Utilizing Water Or Compound Containing Hydroxy Bonded To Carbon Patents (Class 502/111)
  • Patent number: 11851506
    Abstract: The present invention relates to a process for preparation of a catalyst for polymerization of olefins. The catalyst has a particle size of between 5 to 30 microns with activity ranging from 3-4 Kg (co)polymer per g of catalyst and excellent hydrogen response. The method for preparation of the catalyst comprises the steps of: a) contacting a liquid magnesium complex, an electron donor, and a titanium halide compound to form a solution; b) obtaining the solid uniform catalyst particles by precipitation; and c) washing the catalyst particles to obtain solid uniform catalyst., for producing (co)polymer of ethylene with other olefins have fines less than 10 wt. %.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: December 26, 2023
    Assignee: Indian Oil Corporation Limited
    Inventors: Gurmeet Singh, Rashmi Rani, Sukhdeep Kaur, Yajnaseni Biswas, Anju Chopra, Gurpreet Singh Kapur, Sankara Sri Venkata Ramakumar
  • Patent number: 11161922
    Abstract: The present disclosure provides a method for preparing a catalyst system comprising contacting in an aliphatic solvent at a temperature of from less than 0° C. to ?60° C. at least one support material having absorbed water and at least one hydrocarbyl aluminum compound to form a supported alumoxane (catalyst precursor) and contacting the supported alumoxane with at least one catalyst compound having a Group 3 through Group 12 metal atom or lanthanide metal atom. The supported alumoxane may be heated prior to contact with the catalyst compound.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: November 2, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Lubin Luo, Anupriya Jain, Charles J. Harlan
  • Patent number: 11103847
    Abstract: Reactors, reactor systems and methods for producing particles in a precipitation process are provided. The reactor includes a housing defining a reaction chamber, a stator assembly including two or more stators, a rotor assembly including two or more rotors, the rotor assembly configured for rotation about an axis of rotation relative to the stator assembly, a first inlet to supply a first reactant material to the reaction chamber at a first radial location, a second inlet to supply a second reactant material to the reaction chamber at a second radial location different from the first radial location, wherein the first and second reactant materials react to produce precipitation of particles in the reaction chamber, and an outlet to supply the particles formed in the reaction chamber.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: August 31, 2021
    Assignee: MannKind Corporation
    Inventors: Sanket Gandhi, Karen Moraleda, Jadwiga Jachowicz, Michael Zupon
  • Patent number: 11021552
    Abstract: The present disclosure provides methods for preparing a catalyst system comprising contacting in an aliphatic solvent at least one support material, at least one hydrocarbyl aluminum compound and at least one non-hydrolytic active oxygen-containing compound to form a supported alumoxane (catalyst system precursor) and contacting the supported alumoxane with at least one catalyst compound having a Group 3 through Group 12 metal atom or lanthanide metal atom. The supported alumoxane may be heated prior to contact with the catalyst compound.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: June 1, 2021
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Charles J. Harlan, Steven C. Haas, Lubin Luo, Francis C. Rix, Xuan Ye
  • Patent number: 10947361
    Abstract: The present invention presents an ethylene polymer, wherein the ethylene polymer has a weight average molecular weight (Mw) of 200,000 or more and 3,000,000 or less, a proportion of a component (?130) with the lowest mobility of 40% or more and 60% or less, and a ratio ?/? of a middle motion component (?) to a component (?) with the highest mobility of 1.0 or more and 4.0 or less when a three-component approximation of free induction decay at 130° C. measured by a solid echo method of pulse NMR is performed.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 16, 2021
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Shinsuke Mochizuki, Hidenobu Takeyama
  • Patent number: 10815315
    Abstract: A method for producing a polyolefin is provided. The method includes steps of polymerizing an olefin in a first gas-phase polymerization tank to obtain polyolefin-containing particles, transferring the polyolefin-containing particles to a second gas-phase polymerization tank through a transfer pipe, and polymerizing an olefin in the presence of the transferred polyolefin-containing particles in the second gas-phase polymerization tank. A connection place between the first gas-phase polymerization tank and the transfer pipe is higher than a connection place between the second gas-phase polymerization tank and the transfer pipe. 130 kPa?P1?P2?0 is satisfied, where P1 represents the pressure in the first gas-phase polymerization tank and P2 represents the pressure in the second gas-phase polymerization tank.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 27, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Naoto Yoshimura, Satoshi Itoguchi, Masayuki Arakawa
