Utilizing Water Or Compound Containing Hydroxy Bonded To Carbon Patents (Class 502/111)
  • Patent number: 6531518
    Abstract: A process of enhancing both the activity and the methane selectivity of a particulate Dispersed Active Metal (“DAM”) hydrogenation catalyst is disclosed wherein the DAM undergoes low temperature oxidation in a slurry phase to form a stable, unique oxidized catalyst precursor that is subsequently reduced to form an enhanced catalyst by treatment with hydrogen-containing gas at elevated temperature, wherein one or more promoter metal oxides of chromium, lanthanum and manganese are added to the DAM. Precursors of the promoter metal oxides may be combined with the DAMs prior to or during formation of the initial slurry, during the oxidation step or between recovery of the oxidized catalyst precursor and treatment of it with hydrogen-containing gas to reactivate the catalyst. Conversion of the precursors to the promoter metal oxides is carried out prior to the treatment with hydrogen-containing gas unless said treatment itself produces the conversion.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: March 11, 2003
    Assignee: ExxonMobil Research and Engineering Co.
    Inventors: Albert L'Vovich Lapidus, Alla Jurievna Krylova, Lilia Vadimovna Sineva, Russell John Koveal, Michel A. Daage
  • Patent number: 6521560
    Abstract: This invention provides a solid titanium catalyst component which comprises magnesium, titanium, halogen and an electron donor, is free from elimination of titanium when washed with hexane at room temperature, and has a titanium content decrease ratio of less than 15 % by weight when washed with o-dichlorobenzene at 90° C. The catalyst component can be prepared by a process wherein solid titanium (i) which is free from elimination of titanium when washed with hexane at room temperature is contacted with a polar compound having a dipole moment of 0.50 to 4.00 Debye to decrease the titanium content by at least 25 % by weight, whereby a solid titanium catalyst component having a weight ratio of an electron donor to titanium of at least 6 is prepared. Olefin polymerization catalyst containing the solid titanium catalyst component can be used for (co)polymerization of olefins with high activity to obtain a polyolefin of high stereoregularity in decreased quantities of a low stereoregular polyolefin.
    Type: Grant
    Filed: July 2, 1998
    Date of Patent: February 18, 2003
    Assignee: Mitsui Chemicals Inc.
    Inventors: Shinichi Kojoh, Mamoru Kioka
  • Patent number: 6492292
    Abstract: Gelatinous compositions of matter which are useful as polymerization catalyst components and are highly stable in terms of OH-decay rate, as well as similarly stable solid compositions of matter formed from such gelatinous compositions, are described. The gelatinous and solid compositions are formed from hydroxyaluminoxane. Also disclosed is a process comprising converting a hydroxyaluminoxane into a gelatinous composition of matter, whereby the rate of OH-decay for the composition is reduced as compared to that of the hydroxyaluminoxane. Olefin polymerization processes and catalysts formed from these novel compositions of matter also are disclosed.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: December 10, 2002
    Assignee: Albemarle Corporation
    Inventors: Feng-Jung Wu, Larry S. Simeral
  • Patent number: 6486274
    Abstract: A Ziegler-Natta type catalyst having an improved hydrogen response provides for narrowing of the MWD of resulting polyolefins polymerized using such catalyst, with such catalyst generally made by a) contacting a soluble magnesium dialkoxide compound of the general formula Mg(OR″)2 with a halogenating agent capable of exchanging one halogen for one alkoxide to form a reaction product A, where R″ is a hydrocarbyl or substituted hydrocarbyl having from 1 to 20 carbon atoms; b) contacting reaction product A with a first halogenating/titanating agent to form reaction product B; and c) contacting reaction product B with a second halogenating/titanating agent to form a catalyst component; wherein in at least one of steps b) and c), the halogenating/titanating agent is a blend of Ti(OPr)4 and TiCl4. Catalyst components, catalysts, catalyst systems, polyolefin polymers, and methods of forming each are disclosed.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: November 26, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Patent number: 6486089
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising (1) providing silica which is porous and has a particle size of 1 to 250 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g; (2) slurrying the silica in an aliphatic solvent having a boiling point less than 110° C.; (3) providing a volume of a solution comprising metallocene and alumoxane wherein the volume of solution is less than that required to form a slurry of the silica, wherein the concentration of alumoxane, expressed as Al weight percent, is 5 to 20; (4) contacting the silica slurry (2) with said volume of said solution (3) and allowing the solution to impregnate the pores of silica and, to disperse the metallocene in and on the carrier; (5) evaporating the solvents from the contacted and impregnated silica to recover dry free-flowing catalyst particles.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien
  • Patent number: 6482967
    Abstract: Metallocenes having a 9-fluorenyl group and another cyclic dienyl group connected by a single carbon having a terminally unsaturated hydrocarbyl substituent wherein the 9-fluorenyl group has a hydrocarbyl substituent in the 4 position, olefin polymerization catalyst systems prepared therefrom, and the use of such catalyst systems are disclosed.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: November 19, 2002
    Assignee: Phillips Petroleum Company
    Inventors: Alexander Köppl, Helmut G. Alt, M. Bruce Welch
  • Patent number: 6476163
    Abstract: Catalysts for the polymerization of olefins are disclosed, comprising the product obtainable by contacting: (A) a bridged and/or substituted cyclopentadienyl compound of Ti, Zr or Hf; (B) one or more organometallic aluminium compounds of formula (II): AlR43−zHz wherein the substituents R4, same or different from each other, are linear or branched, saturated or unsaturated C1-C20 alkyl or alkylaryl radicals, optionally containing Si or Ge atoms, wherein at least one of the substituents R4 is different from a straight alkyl group; z is 0 or 1; and (C) water, the molar ratio between the organometallic aluminium compound and water being comprised between 1:1 and 100:1; said catalyst being obtainable by a process comprising the following steps: (i) contacting component (A) with part of component (B) in the absence of component (C); (ii) contacting part of component (B) with component (C) in the absence of component (A) and successively (iii) contacting the products obtained in steps (i) and (ii).
