sung Cheol Yoon
  • Patent number: 6541584
    Abstract: A new class of bridged bis(tetrahydro-indenyl)metallocenes of formula (I), wherein M is Zr or Hf; X are monoanionic sigma ligands; (ZR1i)j is a divalent group bridging the two tetrahydro-indenyl residues; R2 and R3 are halogen, alkyl, cycloalkyl, aryl, alklyaryl or arylalkyl radicals; p is 0-3; i is 1 or 2; j is 1-4; m is 1-2; and n is 0-8. Furthermore, catalysts systems for olefin polymerization containing them are described.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: April 1, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventor: Luigi Resconi
  • Patent number: 6541412
    Abstract: A polymerization catalyst system and process, which utilizes a Group 14 and Group 16 containing oil or amorphous solid to solubilize polymerization catalyst components including metallocenes and Group 15 containing polymerization catalysts, is disclosed.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: April 1, 2003
    Assignee: Univation Technologies, LLC
    Inventor: David E. Gindelberger
  • Publication number: 20030060358
    Abstract: A process for producing a new metallocene comprising reacting a first bridged metallocene which has an olefinically unsaturated with about two molar equivalents of an alkali metal alkyl, catalyst systems resulting from the combination of the resulting metallocenes and a cocatalyst, and polymerization processes using such catalyst systems are disclosed.
    Type: Application
    Filed: October 28, 2002
    Publication date: March 27, 2003
    Applicant: PHILLIPS PETROLEUM COMPANY
    Inventors: Erik Licht, Helmut G. Alt, M. Bruce Welch, Bryan E. Hauger
  • Patent number: 6537943
    Abstract: The invention relates to a catalyst system composed of metallocenes comprising substituents containing fluorine, a method for producing said system and its use for the polymerization of olefins.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: March 25, 2003
    Assignee: Targor GmbH
    Inventors: Cornelia Fritze, Gerhard Erker, Johannes Ruwwe
  • Patent number: 6537942
    Abstract: Olefin polymerization catalyests are formed from: (I-2) a contact product obtained by contacting (A) a solid titanium catalyst component, (B) an organometallic compound catalyst component, and (D) a specific polyether compounds, (II-2)(C) a specific organosilicon compound, and, optionally, (III-2) an organometallic compound catalyst component; or the contact product (I-2) may be replaced by one which is obtained by prepolymerizing an olefin of 2 or more carbon atoms in the presence of the catalyst components for the contact product (I-2).
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: March 25, 2003
    Assignee: Mitsui Chemicals INC
    Inventors: Tetsunori Shinozaki, Mamoru Kioka
  • Patent number: 6534609
    Abstract: Methods are disclosed for preparing a highly active solid metallocene-containing catalyst system and its use in the polymerization of olefins. The catalyst system is prepared by creating a catalyst system solution by combining an aluminoxane with a metallocene having a substituent which has olefinic unsaturation in an aliphatic liquid to form a liquid catalyst system, conducting prepolymerization of an olefin in the liquid catalyst system, preferably in multiple stages, and separating the resulting solid metallocene-containing catalyst system from the reaction mixture. Also polymerization of olefins using the inventive solid catalyst system is disclosed.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: March 18, 2003
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Kent E. Mitchell, Gary L. Glass, L. Matthew Kirchman, Robert K. Provence, Leigh A. Ford, Randall S. Muninger
  • Patent number: 6534433
    Abstract: A process is provided for preparing a catalyst support for polymerizing &agr;-olefins comprising the steps of: (i) reacting, in the presence of a first electron donor, a chlorine-containing organic compound and a prior mixture of an alkylmagnesien and an aluminoxane and/or aluminosiloxane and/or alkylaluminum and, optionally, a second electron donor; and (ii) activating a product from step (i) in suspension in an inert liquid by means of an activation electron donor, together with the support thus obtained, a catalyst for polymerizing &agr;-olefins, comprising this catalyst support and a group IV transition metal halide, and a process for polymerizing &agr;-olefins, particularly propylene, comprising contacting the &agr;-olefin with the catalyst.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: March 18, 2003
    Assignee: Atofina