  • Patent number: 10703838
    Abstract: The present disclosure provides a supported catalyst system and process for use thereof. In particular, the catalyst system includes four different catalysts, a support material and an activator. The catalyst system may be used for preparing polyolefins, such as polyethylene.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: July 7, 2020
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, David F. Sanders, Matthew S. Bedoya, Ching-Tai Lue
  • Patent number: 10364309
    Abstract: A supported polymerisation catalyst system comprises: (a) a polymerisation catalyst, (b) a cocatalyst, and (c) a porous support, and is characterised in that the porous support has been pretreated with (i) a chemical dehydration agent and (ii) a hydroxy compound wherein the hydroxy compound is not a cocatalyst or component thereof. The preferred polymerisation catalyst is a transition metal compound for example a metallocene and by use of the supported catalyst systems improved activity may be achieved.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: July 30, 2019
    Assignee: INEOS SALES (UK) LIMITED
    Inventor: Sergio Mastroianni
  • Patent number: 10077322
    Abstract: The present disclosure provides a gas-phase polymerization process for preparing polyethylene, wherein halogenated alcohols in combination with a Ti based catalyst component and aluminum alkyls as co-catalyst suppress ethane formation or increase polymerization activity.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: September 18, 2018
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Pietro Baita, Tiziano Dall'Occo, Maria Di Diego, Dario Liguori, Lorella Marturano, Andreas Maus, Gabriele Mei, Gerhardus Meier, Giampiero Morini, Roberta Pica, Ulf Schueller
  • Patent number: 9839903
    Abstract: The invention concerns a process for the preparation of a catalyst for carrying out hydrogenation reactions in hydrotreatment and hydrocracking processes. Said catalyst is prepared from at least one mononuclear precursor based on molybdenum (Mo), in its monomeric or dimeric form, having at least one Mo?O or Mo—OR bond or at least one Mo?S or Mo—SR bond where [R=CxHy where x?1 and (x?1)?y?(2x+1) or R=Si(OR?)3 or R=Si(R?)3 where R?=Cx?Hy? where x??1 and (x??1)?y??(2x?+1)], and optionally from at least one promoter element from group VIII. Said precursors are deposited onto an oxide support which is suitable for the process in which it is used, said catalyst being dried at a temperature of less than 200° C. then advantageously being sulphurized before being deployed in said process.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: December 12, 2017
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Thibault Alphazan, Audrey Bonduelle, Christele Legens, Pascal Raybaud, Christophe Coperet
  • Patent number: 9790300
    Abstract: Propylene copolymer having a comonomer content in the range of 2.0 to 11.0 mol.-% and a melt flow rate MFR2 (230° C.) in the range of 25.0 to 100 g/10 min, wherein said propylene copolymer is featured by good toughness.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: October 17, 2017
    Assignee: Borealis AG
    Inventors: Jingbo Wang, Johanna Lilja, Markus Gahleitner
  • Patent number: 9650453
    Abstract: Methods for integrating aluminoxane production into catalyst production are disclosed.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 16, 2017
    Assignee: Univation Technologies, LLC
    Inventors: Randall L. Force, Timothy R. Lynn, Michael D. Awe
  • Patent number: 9579642
    Abstract: The invention concerns a process for the preparation of a catalyst based on tungsten intended for hydrotreatment or hydrocracking processes. The invention concerns a process for the preparation of a catalyst for carrying out hydrogenation reactions in hydrotreatment and hydrocracking processes. Said catalyst is prepared from at least one mononuclear precursor compound based on tungsten (W), in its monomeric or dimeric form, having at least one W?O or W—OR bond or at least one W?S or W—SR bond where [R?CxHy where x?1 and (x?1)?y?(2x+1) or R?Si(OR?)3 or R?Si(R?)3 where R??Cx?Hy? where x??1 and (x??1)?y??(2x?+1)], optionally at least one Mo precursor and optionally at least one promoter element from group VIII. Said precursors are deposited onto an oxide support which is suitable for the process in which it is used, said catalyst advantageously being sulphurized before being deployed in said process.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: February 28, 2017
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Thibault Alphazan, Audrey Bonduelle, Christele Legens, Pascal Raybaud, Christophe Coperet
  • Patent number: 9321857