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: November 5, 2002
    Assignee: Basell Technology Company BV
    Inventors: Jan F. Van Baar, Maurizio Galimberti, Klaas L. Von Hebel, Andrew D. Horton, Gerard M. M. Van Kessel, Peter A. Schut, Tiziano Dall'occo
  • Patent number: 6444604
    Abstract: Supported catalysts for the polymerization of olefins comprise the following components: (A) a porous organic support functionalised with groups having active hydrogen atoms; (B) an organo-metallic compound of aluminium containing heteroatoms selected from oxygen, nitrogen and sulphur; and (C) a compound of a transition metal selected from those of groups IVb, Vb or VIb of the Periodic Table of the Elements, containing ligands of the cyclopentadienyl type. These supported catalysts, obtainable in the form of spherical particles, can be used in the polymerization reaction of olefins either in liquid or in gas phase, thus producing polymers endowed with a controlled morphology and with a high bulk density.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: September 3, 2002
    Assignee: Basell Technology Company BV
    Inventors: Enrico Albizzati, Tiziano Dall'Occo, Luigi Resconi, Fabrizio Piemontesi
  • Patent number: 6423660
    Abstract: Supported catalysts for the polymerization of olefins comprise the following components: (A) a porous organic support functionalised with groups having active hydrogen atoms; (B) an organo-metallic compound of aluminium containing heteroatoms selected from oxygen, nitrogen and sulphur; and (C) a compound of a transition metal selected from those of groups IVb, Vb or VIb of the Periodic Table of the Elements, containing ligands of the cyclopentadienyl type. These supported catalysts, obtainable in the form of spherical particles, can be used in the polymerization reaction of olefins either in liquid or in gas phase, thus producing polymers endowed with a controlled morphology and with a high bulk density.
    Type: Grant
    Filed: January 9, 1998
    Date of Patent: July 23, 2002
    Assignee: Basell Technology Company BV
    Inventors: Enrico Albizzati, Tiziano Dall'Occo, Luigi Resconi, Fabrizio Piemontesi
  • Publication number: 20020091062
    Abstract: Catalysts for the polymerization of olefins are disclosed, comprising the product obtainable by contacting: (A) a bridged and/or substituted cyclopentadienyl compound of Ti, Zr or Hf; (B) one or more organometallic aluminium compounds of formula (II): AlR 43−z Hz wherein the substituents R4, same or different from each other, are linear or branched, saturated or unsaturated C1-C20 alkyl or alkylaryl radicals, optionally containing Si or Ge atoms, wherein at least one of the substituents R4 is different from a straight alkyl group; z is 0 or 1; and (C) water; the molar ratio between the organometallic aluminium compound and water being comprised between 1:1 and 100:1; said catalyst being obtainable by a process comprising the following steps: (i) contacting component (A) with part of component (B) in the absence of component (C), (ii) contacting part of component (B) with component (C) in the absence of component (A) and successively (iii) contacting the products obtained in steps (i) and (ii).