    Inventors: Thierry Saudemont, Jean Malinge, Jean-Loup LaCombe, Daniel Cochard, Henri Violle
  • Patent number: 6534613
    Abstract: A novel process for producing homopolymers and copolymers of ethylene which involves contacting ethylene and/or ethylene and at least one or more other olefin(s) under polymerization conditions with a Ziegler-Natta type catalyst, at least one halogenated hydrocarbon, at least one compound of the formula XnER3-n as a co-catalyst and at least one compound containing at least one carbon-oxygen-carbon linkage (C—O—C) of the formula R1—O(—R2—O)n—R3 as an external electron donor. Also provided are films and articles produced therefrom.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: March 18, 2003
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, William Albert Ames, Kenneth Alan Dooley, Jeffrey James Vanderbilt, Alan George Wonders
  • Patent number: 6534431
    Abstract: The invention relates to a process and to an apparatus for preparing a heterogeneous catalyst having at least one catalytically active species bound to the surface of a support material. According to the process, the surface of the support is first pretreated. A catalyst reagent containing the catalytically active species or its precursor is vaporized and the vapor is routed into a reaction chamber where it is brought to interact with the support material. The catalyst reagent not bound to the support is withdrawn from the reaction chamber in gaseous form. If necessary, the species bound to the support is posttreated in order to convert it into a catalytically active form. According to the invention, the amount of catalyst reagent brought into the reaction chamber is at least equal to, preferably in excess of the number of available binding sites on the surface.
    Type: Grant
    Filed: June 24, 1997
    Date of Patent: March 18, 2003
    Assignee: Fortum Oil and Gas Oy
    Inventors: Tuomo Suntola, Eeva-Liisa Lakomaa, Hilkka Knuuttila, Pekka Knuuttila, Outi Krause, Sven Lindfors
  • Publication number: 20030050413
    Abstract: A supported olefin polymerization catalyst system and a method of making it are disclosed. The catalyst system comprises: (a) a support having mean particle size less than about 30 microns chemically treated with alumoxane; (b) an organometallic complex comprising a Group 3 to 10 transition or lanthanide metal, M, and at least one indenoindolyl ligand that is &pgr;-bonded to M; and (c) an activator. Chemical treatment with alumoxane and support mean particle size less than 30 microns are key to making supported indenoindolyl containing catalysts having high activity.
    Type: Application
    Filed: August 2, 2001
    Publication date: March 13, 2003
    Inventors: Shaotian Wang, Norma J. Maraschin, Debra L. Beran, William J. Sartain
  • Publication number: 20030050185
    Abstract: Components of catalysts for the polymerization of olefins are obtained by contacting a Ti compound of formula Ti(OR)n−yXy, where n is the valence of titanium and y is a number between 1 and n, with a pre-polymer having a porosity higher than 0.3 cc/g and containing from 0.5 to 100 g of polymer per g of solid catalyst component, the pre-polymer being obtained by (co)polymerizing an olefin or a diolefin in the presence of a catalyst comprising a Ti, V, Zr of Hf compound supported on an Mg dihalide having a mean crystallite dimension lower than 30 nm.
    Type: Application
    Filed: July 24, 2002
    Publication date: March 13, 2003
    Inventors: Licio Zambon, Mario Sacchetti, Gianni Vitale
  • Patent number: 6531518
    Abstract: A process of enhancing both the activity and the methane selectivity of a particulate Dispersed Active Metal (“DAM”) hydrogenation catalyst is disclosed wherein the DAM undergoes low temperature oxidation in a slurry phase to form a stable, unique oxidized catalyst precursor that is subsequently reduced to form an enhanced catalyst by treatment with hydrogen-containing gas at elevated temperature, wherein one or more promoter metal oxides of chromium, lanthanum and manganese are added to the DAM. Precursors of the promoter metal oxides may be combined with the DAMs prior to or during formation of the initial slurry, during the oxidation step or between recovery of the oxidized catalyst precursor and treatment of it with hydrogen-containing gas to reactivate the catalyst. Conversion of the precursors to the promoter metal oxides is carried out prior to the treatment with hydrogen-containing gas unless said treatment itself produces the conversion.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: March 11, 2003
    Assignee: ExxonMobil Research and Engineering Co.