    Abstract: A spheric magnesium compound comprises a reaction product of at least the following components: (a) a magnesium halide having a formula of MgX2-nRn, wherein X is independently chloride or bromide, R is a C1-C14 alkyl, a C6-C14 aryl, a C1-C14 alkoxy, or a C6-C14 aryloxy, and n is 0 or 1; (b) an alcohol compound; and (c) an epoxy compound having a general formula (I), wherein R2 and R3 are independently hydrogen, a C1-C5 linear or branched alkyl, or a C1-C5 linear or branched haloalkyl. The magnesium compound has characteristic DSC curve and X-ray diffraction pattern, and can be used as a carrier for olefin polymerization catalyst. stereoregularity of polymer having high melt index, and low content of polymer fines.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: April 26, 2016
    Assignees: China Petroleum & Chemical Corporation, Beijing Research Institute of Chemical Industry, China Petroleum & Chemical Corporation
    Inventors: Weili Li, Xianzhi Xia, Yuexiang Liu, Jigui Zhang, Suzhen Qiao, Jin Zhao, Ping Gao, Xinsheng Wang, Yang Tan, Zhihui Zhang, Linna Yang, Ruilin Duan, Renqi Peng
  • Patent number: 9290586
    Abstract: A solid catalyst component for the (co)polymerization of ?-olefins having general formula (I): ZrnMAlxClMgp (I) wherein: M represents titanium (Ti), vanadium (V), or mixtures thereof; n is a number ranging from 0.01 to 2; x is a number ranging from 0.1 to 4; y is a number ranging from 5 to 53; p is a number ranging from 0 to 15; obtained by means of a process comprising putting at least one zirconium arene in contact with at least one metal compound and, optionally, with at least one compound of magnesium. Said solid catalyst component can be advantageously used as a solid component in a catalyst for the (co)polymerization of ?-olefins. Said catalyst can be advantageously used in a process for the (co)polymerization of ?-olefins.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 22, 2016
    Assignee: Versalis S.P.A.
    Inventors: Anna Sommazzi, Francesco Masi, Guido Pampaloni, Filippo Renili, Fabio Marchetti, Anna Maria Raspolli Galletti
  • Patent number: 9266979
    Abstract: Catalyst components for the polymerization of olefins CH2?CHR wherein R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms, comprising Mg, Ti, Cl and a compound (L) or its derivatives, selected from condensed cyclic structures which are formed by at least an aromatic ring and which are substituted with at least two hydroxy groups, said Cl and Ti atoms being in an amount such as to have a molar ratio ranging from 5 to 50.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 23, 2016
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Dario Liguori, Tiziano Dall'Occo, Giampiero Morini, Joachim Pater, Gianni Vitale
  • Publication number: 20150105238
    Abstract: This invention provides activator precursor compositions and activator compositions. The activator precursor compositions are formed from a support material, a linking compound, and polyfunctional compounds having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. The activator compositions are formed from a support material, a linking compound, an aluminoxane, and a polyfunctional compound having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. Also provided are catalyst compositions, processes for forming catalyst compositions, and polymerization processes utilizing the catalyst compositions of this invention.
    Type: Application
    Filed: March 14, 2013
    Publication date: April 16, 2015
    Inventors: Steven P. Diefenbach, Min Li, Matthew Grant Thorn, Lubin Luo
  • Patent number: 8962774
    Abstract: Regular shaped magnesium particles containing attrition resistant precursors and procatalysts thereof and processes for their synthesis and their use in the manufacture of polyolefins are described. A process for the synthesis of precursor particles which give highly active and improved surface area procatalysts for producing high bulk density polyolefin resins containing low fines and capable of incorporating high rubber content are described. A process for the synthesis of an attrition resistant precursors to prepare an attrition resistant Zeigler Natta procatalysts synthesized by using the precursors and to the polyolefin resin synthesized using the procatalysts is also described.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: February 24, 2015
    Assignee: Reliance Industries Limited
    Inventors: Virendrakumar Gupta, Saurabh Singh, Jomichan Joseph, Kamlesh J. Singala, Bhavesh K. Desai
  • Publication number: 20150018504
    Abstract: The present invention discloses an active metallocene catalyst system prepared with a hafnium-based metallocene catalyst system and an activating agent comprising an aluminoxane and a sterically hindered Lewis base.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 15, 2015
    Inventors: Vincenzo Busico, Roberta Cipullo, Roberta Pellecchia, Abbas Razavi
  • Publication number: 20140357477
    Abstract: Process for the preparation of new particulate olefin polymerisation catalyst components using a special alcohol mixture as well as the use of said new catalyst components for preparing a catalyst used in polymerisation processes.
    Type: Application
    Filed: December 19, 2012
    Publication date: December 4, 2014
    Inventors: Peter Denifl, Timo Leinonen
  • Patent number: 8901261
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerisation catalyst component in particulate form free of conventional phthalate electron donors and the use thereof in a process for polymerising olefins.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 2, 2014
    Assignee: Borealis AG
    Inventors: Anssi Haikarainen, Peter Denifl, Timo Leinonen
  • Patent number: 8895465
    Abstract: This invention provides activator precursor compositions and activator compositions. The activator precursor compositions are formed from a support material, an organoaluminum compound, and polyfunctional compounds having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. The activator compositions are formed from a support material, an organoaluminum compound, an aluminoxane, and a polyfunctional compound having at least two aromatic groups in which at least two of said aromatic groups each has at least one polar moiety thereon. Also provided are catalyst compositions, processes for forming catalyst compositions, and polymerization processes utilizing the catalyst compositions of this invention.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: November 25, 2014
    Assignee: Albemarle Corporation
    Inventor: Lubin Luo
  • Patent number: 8765632
    Abstract: A process for preparing a catalyst comprising palladium supported on a carrier via a layered precursor, comprising the following steps: (1) synthesis of hydrotalcite layered precursor which comprises promoting metal element and aluminium on the surface of the carrier of A12O3 microspheres, the atoms of the promoting metal and aluminium being highly dispersed by each other and bonded firmly to the carrier due to the crystal lattice positioning effect of the hydrotalcite crystal; (2) introduction of palladium into the carrier through impregnation; (3) drying; and (4) calcination and reduction with H2, the hydrotalcite layered precursor being converted into a composite oxide which consists of oxides of the promoting metal and aluminium, and the promoting metal element and aluminium being highly dispersed by each other and being able to separate and disperse the mainly active palladium element loaded later.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: July 1, 2014
    Assignee: Beijing University of Chemical Technology
    Inventors: Fazhi Zhang, Peng Chen, Rong Hou, Jiali Chen, Chao Gao, Hui Zhang, Dianqing Li, Feng Li, Xue Duan
  • Publication number: 20140171604
    Abstract: Solid adducts comprising MgCl2 and an alcohol ROH in which R is a C1-C20 hydrocarbon group, in which the amount of alcohol ranges from higher than 42% to 60% by weight and the porosity determined with Hg method due to pores up to 1 ?m and expressed in cm3/g, is such that the value of its ratio with the amount of alcohol in percentage falls above the straight line defined by the equation y=?0.0158x+1.03 in which y is the porosity of the adduct and x is the alcohol percentage by weight.
    Type: Application
    Filed: August 1, 2012
    Publication date: June 19, 2014
    Applicant: Basell Poliolefine Italia S.r.l.
    Inventors: Daniele Evangelisti, Benedetta Gaddi, Gianni Collina
  • Publication number: 20140128556
    Abstract: Solid catalyst components for use in olefin polymerization, olefin polymerization catalyst systems containing the solid catalyst components, methods of making the solid catalyst components and the catalyst systems, and methods of polymerizing and copolymerizing olefins involving the use of the catalyst systems. The solid catalyst components are formed by (a) dissolving a magnesium compound and an auxiliary intermediate electron donor in at least one first solvent to form a solution; (b) contacting a first titanium compound with said solution to form a precipitate of the magnesium compound and the first titanium compound; (c) washing the precipitate with a mixture of a second titanium compound and at least one second solvent and optionally an electron donor at a temperature of up to 90° C.; and (d) treating the precipitate with a mixture of a third titanium compound and at least one third solvent at 90-150° C. to form a solid catalyst component.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Applicant: BASF Corporation
    Inventors: Vladimir P. MARIN, Ahmed HINTOLAY, Michael Donald SPENCER
  • Patent number: 8633124
    Abstract: The invention relates to a process for the synthesis of spheroidal magnesium alkoxide having improved mechanical strength and narrow particle size distribution, the process comprising reacting magnesium metal, in the presence of iodine, with a mixture of alcohols by step-wise heating first in the range of 40° C. to 65° C. for a period of 2 hours and then in the range of 65° C. to 80° C. for a period of 1 hour, further by maintaining reaction temperature at 80° C. for a period of 6-10 hours, the vapors of the mixture produced during the reaction being condensed in an overhead condenser, hydrogen gas produced during the reaction being vented off and the mixture of alcohols left after the reaction being filtered and reused. The invention also relates to spheroidal magnesium alkoxide particles synthesized by the method, to the Ziegler natta procatalyst synthesized by using the alkoxide and to the polymer resin synthesized using the procatalyst.
    Type: Grant
    Filed: September 1, 2008
    Date of Patent: January 21, 2014
    Assignee: Reliance Industries Limited
    Inventors: Virendrakumar Gupta, Saurabh Singh, Umesh Makwana, Jomichan Joseph, Kamlesh Singala, Smitha Rajesh, Vallabhbhai Patel, Mukeshkumar Yadav, Gurmeet Singh
  • Patent number: 8563677
    Abstract: A stable catalyst solution suitable for catalyzing the polycondensation of reactants to make polyester polymers comprising: (i) M, wherein M is represented by an alkaline earth metal or alkali metal and (ii) aluminum metal and (iii) a polyhydroxyl solvent having at least 3 carbon atoms and at least two primary hydroxyl groups, the longest carbon chain being a hydrocarbon; such as 1,3-propane diol, 1,4-butane diol, 1,5-pentane diol, or combinations thereof, wherein the molar ratio of M:Al ranges from 0.75:1 to less than 1.5:1. The catalyst solution is desirably a solution which does not precipitate upon standing over a period of at least one week at room temperature (25° C.-40° C.), even at molar ratios of M:Al approaching 1:1. There is also provided a method for the manufacture of the solution, its feed to and use in the manufacture of a polyester polymer, and polyester polymers obtained by combining certain ingredients or containing the residues of these ingredients in the composition.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: October 22, 2013
    Assignee: Grupo Petrotemex, S.A. de C.V.
    Inventor: Jason Christopher Jenkins
  • Publication number: 20130245218
    Abstract: The present invention relates to a process for preparing a solid catalyst component suitable for producing polyethylene and its copolymers, said process comprising the steps of: (a) contacting a dehydrated support having hydroxyl groups with a magnesium compound having the general formula MgR1R2; (b) contacting the product obtained in step (a) with modifying compounds (A), (B) and (C), wherein: (A) is at least one compound selected from the group consisting of carboxylic acid, carboxylic acid ester, ketone, acyl halide, aldehyde and alcohol; (B) is a compound having the general formula R11f(R12O)gSiXh, (C) is a compound having the general formula (R13O)4M, and (c) contacting the product obtained in step (b) with a titanium halide compound having the general formula TiX4, wherein Ti is a titanium atom and X is a halide atom. The invention also relates to a solid catalyst component obtainable by said process.
    Type: Application
    Filed: November 17, 2011
    Publication date: September 19, 2013
    Applicant: Saudi Basic Industries Corporation
    Inventors: Akhlaq Moman, Atieh Aburaqabah, Abdullah Mohammed Al-Obaid, Moughrabiah Wajeeh, Salaheldin Habibi
  • Publication number: 20130244863
    Abstract: What is disclosed is a method for preparing a catalyst system and a catalyst system for polymerizing or copolymerizing an ?-olefin. Catalyst component (A) is obtained by a process of reacting a magnesium complex (A-1) containing acid salts of group IB-VIIIB elements formed by contacting a magnesium halide with an acid salt solution of group IB-VIIIB metals or spherical particles adducts, an internal electron donor (A-2) of diester or diether or composite compounds, and a titanium compound (A-3). The catalyst compound (A) is contacted with a silicon compound (B) and an organoaluminium compound (C) to complete the catalyst system providing a good balance of catalyst performance in terms of activity and stereo-specificity.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 19, 2013
    Applicant: Formosa Plastics Corporation, USA
    Inventor: Demin Xu
  • Publication number: 20130211022
    Abstract: Regular shaped magnesium particles containing attrition resistant precursors and procatalysts thereof and processes for their synthesis and their use in the manufacture of polyolefins are described. A process for the synthesis of precursor particles which give highly active and improved surface area procatalysts for producing high bulk density polyolefin resins containing low fines and capable of incorporating high rubber content are described. A process for the synthesis of an attrition resistant precursors to prepare an attrition resistant Zeigler Natta procatalysts synthesized by using the precursors and to the polyolefin resin synthesized using the procatalysts is also described.
    Type: Application
    Filed: July 11, 2011
    Publication date: August 15, 2013
    Applicant: RELIANCE INDUSTRIES LIMITED
    Inventors: Virendrakumar Gupta, Saurabh Singh, Jomichan Joseph, Kamlesh J. Singala, Bhavesh K. Desai
  • Patent number: 8507403
    Abstract: A process is described for producing a powder batch comprises a plurality of particles, wherein the particles include (a) a first catalytically active component comprising at least one transition metal or a compound thereof; (b) a second component different from said first component and capable of removing oxygen from, or releasing oxygen to, an exhaust gas stream; and (c) a third component different from said first and second components and comprising a refractory support. The process comprises providing a precursor medium comprising a liquid vehicle and a precursor to al least one of said components (a) to (c) and heating droplets of said precursor medium carried in a gas stream to remove at least part of the liquid vehicle and chemically convert said precursor to said at least one component.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: August 13, 2013
    Assignee: Cabot Corporation
    Inventors: Miodrag Oljaca, Toivo T. Kodas, Ranko P. Bontchev, Klaus Kunze, Kenneth C. Koehlert
  • Patent number: 8501133
    Abstract: A catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds includes a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein. The catalyst is obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying. The oxidation power of the resulting catalyst is enhanced without increasing the amount of precious metal supported thereon.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Yoshiaki Obayashi, Hitoshi Nakamura
  • Patent number: 8481445
    Abstract: Solid adducts comprising a MgCl2, ethanol and a compound (A), said compounds being present in molar ratios defined by the following formula MgCl2.(EtOH)n(A)p in which n is from 0.1 to 6, p ranges from 0.001 to 0.5 and A is a compound selected from cyclic hydrocarbon structures which are substituted with at least two hydroxy groups.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: July 9, 2013
    Assignee: Basell Poliolefine Italia S.r.l.
    Inventors: Simona Guidotti, Dario Liguori, Giampiero Morini, Joachim T. M. Pater
  • Patent number: 8481444
    Abstract: Catalyst composition for the oligomerization of ethylene, comprising (i) an at least partially hydrolyzed transition metal compound, obtainable by controlled addition of water to a transition metal compound having the general formula MXm(OR?)4-m or MXm(OOCR?)4-m, wherein R? is an alkyl, alkenyl, aryl, aralkyl or cycloalkyl group, X is halogen, preferably Cl or Br, and m is from 0 to 4; preferably 0-3; and (ii) an organoaluminum compound as a cocatalyst, wherein the molar ratio of water and transition metal compound is within a range of between about (0.01-3):1; a process for oligomerization of ethylene and a method for preparing the catalyst composition.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: July 9, 2013
    Assignee: Saudi Basic Industries Corporation
    Inventors: Vugar Aliyev, Fuad Mosa, Mohammed Al-Hazmi
  • Publication number: 20130150540
    Abstract: The present invention relates to a catalyst component for olefin polymerization, which comprises the reaction product of at least one organo-magnesium compound, at least one titanium-containing compound, at least one hydroxyl group-containing compound, at least one chlorine-containing organo-aluminum, boron, phosphorus or silicon compound, and at least one polybutadiene block copolymer. The catalyst component of the present invention has well-shaped particles, and a narrow particle size distribution; a polymerization reaction of olefins with the catalyst component produces well-shaped polymer particles with a high bulk density (BD) and an excellent comprehensive catalytic performance. The present invention also relates to a preparation method for said catalyst component and the application thereof, particularly in the homopolymerization and copolymerization of olefins such as ethylene, propylene, butene, hexene and octene.
    Type: Application
    Filed: August 19, 2011
    Publication date: June 13, 2013
    Inventors: Shibo Wang, Dongbing Liu, Junling Zhou, Xinping Lü, Lei Zhang, Bingquan Mao, Baoquan Xing, Xin Zhou, Changli Zhang
  • Publication number: 20130116393
    Abstract: The invention refers to a process for preparing a Group 2 metal/transition metal olefin polymerisation catalyst component in particulate form free of conventional phthalate electron donors and the use thereof in a process for polymerising olefins.
    Type: Application
    Filed: July 11, 2011
    Publication date: May 9, 2013
    Applicant: BOREALIS AG
    Inventors: Anssi Haikarainen, Peter Denifl, Timo Leinonen
  • Patent number: 8410010
    Abstract: The present disclosure relates to a process for the production of a base complex catalyst comprising reacting a hydroxide base with a polyalcohol, under vacuum pressure, at a temperature in the range of about 60° C. to about 220° C., wherein the mole ratio of the hydroxide base to the polyalcohol is greater than about 2:1.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: April 2, 2013
    Assignee: University of Saskatchewan
    Inventors: Martin J. T. Reaney, Jianheng Shen, Douglas W. Soveran
  • Patent number: 8361923
    Abstract: A process is provided for producing a complex oxide catalyst which exhibits superior catalytic activity in a vapor phase catalytic oxidation reaction, particularly in production of unsaturated aldehyde and unsaturated carboxylic acid. The process is characterized by the steps of preparing an aqueous slurry by mixing a complex oxide containing molybdenum and cobalt with an acid and water; drying the aqueous slurry; and calcining the resulting dried solid. Preferably, the complex oxide is obtained as follows: a molybdenum- and cobalt-containing complex oxide catalyst which has been used in a vapor phase catalytic oxidation reaction is mixed with an aqueous extracting solution obtained by dissolving at least one of ammonia and an organic base in water, to thereby extract molybdenum and cobalt into the aqueous phase; and the aqueous phase is dried and is then calcined under an atmosphere of an oxidizing gas.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 29, 2013
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Hirotsugu Kano, Eiichi Shiraishi
  • Patent number: 8343888
    Abstract: Precursor cations of A and B elements of an ABO3 perovskite in aqueous solution are formed as an ionic complex gel with citric acid or other suitable polybasic carboxylic acid. The aqueous gel is coated onto a desired catalyst substrate and calcined to form, in-situ, particles of the crystalline perovskite as, for example, an oxidation catalyst on the substrate. In one embodiment, a perovskite catalyst such as LaCoO3 is formed on catalyst supporting cell walls of an extruded ceramic monolith for oxidation of NO in the exhaust gas of a lean burn vehicle engine.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: January 1, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Chang H Kim, Wei Li, Kevin A Dahlberg
  • Publication number: 20120329966
    Abstract: Provided are a supported metallocene catalyst, a method for preparing the same and a method for preparing polyolefin using the same. The supported metallocene catalyst prepared by incorporating a metallocene compound having a ligand substituted with alkoxide or aryloxide into a conventional supported metallocene catalyst and incorporating a borate compound as a second co-catalyst exhibits considerably superior catalyst activity and easily controls molecular weight distribution, as compared to the conventional metallocene-supported catalyst.
    Type: Application
    Filed: March 8, 2011
    Publication date: December 27, 2012
    Inventors: Hyuck-Ju Kwon, San-Ak Hwang, Dong-Gil Lee, Churl-Young Park
  • Publication number: 20120322958
    Abstract: A mixed magnesium dialkoxide particulate obtained by direct solid-liquid reaction between particulate magnesium metal with a mean particle size of 50 ?m to 500 ?m and two or more alcohols including ethyl alcohol and at least one C3-6 alcohol, and comprising magnesium diethoxide, wherein the content of alkoxides other than ethoxide is 2.5 to 15 mol % of the total, the mean particle size (D50) is 20 to 100 ?m and the bulk density is at least 0.4 g/ml. The mixed magnesium dialkoxide is for use as a catalyst component for polymerization of olefins such as propylene, exhibits high breaking strength, and when used for preparation of a polymerization catalyst, high polymerization activity is exhibited resulting in a high catalyst product yield.
    Type: Application
    Filed: February 24, 2011
    Publication date: December 20, 2012
    Inventors: Akihiko Yamanaka, Hiroshi Kumai
  • Publication number: 20120302708
    Abstract: A magnesium halide adduct is provided, comprising at least one compound of the formula MgXY, at least one compound of the formula ROH, methanol, at least one modifying agent chosen from DOE and o-hydroxy benzoates, and optionally water. Also provided herein are a catalyst component comprising the magnesium halide adduct, a catalyst for olefin polymerization comprising the catalyst component; the respective processes for preparing the magnesium halide adduct and the catalyst component; use of the magnesium halide adduct for preparing the catalyst component, use of the catalyst component in a catalyst for olefin polymerization and use of the catalyst in olefin polymerization; and a process of olefin polymerization.
    Type: Application
    Filed: May 25, 2012
    Publication date: November 29, 2012
    Inventors: Xianzhi XIA, Yuexiang LIU, Jin ZHAO, Jigui ZHANG, Yongtai LING, Weili LI, Suzhen QIAO, Yang TAN, Renqi PENG, Ping GAO, Futang GAO, Zhihui ZHANG
  • Publication number: 20120264889
    Abstract: A production process of an olefin polymerization catalyst, comprising steps of (1) contacting a defined zinc compound, Zn(L1)2, with a defined halogenated alcohol, thereby forming a zinc atom-containing compound, and (2) contacting the zinc atom-containing compound with a defined transition metal compound and an optional organoaluminum compound; and a production process of an olefin polymer using such an olefin polymerization catalyst.
    Type: Application
    Filed: December 14, 2010
    Publication date: October 18, 2012
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Kazuo Takaoki, Takahiro Hino
  • Patent number: 8258075
    Abstract: To provide a catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds whose oxidation power has been enhanced without increasing the amount of precious metal supported thereon; a method for producing the same; and a method for treating exhaust gases. A catalyst for treating exhaust gases, including coat layers made up of a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein, can be obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: September 4, 2012
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Yoshiaki Obayashi, Hitoshi Nakamura
  • Patent number: 8178735
    Abstract: A process for the treatment of an olefinic fraction, using a catalyst prepared by a process comprising: a) The preparation of a colloidal oxide suspension of a first metal M1 by the neutralization of a basic solution by an acidic mineral solution that contains the precursor of the metal M1, b) Bringing into contact the precursor of the promoter M2, either directly in its crystallized form or after dissolution in aqueous phase, with the colloidal suspension that is obtained in stage a), c) Bringing into contact the colloidal suspension that is obtained in stage b) with the substrate, d) Drying at a temperature of between 30° C. and 200° C., under a flow of air.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: May 15, 2012
    Assignee: IFP Energies nouvelles
    Inventors: Vincent Coupard, Denis Uzio, Carine Petit-Clair, Lars Fischer, Frederic Portejole
  • Publication number: 20110275508
    Abstract: A solid catalyst component for olefin polymerization in which the molar ratio of residual alkoxy groups to supported titanium is 0.60 or less is obtained by reacting the following compound (a1) with the following compound (b1) at a hydroxyl group/magnesium molar ratio of 1.0 or more, reacting the reaction mixture with the following compound (c1) at a halogen/magnesium molar ratio of 0.20 or more, reacting the resultant reaction mixture with the following compounds (d1) and (e) at a temperature of 120° C. or higher but 150° C.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 10, 2011
    Applicant: Idemitsu Kosan Co., Ltd.
    Inventors: Shojiro Tanase, Takanori Sadashima
  • Publication number: 20110237764
    Abstract: The present invention relates to a magnesium compound-supported nonmetallocene catalyst, which is produced by directly contacting a catalytically active metallic compound with a nonmetallocene ligand-containing magnesium compound, or by directly contacting a nonmetallocene ligand with a catalytically active metal-containing magnesium compound, through an in-situ supporting process. The process is simple and flexible. In the process, there are many variables in response for adjusting the polymerization activity of the catalyst, and the margin for adjusting the catalyst load or the catalyst polymerization activity is broad. The magnesium compound-supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts high bulk density and adjustable molecular weight distribution.
    Type: Application
    Filed: October 15, 2008
    Publication date: September 29, 2011
    Inventors: Yuefeng Gu, Xiaoli Yao, Chuanfeng Li, Zhonglin Ma, Feng Guo, Bo Liu, Yaming Wang, Shaohui Chen, Xiaoqiang Li, Jiye Bai
  • Patent number: 7994089
    Abstract: A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: August 9, 2011
    Assignee: University of Houston System
    Inventors: Peter Strasser, Shirlaine Koh, Prasanna Mani, Srivastava Ratndeep
  • Publication number: 20110152486
    Abstract: This invention relates to a supported nonmetallocene catalyst for olefin polymerization, which is produced by directly reacting a nonmetallocene ligand with a catalytically active metallic compound on a carrier through an in-situ supporting process. The process according to this invention is simple and feasible, and it is easy to adjust the load of the nonmetallocene ligand on the porous carrier. The supported nonmetallocene catalyst according to this invention can be used for olefin homopolymerization/copolymerization, even in combination with a comparatively less amount of the co-catalyst, to achieve a comparatively high polymerization activity. Further, the polymer product obtained therewith boasts desirable polymer morphology and a high bulk density.
    Type: Application
    Filed: October 15, 2008
    Publication date: June 23, 2011
    Inventors: Yuefeng Gu, Chuanfeng Li, Xiaoli Yao, Zhonglin Ma, Bo Liu, Feng Guo, Yaming Wang, Jiye Bai, Shaohui Chen, Xiaoqiang Li
  • Patent number: 7932205
    Abstract: The invention relates to a process for the preparation of a catalyst comprising: a) The preparation of a colloidal oxide suspension of a first metal M1 that consists in the neutralization of a basic solution by an acidic mineral solution that contains the precursor of the metal M1, b) Bringing into contact the precursor of the promoter M2, either directly in its crystallized form or after dissolution in aqueous phase, with the colloidal suspension that is obtained in stage a), c) Bringing into contact the colloidal suspension that is obtained in stage b) with the substrate, d) Drying at a temperature of between 30° C. and 200° C., under a flow of air. The invention also relates to a process for the treatment of an olefinic fraction that uses the catalyst prepared [by] said preparation process.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: April 26, 2011
    Assignee: IFP
    Inventors: Vincent Coupard, Denis Uzio, Carine Petit-Clair, Lars Fischer, Frederic Portejoie