    Type: Application
    Filed: June 29, 1999
    Publication date: July 11, 2002
    Inventors: JAN F. VAN BAAR, MAURIZIO GALIMBERTI, KLAAS L. VON HEBEL, ANDREW D. HORTON, GERARD M. M. VAN KESSEL, PETER A. SCHUT
  • Patent number: 6417320
    Abstract: The production of linear polyester by the interchange of ester radicals or esterification and polycondensation of multivalent alcohols with multivalent carboxylic acids takes place by means of catalysts. In order that the catalyst features the lowest possible content of catalytically active metal compound, the carrier substance that forms the heterogeneous phase comprises particles of the finest grain and of porous structure and features a surface of great inner, reactive and/or coordinated centers, whereby a catalytically active metal compound is adsorbed in the pores.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: July 9, 2002
    Assignee: Zimmer Aktiengesellschaft
    Inventors: Brigitta Otto, Karl Ulrich Thiele, Xiaogang Guo
  • Patent number: 6395846
    Abstract: The invention relates to high-activity catalysts for olefin polymerization, to efficient methods for producing them, and to efficient methods of using the catalysts for producing high-quality polyolefins. The olefin polymerization with the catalysts does not require a large amount of an organic aluminium compound, and the residual metal in the polyolefins produced is much reduced. The catalysts are characterized by containing a product as prepared by contacting any of clay, a clay mineral and an ion-exchanging layered compound, an organic silane compound, and water with each other, or by containing a silane compound-processed clay.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: May 28, 2002
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Haruhito Sato, Masahiko Kuramoto
  • Patent number: 6388028
    Abstract: The present invention relates to spherical solid catalyst components for the polymerization of olefins, comprising a titanium compound, supported on a magnesium halide, containing more than one Ti-halogen link and optionally containing groups different from halogen in an amount lower than 0.5 mole per mole of Ti. Spherical solid compounds of the invention are characterized by having a surface area, measured by the BET method, of lower than 70 m2/g, a total porosity, measured by the mercurium method, higher than 0.5 cm3/g and a pore radius such that at least 50% have values higher than 800 Å.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: May 14, 2002
    Assignee: Basell Technology Company bv
    Inventors: Mario Sacchetti, Illaro Cuffiani, Gianni Pennini
  • Patent number: 6372684
    Abstract: It is disclosed a new catalyst system, having high catalytic activity in the oligomerization of &agr;-olefins, comprising a bridged bis-amido Group 4 metal compound of formula (I): wherein M is Ti, Zr or Hf; Y is Si, Ge or Sn; X is a hydrogen, halogen or an hydrocarbon radical; R1, R2, R3, R4, R5 and R6 are hydrocarbon radicals, optionally containing Si, Ge, O, S, P, B or N atoms; Q is a neutral Lewis base; and m is 0-2; in association with a boron activating compound, and with one or more branched alkylaluminiums and/or alumoxanes of branched alkylaluminiums; said catalyst system allows oligomers to be obtained in high yields, with a high selectivity towards &agr;-oligomers.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: April 16, 2002
    Assignee: Shell Oil Company
    Inventors: Andrew D. Horton, Bart Johan Ruisch, Klaas L. von Hebel, Henderikus Hyacinthus Deuling
  • Patent number: 6368995
    Abstract: A solid catalyst for olefin polymerization, obtained by reacting a least one of a hydropolysiloxane compound, having the formula R1aHbSiO(4−a−b)/2, a silane compound of formula R2cSi(OH)4−c, and condensates of the silane, with a compound of formula (MgR32)p.(R3MgX)q to form a reaction product. The reaction product is reacted with an alcohol, having 1 to 4 carbon atoms, to obtain an intermediate product. The intermediate product, is then reacted with water to obtain reaction product. An organoaluminum oxy compound and a metallocene compound are carried on the solid reaction product. The solid catalyst may be used for olefin polymerization. The catalyst requires no deashing treatment and produces a polymer having high bulk density and narrow particle size distribution. Thus the solid catalystenables control of particle size of the polymer in a simple easy manner, and shows no adhesion of polymer onto the inner wall of autoclave.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: April 9, 2002
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Sakae Kamiyama, Toshifumi Takemori, Minoru Iijima, Yukiko Hane, Shigeharu Yamamoto
  • Patent number: 6355593
    Abstract: A process of enhancing both the activity and the methane selectivity of a Dispersed Active Metal (“DAM”) hydrogenation catalyst is disclosed wherein the DAM undergoes low temperature oxidation in a slurry phase to form an oxidized catalyst precursor that is unique in comparison to those formed by conventional high temperature deactivation processes. The oxidized catalyst precursor, which is stable, is subsequently reduced to form an enhanced catalyst by treatment with hydrogen-containing gas at elevated temperature. The process is useful in a wide variety of DAMs formed by art-recognized techniques. The process is equally applicable to the enhanced catalysts formed from the oxidized precursors and their use in hydrogenation reactions.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: March 12, 2002
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michel A. Daage, Russell John Koveal, Albert L'Vovich Lapidus, Alla Jurievna Krylova, Shawn Paul Brennan
  • Patent number: 6340771
    Abstract: Aluminoxanes are used as activators for the gas, solution or slurry phase polymerization of olefins in the presence of single site catalysts. Aluminoxanes contain residual aluminum alkyls which may poison the catalysts. The residual aluminum alkyls may be bound an/or removed from the aluminoxanes by treatment with carbohydrates such as cellulose, starch or sugar.
    Type: Grant
    Filed: December 22, 1999
    Date of Patent: January 22, 2002
    Assignee: Nova Chemicals (International) S. A.
    Inventors: Peter Phung Minh Hoang, Dusan Jeremic, Jason Roy Kearns, Iain McLaren Coulter, Robert D. Donaldson
  • Publication number: 20020002254
    Abstract: An olefin polymer selected from the group consisting of a 1-butene homopolymer, a copolymers of 1-butene with propylene and a copolymer of 1-butene with an alkenyl hydrocarbon having 5 or more carbon atoms, wherein said olefin polymer is an amorphous polymer having a polystyrene-reduced number average molecular weight of 200,000 and substantially not having a melting point,
    Type: Application
    Filed: August 7, 2001
    Publication date: January 3, 2002
    Applicant: Sumitomo Chemical Company, Ltd.
    Inventors: Masayuki Fujita, Tatsuya Miyatake
  • Patent number: 6323298
    Abstract: There are provided a propylene-based polymer characterized in that (1) the xylene-extraction insoluble portion (XI) is 99.0 wt % or greater, (2) the isotactic pentad ratio (IP) is 98.0% or greater as measured by 13C nuclear magnetic resonance spectroscopy, (3) the isotactic average chain length (N) is 500 or greater, and (4) the total amount of each of the fractions obtained by column separation of the xylene insolubles whose average chain length (Nf) is 800 or greater accounts for 10 wt % or more of the entirety, and a method for its production, as well as a propylene-based polymer composition prepared by combining with this propylene-based polymer at least a nucleating agent in the range of 0.05-15 wt %. In addition, there are provided a polymerization catalyst component allowing the production of such a propylene-based polymer, and a method for its production.
    Type: Grant
    Filed: March 6, 2000
    Date of Patent: November 27, 2001
    Assignee: Showa Denko K.K.
    Inventors: Hisayoshi Yanagihara, Kazuyuki Watanabe, Satoshi Iwamoto, Hirotoshi Takahashi, Kazuharu Itoh
  • Patent number: 6323148
    Abstract: An ethylene polymerization catalyst and catalyst system which provides an ethylene copolymer which is characterized by desirable ER shift values. The high level ER shift of these polymers produce films having high impact strength. The catalyst is prepared by treating a support material with an agent selected from the group consisting of a compound having the structural formula BX53, where X5 is fluorine, chlorine, bromine, iodine or OR5, where R5 is C1-C6 alkyl; a compound having the structural formula X62 where X6 is fluorine, bromine or iodine; a compound having the structural formula NR6, where R6 is C1-C6 alkyl or OR7, where R7 is C1-C8 alkyl; and a compound having the structural formula Ti(OR8)4, where R8 is C1-C6 alkyl or phenyl to reduced surface hydroxyl group concentration of the support material. The thus treated support material is thereupon contacted with a dialkylmagnesium compound or complex, an alcohol compound or a silane compound and a transition metal compound, in that order.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: November 27, 2001
    Assignee: Equistar Chemicals, LP
    Inventor: Mark K. Reinking
  • Publication number: 20010044374
    Abstract: A process for the preparation of a supported catalyst is disclosed, comprising the steps of
    Type: Application
    Filed: January 31, 2001
    Publication date: November 22, 2001
    Inventor: Marc John Payne
  • Publication number: 20010031694
    Abstract: The present invention relates to a catalyst for polymerization and co-polymerization of ethylene. More particularly, the present invention relates to a solid titanium catalyst containing magnesium, wherein said catalyst is produced by preparing a magnesium solution by contact-reacting a halogenated magnesium compound with alcohol; reacting said solution with an ester compound having at least one hydroxy group, or a phosphorous compound and a silicon compound having alkoxy groups; producing a solid component with an adjusted particle morphology by adding a mixture of a titanium compound and a silicon compound; reacting the same with an aluminum compound; and then reacting the same with a titanium compound, or a titanium compound and a vanadium compound. As a result, the catalyst of the present invention has high catalytic activity with excellent catalyst morphology.
    Type: Application
    Filed: December 1, 2000
    Publication date: October 18, 2001
    Inventors: Chun-Byung Yang, Weon Lee, Sang-Yull Kim
  • Patent number: 6291382
    Abstract: Metallocenes having a 9-fluorenyl group and another cyclic dienyl group connected by a single carbon having a terminally unsaturated hydrocarbyl substituent wherein the 9-fluorenyl group has a hydrocarbyl substituent in the 4 position, olefin polymerization catalyst systems prepared therefrom, and the use of such catalyst systems are disclosed.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: September 18, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Alexander Köppl, Helmut G. Alt, M. Bruce Welch
  • Patent number: 6291385
    Abstract: The present invention relates to a catalyst for polymerization or copolymerization of an olefin. The catalyst is produced by first reacting a mixture of a magnesium compound and an aluminum compound with an ester compound which has at least one hydroxy group and a silane compound which has at least one alkoxy group, and next reacting with a titanium compound. The catalyst may be used in the polymerization or copolymerization of ethylene and propylene.
    Type: Grant
    Filed: March 15, 1999
    Date of Patent: September 18, 2001
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Young-Sub Lee, Youn-Kyung Kang
  • Patent number: 6288192
    Abstract: An olefin polymer selected from the group consisting of a 1-butene homopolymer, a copolymers of 1-butene with propylene and a copolymer of 1-butene with an alkenyl hydrocarbon having 5 or more carbon atoms, wherein said olefin polymer is an amorphous polymer having a polystyrene-reduced number average molecular weight of 200,000 and substantially not having a melting point, an olefin polymerization catalyst obtained by contacting a specific transition metal compound(A), an organoaluminumoxy compound (B) soluble in an aromatic solvent and water (C), and a process for producing said olefin polymer with said catalyst.
    Type: Grant
    Filed: January 12, 1999
    Date of Patent: September 11, 2001
    Assignee: Sumitomo Chemical Company, Ltd.
    Inventors: Masayuki Fujita, Tatsuya Miyatake
  • Patent number: 6284701
    Abstract: The new metallocene catalysts according to the present invention are prepared by reacting a metallocene compound with a compound having at least two functional groups. The metallocene compound is a transition metal compound, which is coordinated with a main ligand such as cyclopentadienyl group, and an ancillary ligand. The functional groups in the compound are selected from the group consisting of a hydroxyl group, an alkyl or aryl magnesium halide, a thiol group, a primary amine group, a secondary amine group, a primary phosphorous group, a secondary phosphorous group, etc. The metallocene catalysts according to the present invention have a structure in which an ancillary ligand of a metallocene compound is bonded to the functional groups of a compound having at least two functional groups. A structure of the metallocene catalysts can be varied with the type of a metallocene compound and a compound having at least two functional groups, and the molar ratio of each reactant.
    Type: Grant
    Filed: April 20, 1999
    Date of Patent: September 4, 2001
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Keun-Byoung Yoon, Seok Chang, Won-Cheol Jung, Yi-Yeol Lyu
  • Publication number: 20010011060
    Abstract: The present invention relates to spherical solid catalyst components for the polymerization of olefins, comprising a titanium compound, supported on a magnesium halide, containing more than one Ti-halogen link and optionally containing groups different from halogen in an amount lower than 0.5 mole per mole of Ti.
    Type: Application
    Filed: June 19, 1997
    Publication date: August 2, 2001
    Inventors: MARIO SACCHETTI, ILLARO CUFFIANI, GIANNI PENNINI
  • Patent number: 6268453
    Abstract: A solid cocatalyst is prepared by reacting a suitable support base with an organoaluminum compound and then reacting that product with an activity promoting amount of water. The solid cocatalyst can be combined with a polymerization catalyst to form a catalyst system useful for the polymerization of olefins.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: July 31, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Alexander Köppl, Helmut G. Alt, Syriac J. Palackal, M. Bruce Welch
  • Patent number: 6268443
    Abstract: A solid catalyst component for olefin polymerization superior in shatter resistance and narrowness of particle size distribution, is provided, which component is prepared by spraying a mixture of Mg compound with an alcohol in a molten state, in a column; cooling the inside of the column; to obtain a component (B); partly removing the alcohol from (B), to obtain a solid component (C); contacting a halogen-containing Ti compound and an electron donor with (C); to obtain (D); contacting (D) with a halogen-containing Ti compound; in the above process, specifying the composition formulas of (A), (B) and (C); specifying the X-ray diffraction spector of (C) in comparison of that of (B); and contacting (C) with a halogen-containing Ti compound and an electron donor using an aliphatic hydrocarbon of a specified b.p., in a specified temperature.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: July 31, 2001
    Assignee: Chisso Corporation
    Inventors: Toshihiro Uwai, Masami Tachibana, Jun Saito
  • Patent number: 6248685
    Abstract: A method of making a catalyst suitable for the polymerization of olefins includes the steps of mixing an ether having a total number of carbon atoms equal to or greater than 8, with hydrated magnesium chloride, to produce partially activated magnesium chloride; mixing an alkyl aluminum with the partially activated magnesium chloride to form unwashed activated magnesium chloride; and washing the activated magnesium chloride with an inert saturated hydrocarbon liquid, to obtain an activated magnesium chloride-containing slurry. A plurality of alcohols are mixed with the activated magnesium chloride-containing slurry to form an activated magnesium chloride/alcohol complex. Titanium tetrachloride is mixed with the activated magnesium chloride/alcohol complex, to form a magnesium chloride supported titanium catalyst.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: June 19, 2001
    Assignee: Sasol Technology PTY Limited
    Inventors: Dawid Johannes Joubert, Ignatius Hendrik Potgieter, Ioan Tincul
  • Patent number: 6235854
    Abstract: The invention provides a process for preparing a solid titanium catalyst component for use in the preparation of an olefin polymerization catalyst, which comprises: (1) a step wherein a suspension is prepared which contains a solid material prepared by contacting a magnesium compound with a first titanium compound and having a polybasic carboxylic acid ester supported thereon; (2) a step wherein the solid material is separated from the suspension; and (3) a step wherein the solid material is contacted with a second titanium compound under heating; wherein while the solid material is separated from the suspension in the step (2) and the solid material is supplied to the step (3), the solid material is maintained at a temperature in the range of 70-130° C.
    Type: Grant
    Filed: June 10, 1997
    Date of Patent: May 22, 2001
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Mamoru Kioka, Shinichi Kojo, Tsuneo Yashiki
  • Patent number: 6225252
    Abstract: A process for preparing a catalyst support in which a hydrophilic inorganic oxide of an element of main groups 2, 13 or 14 or transition group 4 of the Periodic Table or a mixture or mixed oxide thereof is dried at from 110 to 800° C., subsequently reacted, if desired, with alumioxanes or aluminum alkyls and subsequently reacted simultaneously with aluminoxanes and bisphenol A as a polyfunctional organic crosslinker. In a further stage, the catalyst support can be brought into contact with a polyolefin catalyst, giving a supported polyolefin catalyst which is used, in particular, for the polymerization of olefins.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: May 1, 2001
    Assignee: Borealis AG
    Inventors: Eberhard Ernst, Jens Reussner
  • Patent number: 6200923
    Abstract: A novel soluble composition containing magnesium, titanium, a halogen and a carboxylic acid ester has been invented. The composition has mainly the composition according to Formula (I): (MgX32)xTiX44(R(COOR′)n)y  (I) wherein X3 is a halogen, X4 is a halogen, R(COOR′)n is a carboxylic acid higher alkyl ester containing at least 8·n carbon atoms, wherein R is an n-valent substituted or unsubstituted C1-C34 hydrocarbon group, R′ is a C1-C20 alkyl group, and n is an integer from 1 to 4, x is between 0.5 and 4.0, and y is between 0.8/n and 2.4/n.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: March 13, 2001
    Assignee: Borealis Technology Oy
    Inventors: Thomas Garoff, Timo Leinonen, Sirpa Ala-Huikku
  • Patent number: 6191240
    Abstract: Catalysts for the polymerization of olefins comprise the product of the reaction between: (A) a titanium, zirconium or hafnium product with substituted cyclopentadiene ligands, (B) a mixture of two organometallic aluminium compounds, with at least one of the groups bound to the aluminium being other than a linear alkyl, and (C) water. When used in the polymerization of olefins, these catalysts show higher activities, at short residence times, than corresponding catalysts obtained from the individual components of the above-mentioned mixtures of aluminium compounds.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: February 20, 2001
    Assignee: Montell Technology Company B.V.
    Inventor: Maurizio Galimberti
  • Patent number: 6184169
    Abstract: An ethylene polymerization catalyst and catalyst system which produces ethylene copolymers having unique melt elastic properties at high catalytic activity. The catalyst is produced by the steps which include contacting silica having a surface area of between above about 500 m2/g and about 800 m2/g, a particle size in the range of between about 10 microns and about 200 microns and a pore volume of between about 0.5 cc/g and about 3.0 cc/g with an organosilicon compound. This product is contacted with a dialkylmagnesium compound or complex. The product of this step, in turn, is contacted with an alcohol or silane compound. Finally, the thus formed product is contacted with a transition metal compound.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: February 6, 2001
    Assignee: Equistar Chemicals, LP
    Inventor: William J. Sartain
  • Patent number: 6184328
    Abstract: There are provided a propylene-based polymer characterized in that (1) the xylene-extraction insoluble portion (XI) is 99.0 wt % or greater, (2) the isotactic pentad ratio (IP) is 98.0% or greater as measured by 13C nuclear magnetic resonance spectroscopy, (3) the isotactic average chain length (N) is 500 or greater, and (4) the total amount of each of the fractions obtained by column separation of the xylene insolubles whose average chain length (Nf) is 800 or greater accounts for 10 wt % or more of the entirety, and a method for its production, as well as a propylene-based polymer composition prepared by combining with this propylene-based polymer at least a nucleating agent in the range of 0.05-15 wt %. In addition, there are provided a polymerization catalyst component allowing the production of such a propylene-based polymer, and a method for its production.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: February 6, 2001
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Hisayoshi Yanagihara, Kazuyuki Watanabe, Satoshi Iwamoto, Hirotoshi Takahashi, Kazuharu Itoh
  • Patent number: 6174971
    Abstract: A new synthesis of a Ziegler-Natta catalyst uses a multi-step preparation which includes treating a soluble magnesium compound with successively stronger chlorinating-titanating reagents. The catalyst may be used in polymerization of olefins, particularly ethylene, to produce a polymer with low amount of fines, large average fluff particle size and narrow molecular weight distribution. The catalyst has high activity and good hydrogen response.
    Type: Grant
    Filed: January 28, 1997
    Date of Patent: January 16, 2001
    Assignee: Fina Technology, Inc.
    Inventors: Hong Chen, Tim J. Coffy, Edwar S. Shamshoum
  • Patent number: 6171993
    Abstract: The present invention provides an ethylene copolymer resin that has unique melt elastic properties not observed in ethylene copolymers heretofore known. Specifically, the ethylene copolymer resin of the present invention when in pelletized form has a reduction in melt elasticity (ER) of 10% or more to a final value of 1.0 or less upon rheometric low shear modification or solution dissolution. Moreover, the resin of the present invention when in reactor-made form exhibits at least a partially reversible increase of 10% or more in ER when pelletizing the same. An ethylene polymerization catalyst, a process of preparing the ethylene copolymer resin and a high-impact film are also provided herein.
    Type: Grant
    Filed: December 4, 1998
    Date of Patent: January 9, 2001
    Assignee: Equistar Chemicals, LP
    Inventors: Harilaos Mavridis, Mark K. Reinking, Ramesh N. Shroff, Joel A. Mutchler, Charles S. Holland, Keta M. Lindstrom, Kiran M. Gupte, Michael H. Treptau, Francis M. Mirabella
  • Patent number: 6166170
    Abstract: A catalyst composition is disclosed. The composition comprises a titanium compound, a complexing agent, hypophosphorous acid or its metal salt, water and optionally a solvent. The complexing agent can be hydroxycarboxylic acid, alkanolamines, aminocarboxylic acids, or combinations of two or more thereof. The solvent can be water, ethanol, propanol, isopropanol, butanol, ethylene glycol, propylene glycol, isopropylene glycol, butylene glycol, 1-methyl propylene glycol, pentylene glycol, or combinations of two or more thereof. The titanium compound can be combined with a zirconium compound. Also disclosed is a process for using the composition for producing an ester or a polyester. The process comprises contacting a carbonyl compound, in the presence of the composition, with an alcohol under a condition suitable for esterification, transesterification, polymerization, or combinations of two or more thereof.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: December 26, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Donald Edward Putzig
  • Patent number: 6156867
    Abstract: The present invention relates to a polyester polymerization catalyst, comprising a solution containing an aluminum compound and an alkali compound, with water or an organic solvent or a mixture consisting of water and an organic solvent as the medium, a production method thereof, and a polyester production method, in which the product obtained by the esterification reaction or ester interchange reaction between an aromatic dicarboxylic acid or any of its ester forming derivative and a diol is polycondensed, to produce a polyester, comprising the use of said polymerization catalyst containing an aluminum compound.The present invention can provide a polyester excellent in processability and can overcome such problems as spinneret contamination, filtration pressure rise, filament breaking, film breaking and foreign matter production in the production process of products such as fibers, films, resins and bottles.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: December 5, 2000
    Assignee: Toray Industries, Inc.
    Inventors: Masatoshi Aoyama, Kenichi Tsutsumi, Minoru Uchida
  • Patent number: 6153550
    Abstract: The invention relates to a catalyst composition for olefin polymerization comprising metallocene complexes and novel cocatalysts belonging to the group of perfluorinated oligoarylaluminates, oligoarylthioaluminates and oligoarylaminoaluminates. These cocatalysts are produced by two alternative synthetic methods, either by reacting alkylalumoxanes with pentafluorophenol, pentafluorothiophenol, or with pentafluoroaniline, respectively; or in two-step processes comprising first reacting trialkylaluminum compounds with said perfluorinated agents and then by reacting the products of the first step with water. Catalyst systems containing these cocatalysts and metallocene complexes are active in polymerization and copolymerization reactions of ethylene and alpha-olefins.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: November 28, 2000
    Assignee: Mobile Oil Corporation
    Inventor: Yury V Kissin
  • Patent number: 6140432
    Abstract: This invention is generally directed toward a supported catalyst system useful for polymerizing olefins. The method for supporting the catalyst of the invention provides for a supported metallocene catalyst which when utilized in a polymerization process substantially reduces reactor fouling and sheeting in a gas or slurry polymerization process.
    Type: Grant
    Filed: July 13, 1995
    Date of Patent: October 31, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Agapios Kyriacos Agapiou, Chi-I Kuo, Michael Elroy Muhle, Anthony Nicholas Speca
  • Patent number: 6136932
    Abstract: Catalysts for the polymerization of olefins which comprise the reaction product of (a) a bridged and/or substituted cyclopentadienyl compound of titanium, zirconium, or hafnium; (b) an organometallic aluminum compound of formula Al(CH.sub.2 --CR.sup.4 R.sup.5 R.sup.6).sub.w R.sup.7.sub.y H.sub.z, wherein in the (CH.sub.2 --CR.sup.4 R.sup.5 R.sup.6) groups, which are the same or different, R.sup.4 is an alkyl, alkenyl or arylalkyl group having from 1 to 10 carbon atoms, R.sup.5 is an alkyl, alkenyl, aryl, arylalkyl or alkylaryl group having from 3 to 50 carbon atoms and, optionally, R.sup.4 and R.sup.5 can be fused together to form a ring having from 4-6 carbon atoms, R.sup.6 is hydrogen or an alkyl alkenyl or arylalkyl group having from 1 to 10 carbon atoms, the R.sup.7 substituents, the same or different, are alkyl, alkenyl, aryl, arylalkyl or alkylaryl radicals having from 1 to 10 carbon atoms and, optionally, can contain Si or Ge atoms, w is 1, 2 or 3, z is 0 or 1, and y=3-w-z; and (c) water.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: October 24, 2000
    Assignee: Montell Technology Company b.v.
    Inventors: Tiziano Dall'occo, Maurizio Galimberti, Luigi Resconi, Enrico Albizzati, Gianni Pennini
  • Patent number: 6124229
    Abstract: Disclosed is a process for preparing a supported metallocene catalyst by introducing, in a first stage, a gas stream comprising an organoaluminum compound, an inert support material and water, into a first gas phase reactor; allowing the mixture to react under conditions effective to form an aluminoxane supported on said inert support material; metering a second gas stream comprising a metallocene into said gas phase reactor; allowing said mixture to react under conditions effective to form a supported metallocene catalyst; and drying, in a second stage, said supported metallocene catalyst, wherein said drying is carried out in a gas phase reactor.
    Type: Grant
    Filed: August 22, 1996
    Date of Patent: September 26, 2000
    Assignee: Witco GmbH
    Inventors: Ralf-Jurgen Becker, Rainer Rieger
  • Patent number: 6124230
    Abstract: This invention is generally directed toward a supported catalyst system useful for polymerizing olefins. The method for supporting the catalyst of the invention provides for a supported bulky ligand transition metal catalyst which when utilized in a polymerization process substantially reduces the reactor fouling and sheeting in a gas, slurry or liquid pool polymerization process.
    Type: Grant
    Filed: July 13, 1995
    Date of Patent: September 26, 2000
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Anthony Nicholas Speca, Jeffrey Lawrence Brinen
  • Patent number: 6069108
    Abstract: Process for preparing a supported metallocene catalyst, in which a hydrophilic, macroporous, finely divided aluminum oxide, silicon oxide, titanium oxide or zirconium oxide or a mixture or mixed oxide thereof is dried at from 110 to 800.degree. C., then reacted with an aluminoxane and subsequently with polyfunctional organic crosslinkers. In a further step, the catalyst support can be mixed with a reaction product of metallocenes and activators, giving a supported metallocene catalyst which is used, in particular, for the polymerization of olefins.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: May 30, 2000
    Assignee: Borealis GmbH
    Inventors: Eberhard Ernst, Jens Reussner, Wolfgang Neissl
  • Patent number: 6066714
    Abstract: A catalyst composition is disclosed. The composition comprises a titanium compound, a phosphorus compound, an amine, a solvent and optionally a cocatalyst in which the phosphorus compound has a formula selected from the group consisting of (R.sup.1 O).sub.x (PO)(OH).sub.3-x, (R.sup.1 O).sub.y (P.sub.2 O.sub.3)(OH).sub.4-y, and combinations thereof; the amine is a tertiary amine; each R.sup.1 is independently a linear or branched alkyl radical containing from 1 to about 20 carbon atoms per radical; x is 1 or 2; and y is 1, 2, or 3; and the cocatalyst can be a cobalt/aluminum catalyst, an antimony compound, or combinations thereof. Also disclosed is a process for producing the composition. The process comprises combining a titanium compound, a phosphorus compound, a solvent, an amine, a solvent, and optionally a cocatalyst. The phosphorus compound, amie, and solvent are the same as those disclosed above.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: May 23, 2000
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Donald Edward Putzig, Edward Francis McBride, Hiep Quang Do, James Arthur Trainham, Hermann Ludwig Jaeger, Heiner Schulte
  • Patent number: 6043395
    Abstract: A high-pressure process for hydrogenating aromatic amines to give mixtures of the corresponding cycloaliphatic amines and dicycloaliphatic amines in variable ratios in the presence of rhodium catalysts.
    Type: Grant
    Filed: June 1, 1999
    Date of Patent: March 28, 2000
    Assignee: Bayer Aktiengesellschaft
    Inventors: Reinhard Langer, Gerd-Michael Petruck
  • Patent number: 6043180
    Abstract: A supported catalyst component prepared from a support material and an alumoxane, containing 15-40 weight percent of aluminum from the alumoxane (based on the total weight of the support material and alumoxane), said supported catalyst component being obtained by heating said support material and alumoxane under an inert atmosphere at a temperature of from about 85 to about 250.degree. C. for a period sufficient to fix said alumoxane to the support material, to provide a supported catalyst component; wherein not more than about 10 percent aluminum from said alumoxane and present in the supported catalyst component is extractable in a one-hour extraction with toluene at 90.degree. C. using 10 ml toluene per gram of supported catalyst component; and a transition metal compound, and a process for the preparation of the supported catalyst.
    Type: Grant
    Filed: August 11, 1997
    Date of Patent: March 28, 2000
    Assignee: The Dow Chemical Company
    Inventors: Grant B. Jacobsen, Peter L. Wauteraerts, Lee Spencer
  • Patent number: 6020454
    Abstract: The present invention relates to a polyester polymerization catalyst, comprising a solution containing an aluminum compound and an alkali compound, with water or an organic solvent or a mixture consisting of water and an organic solvent as the medium, a production method thereof, and a polyester production method, in which the product obtained by the esterification reaction or ester interchange reaction between an aromatic dicarboxylic acid or any of its ester forming derivative and a diol is polycondensed, to produce a polyester, comprising the use of said polymerization catalyst containing an aluminum compound.The present invention can provide a polyester excellent in processability and can overcome such problems as spinneret contamination, filtration pressure rise, filament breaking, film breaking and foreign matter production in the production process of products such as fibers, films, resins and bottles.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: February 1, 2000
    Assignee: Toray Industries, Inc.
    Inventors: Masatoshi Aoyama, Kenichi Tsutsumi, Minoru Uchida