    Inventors: Albert L'Vovich Lapidus, Alla Jurievna Krylova, Lilia Vadimovna Sineva, Russell John Koveal, Michel A. Daage
  • Publication number: 20030045660
    Abstract: A catalyst system for the polymerization of olefins is prepared by initially charging one or more compounds of the formula I a or I b, 1
    Type: Application
    Filed: September 30, 2002
    Publication date: March 6, 2003
    Inventors: Marc Oliver Kristen, Gerhard Hauck
  • Patent number: 6528453
    Abstract: A process for preparing a supported metal catalyst composition which comprises impregnating microspheroidal support particles with a solution of at least one catalytically active metal, or precursor, drying the impregnated support particles and then treating the mobile metal, or precursor in a mobile state with a liquid comprising at least one reducing agent to deposit and immobilize the metal, or its precursor, in the support particles such that the metal, or its precursor, is distributed in the support particle in a layer below the surface of the support particle, the layer being between an inner and an outer region having a lower concentration of metal or precursor. Also, a composition comprising microspheroidal support particles having at least one catalytically active metal or precursor thereof distributed in a layer below the surface of the particles, the layer being between an inner and an outer region of the support particle each having a lower concentration of metal or precursor.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: March 4, 2003
    Assignees: BP Chemicals Limited, Johnson Matthey Public Limited
    Inventors: Michael James Baker, John William Couves, Kenneth George Griffin, Peter Johnston, James Colin McNicol, George Frederick Salem
  • Patent number: 6528683
    Abstract: The invention relates to a method for producing shell catalysts for the catalytic vapor-phase oxidation of aromatic carboxylic acids and/or carboxylic acid anhydrides comprised of a supporting core and of catalytically active metal oxides which are deposited in a shell-shaped manner on said supporting core. The inventive catalysts are obtained by spraying an aqueous active mass suspension, said suspension containing the active metal oxides, at higher temperatures onto the hot supporting material which has a temperature ranging from 50 to 450° C. The aqueous active mass suspension contains 1 to 10 wt. %, with regard to the solid content of the active mass suspension, a binding agent comprised of A) a polymerizate obtained by radical polymerization, containing 5 to 100 wt. % of monomers (a) in the form of ethylenically unsaturated acid anhydrides or ethylenically unsaturated dicarboxylic acids whose carboxyl groups can form an anhydride and containing 0 to 95 wt.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: March 4, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Heidemann, Frank Rosowski, Gerd Linden, Michael Seufert, Gerhard Hefele, Peter Michael Lorz
  • Patent number: 6528448
    Abstract: A process to produce a first catalyst composition is provided. The process comprises contacting at least one first organometal compound, oxygen bridged mono-cyclopentadienyl transition metal dimer, and at least one activator to produce the first catalyst composition. The activator is selected from the group consisting of aluminoxanes, fluoro-organo borates, and treated solid oxide components in combination with at least one organoaluminum compound. In another embodiment of this invention, a process to produce a second catalyst composition for producing bimodal polymers is provided. The process comprises contacting at least one first organometal compound, at least one activator, and at least one second organometal compound to produce the second catalyst composition. The first and second catalyst compositions are also provided as well as polymerization processes using these compositions to produce polymers.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: March 4, 2003
    Assignee: Phillips Petroleum Company
    Inventors: Michael D. Jensen, Max P. McDaniel, Elizabeth A. Benham, Anthony P. Eaton, Joel L. Martin, Gil R. Hawley, Tony R. Crain, Martha J. Tanner
  • Patent number: 6524988
    Abstract: This invention relates to metallocene catalyst compositions which are highly active for the polymerization of olefins, particularly prochiral &agr;-olefins. The catalyst compositions contain at least one metallocene, and least one activator and a support that has been fluorided using a fluoride containing compound.
    Type: Grant
    Filed: June 20, 2001
    Date of Patent: February 25, 2003
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Anthony N. Speca
  • Patent number: 6521560
    Abstract: This invention provides a solid titanium catalyst component which comprises magnesium, titanium, halogen and an electron donor, is free from elimination of titanium when washed with hexane at room temperature, and has a titanium content decrease ratio of less than 15 % by weight when washed with o-dichlorobenzene at 90° C. The catalyst component can be prepared by a process wherein solid titanium (i) which is free from elimination of titanium when washed with hexane at room temperature is contacted with a polar compound having a dipole moment of 0.50 to 4.00 Debye to decrease the titanium content by at least 25 % by weight, whereby a solid titanium catalyst component having a weight ratio of an electron donor to titanium of at least 6 is prepared. Olefin polymerization catalyst containing the solid titanium catalyst component can be used for (co)polymerization of olefins with high activity to obtain a polyolefin of high stereoregularity in decreased quantities of a low stereoregular polyolefin.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: February 18, 2003
    Assignee: Mitsui Chemicals Inc.
    Inventors: Shinichi Kojoh, Mamoru Kioka
  • Patent number: 6518375
    Abstract: A catalyst for the production of an ethylene polymer comprising a specific trivalent alkyl chromium compound, an inorganic oxide solid and optionally an organoaluminum compound (first catalyst), a catalyst for the production of an ethylene polymer comprising the specific trivalent alkyl chromium compound, a specific tetravalent alkyl chromium compound and an inorganic oxide solid (second catalyst) and a process for producing an ethylene polymer using those catalysts. The first catalyst of the present invention does not cause deterioration with the passage of time, is stable to heat and light, has greatly improved activity and can efficiently produce an ethylene copolymer with &agr;-olefin.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: February 11, 2003
    Assignee: Japan Polyolefins Co., Ltd.
    Inventors: Takashi Monoi, Haruhiko Ikeda, Hidenobu Torigoe
  • Patent number: 6512061
    Abstract: The invention provides a process for producing polypropylene and/or random copolymers of propylene type using a stereoregular catalyst which comprises a titanium-containing solid catalyst component (A), an organoaluminum compound (B) and if required an organosilicon compound (C), wherein [I] before carrying out homopolymerization of propylene or random copolymerization of propylene with an &agr;-olefin other than propylene, the above component (A), an organoaluminum compound (B′) and if required an organosilicon compound (C′) are used, and a small amount of propylene or ethylene and/or an &agr;-olefin of 4-20 carbon atoms for pre-activation treatment is supplied to the above component (A), and [II] a catalyst which is prepared by adding an organosilicon compound (C″) to the pre-activated stereoregular catalyst in a molar ratio of 0.1-50 as Si/Ti, is used to produce polypropylene or propylene random copolymers.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: January 28, 2003
    Assignee: Chisso Corporation
    Inventors: Masami Kimura, Takanori Nakashima, Chikashi Okayama
  • Patent number: 6511934
    Abstract: A catalyst composition for the polymerization of olefins is provided, comprising a transition metal precursor containing sulfur ligands and an activating co-catalyst.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: January 28, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Jessica Ann Cook, John Joseph Bielak
  • Patent number: 6506858
    Abstract: A process for the preparation of a catalyst material and the resultant catalyst material. The process comprises the steps of: (a) treating a particulate support material with an alkylating agent; (b) contacting the alkylating agent treated support material with a procatalyst; optionally (c) contacting the support material with an ionic catalyst activator, and optionally (d) recovering the catalyst-carrying support material. The process allows the simple and effective alkylation of procatalysts, such as metallocene procatalysts. The procatalyst comprises at least one triaza containing ligand.
    Type: Grant
    Filed: April 21, 2000
    Date of Patent: January 14, 2003
    Assignee: Borealis A/S
    Inventors: Hikka Knuuttila, Kallee Kallio, Ove Andell
  • Publication number: 20030004287
    Abstract: The present invention provides to a catalytic system, its method for preparation, and a method for preparation of a copolymer of ethylene and a conjugated diene, which uses this catalytic system.
    Type: Application
    Filed: May 23, 2002
    Publication date: January 2, 2003
    Inventors: Fanny Barbotin, Cristophe Boisson, Roger Spitz
  • Patent number: 6500907
    Abstract: Catalyst system suitable for polymerizing unsaturated monomers and comprising active constituents obtainable by reacting A) a transition metal compound with B) aluminum trifluoride, C) a cation-forming compound and, if desired, D) further components.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: December 31, 2002
    Assignee: Basell Polyolefine GmbH
    Inventors: Carsten Süling, Marc Oliver Kristen, Günther Schweier, Andrei Gonioukh, Gerhard Hauck
  • Patent number: 6495641
    Abstract: Vanadium complex having general formula (I) (RCOO)nVXpLm  (I) wherein R is a monofunctional hydrocarbon radical having from 1 to 20 carbon atoms and from 1 to 6 halogen atoms, selected from chlorine and bromine, preferably chlorine; X is chlorine or bromine, preferably chlorine; L is an electron donor; p+n=3, 4 or 5, preferably=3; n is greater than or equal to 1; m is between 0 and 3. The preparation of the above complex is also described together with its use in the (co)polymerization of &agr;-olefins.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: December 17, 2002
    Assignee: Enichem S.p.A.
    Inventors: Francesco Masi, Liliana Gila, Roberto Santi, Antonio Proto, Evelina Ballato, Anna Maria Romano
  • Patent number: 6492472
    Abstract: The present invention relates to mixed catalyst system of at least one bridged, bulky ligand metallocene-type compound, and at least one bridged, asymmetrically substituted, bulky ligand metallocene-type compound, a method of making the mixed catalyst system and to there use in a polymerization process to produce polymers having an unexpected improvement in processability.
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: December 10, 2002
    Assignee: Univation Technologies, LLC
    Inventors: Ching-Tai Lue, Donna J. Crowther
  • Patent number: 6492292
    Abstract: Gelatinous compositions of matter which are useful as polymerization catalyst components and are highly stable in terms of OH-decay rate, as well as similarly stable solid compositions of matter formed from such gelatinous compositions, are described. The gelatinous and solid compositions are formed from hydroxyaluminoxane. Also disclosed is a process comprising converting a hydroxyaluminoxane into a gelatinous composition of matter, whereby the rate of OH-decay for the composition is reduced as compared to that of the hydroxyaluminoxane. Olefin polymerization processes and catalysts formed from these novel compositions of matter also are disclosed.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: December 10, 2002
    Assignee: Albemarle Corporation
    Inventors: Feng-Jung Wu, Larry S. Simeral
  • Patent number: 6486089
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising (1) providing silica which is porous and has a particle size of 1 to 250 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g; (2) slurrying the silica in an aliphatic solvent having a boiling point less than 110° C.; (3) providing a volume of a solution comprising metallocene and alumoxane wherein the volume of solution is less than that required to form a slurry of the silica, wherein the concentration of alumoxane, expressed as Al weight percent, is 5 to 20; (4) contacting the silica slurry (2) with said volume of said solution (3) and allowing the solution to impregnate the pores of silica and, to disperse the metallocene in and on the carrier; (5) evaporating the solvents from the contacted and impregnated silica to recover dry free-flowing catalyst particles.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien