Utilizing Water Or Compound Containing Hydroxy Bonded To Carbon Patents (Class 502/111)
  • Patent number: 5466647
    Abstract: Novel tertiary amine-aluminoxane halide derivatives are disclosed along with olefin polymerization catalyst and polymerization processes using such derivatives in combination with metallocenes.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: November 14, 1995
    Assignee: Albemarle Corporation
    Inventor: Samuel A. Sangokoya
  • Patent number: 5459116
    Abstract: Highly active catalyst for the polymerization of olefins and method for the preparation of the same.The catalyst for the polymerization of olefins, consisting essentially of-magnesium, titanium, halogen and at least one electron donor, wherein the electron donor is selected from the group consisting of aliphatic unsaturated esters, aliphatic saturated esters, aromatic esters and the mixture thereof, which all contain at least one hydroxy group.The catalyst is prepared by directly reacting a magnesium compound of liquid phase having no reducing power with a titanium compound of liquid phase in the presence with at least one electron donor.Superior in activity as well as production yield in polymerizing olefins, the catalyst is capable of not only providing the polymer with high stereoregularity but also improving the bulk density of the polymer, especially polyethylene.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: October 17, 1995
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Ki S. Ro, Min C. Chung, Tu W. Chang, Sung H. Han
  • Patent number: 5427992
    Abstract: The invention relates to a process for preparing solutions of oligomeric methylaluminoxanes, which contain trimethylaluminum in the free and/or complexed form, in hydrocarbons by partial hydrolysis of trimethylaluminum with water and to carrying out this process in a rotor/stator reaction machine.The product obtained is suitable for preparing highly active polymerization catalysts.
    Type: Grant
    Filed: September 8, 1992
    Date of Patent: June 27, 1995
    Assignee: WITCO GmbH
    Inventors: Jurgen Graefe, Stefan Gurtzgen, Karl H. Muller, Jurgen Schneider, Rolf Schrader
  • Patent number: 5405816
    Abstract: Pure syndiotactic 1,2-polybutadiene is a thermoplastic resin which has double bonds attached in an alternating fashion to its polymeric backbone. Films, fibers and molded articles can be made utilizing syndiotactic 1,2-polybutadiene. It can also be blended into rubbers and cocured therewith. Syndiotactic 1,2-polybutadiene can be made by solution, emulsion or suspension polymerization. It typically has a melting point which is within the range of about 195.degree. C. to about 215.degree. C. However, it is often desirable for the syndiotactic 1,2-polybutadiene to have a melting point of less than about 195.degree. C. This invention discloses a process for preparing syndiotactic 1,2-polybutadiene having a melting point of less than about 195.degree. C.
    Type: Grant
    Filed: September 22, 1993
    Date of Patent: April 11, 1995
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Gary L. Burroway
  • Patent number: 5405924
    Abstract: An olefin metathesis catalyst system and process for the metathesis polymerization of cyclic olefins, such as dicyclopentadiene, are disclosed. The catalyst system comprises the reaction product of:(a) an imido transition metal halide complex of formula: ##STR1## wherein Ar is C.sub.6-20 aryl, preferably phenyl; M is a transition metal selected from the second and third rows of Groups 5, 6, 7 and 8 of the Periodic Table (IUPAC 1989 convention) and including for example niobium, tantalum, molybdenum, tungsten, rhenium, ruthenium or osmium, preferably tungsten or molybdenum; R is independently halide, C.sub.1-20 alkyl, C.sub.1-12 alkoxy, C.sub.1-12 haloalkyl, C.sub.6-20 aryl, C.sub.6-20 aryloxy, cyano or combinations thereof; L is independently a complexing ligand selected from carbonyl, C.sub.1-12 alkoxy, C.sub.1-12 haloalkoxy, C.sub.1-12 alkyl ethers, including mono-, di- and higher ethers, C.sub.12 alkylnitriles, C.sub.5-20 pyridines, C.sub.
    Type: Grant
    Filed: June 22, 1994
    Date of Patent: April 11, 1995
    Assignee: Shell Oil Company
    Inventor: Donald R. Kelsey
  • Patent number: 5403803
    Abstract: In accordance with this invention, there is provided a living carbocationic polymerization catalyst system comprising: (1) a halide of titanium, tin, vanadium or antimony; (2) an aluminum halide selected from the group consisting of aralkyl aluminum halides and alkyl aluminum halides; and (3) an initiator selected from the group consisting of tertiary alkyl halides, tertiary aralkyl halides, tertiary polymeric halides, and water provided that if the initiator is organic, a proton scavenger is present, or, alternatively, if the initiator consists of water, a secondary or tertiary amine is present. Another aspect of the invention comprises a process for using this catalyst system for the polymerization of olefins and for producing narrow molecular weight distribution polymers in a short reaction time.
    Type: Grant
    Filed: September 28, 1993
    Date of Patent: April 4, 1995
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Timothy D. Shaffer, John R. Ashbaugh
  • Patent number: 5382557
    Abstract: A solid component of catalyst highly active in the (co)polymerization of ethylene containing titanium, magnesium, aluminum, chlorine and alkoxy groups, and obtained by means of a procedure wherein:(i) a solid, granular support of magnesium chloride, obtained by spray-drying an alcohol solution of magnesium chloride, is suspended in a liquid hydrocarbon solvent and an aliphatic alcohol and a titanium tetraalkoxide are added to the suspension thus obtained,(ii) the suspension of step (i) is heated until a homogeneous solution is obtained and the solution is cooled to precipitate a granular solid in a relative suspension,(iii) the granular solid obtained in step (ii), in the relative suspension, is put in contact and reacted with an aluminum alkyl halide, and(iv) the solid component catalyst is recovered from the reaction products of step (iii).
    Type: Grant
    Filed: July 10, 1992
    Date of Patent: January 17, 1995
    Assignee: ECP Enichem Polimeri S.r.l.
    Inventors: Francesco Masi, Renzo Invernizzi, Angelo Moalli, Cesare Ferrero, Francesco Menconi, Lia Barazzoni
  • Patent number: 5360776
    Abstract: In the invention a procatalyst of a catalyst system of a new type intended for the polymerization of olefins has been prepared comprising a carrier based on a magnesium compound, a titanium compound and a dialkylester of phthalic acid. The most important properties of this kind of a procatalyst are the high stereoselectivity and the high activity. Now it has been possible to increase the activity considerably by using a different kind of dialkylester of phthalic acid having in its alkyl 9 to 20 carbon atoms and the dielectricity constant of which being preferably below 5 measured at 25 C.
    Type: Grant
    Filed: September 15, 1993
    Date of Patent: November 1, 1994
    Assignee: Neste Oy
    Inventors: Eero Iiskola, Rauha Huurinainen
  • Patent number: 5350724
    Abstract: A process for preparing a polymerization catalyst useful for the polymerization of olefins is provided comprising contacting a magnesium compound and a transition metal halide to form a solid product; contacting the solid product with an organoaluminum halide to form a first catalyst component, and contacting the first catalyst component with an activating agent to form a catalyst. Other aspects of the invention provide a catalyst prepared by the above described method and a polymerization process employing the thus prepared catalyst.
    Type: Grant
    Filed: May 4, 1993
    Date of Patent: September 27, 1994
    Assignee: Phillips Petroleum Company
    Inventor: Joel L. Martin
  • Patent number: 5340786
    Abstract: In accordance with the present invention, there are provided an olefin polymerization catalyst formed from:[A] a compound of a transition metal belonging to Group IV B of the periodic table,[B] an aluminoxane, and[C] water,an olefin polymerization catalyst formed from [D] an organoaluminum compound in addition to the above-mentioned [A], [B] and [D] components, and processes for the polymerization of olefins using the above-mentioned olefin polymerization catalysts, respectively.
    Type: Grant
    Filed: November 15, 1993
    Date of Patent: August 23, 1994
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Toshiyuki Tsutsui, Kazunori Okawa, Akinori Toyota
  • Patent number: 5330949
    Abstract: A method for producing a polyolefin is disclosed which comprises polymerizing an .alpha.-olefin in the presence of a catalyst composition comprising (A) a solid catalyst component prepared by contacting (a) a solid component comprising a magnesium alkoxide and/or a magnesium salt of a fatty acid supported on an inorganic oxide composed of at least one member selected from the group consisting of oxides of elements belonging to Groups II, III and IV of the periodic table and/or a composite inorganic oxide containing at least one member selected from the group consisting of oxides of elements belonging to Groups II, III and IV of the periodic table, the inorganic oxide or composite inorganic oxide having a surface hydroxide concentration of 3 .mu.mol/m.sup.2 or less, (b) an electron donating compound and (c) a titanium halide, (B) an organic metal compound, and (C) an electron donating compound.
    Type: Grant
    Filed: April 26, 1990
    Date of Patent: July 19, 1994
    Assignee: Idemitsu Petrochemical Company, Ltd.
    Inventors: Hideo Funabashi, Akira Tanaka, Rikuo Ohnishi, Toshikazu Kasahara, Takashi Yamawaki
  • Patent number: 5322830
    Abstract: The invention relates to a method for the preparation of a supported procatalyst intended for the polymerization of olefins, in which particles are formed from magnesium halide and alcohol, the particles are reacted with an organometallic compound of any of the metals of the groups I to III, the thus obtained particulate product is activated by means of a titanium(IV) compound, and optionally a prepolymerization is carried out for the activated particles. A problem with this kind of a method is, how to form particles from magnesium dihalide and alcohol having an advantageous structure for the polymerization of ethylene and particularly ethylene with a narrow molecular weight distribution. The problem has in the present invention been solved so that the particles are formed by spray-crystallizing a mixture of magnesium dihalide and alcohol to complex particles of magnesium dihalide and alcohol and that titanium(IV) alcoxyhalide has been used as the titanium compound.
    Type: Grant
    Filed: September 18, 1991
    Date of Patent: June 21, 1994
    Assignee: Neste Oy
    Inventors: Pekka Sormunen, Jukka Koskinen, Paivi Waldvogel
  • Patent number: 5300470
    Abstract: Solid catalyst components for the preparation of catalysts capable of producing polymers and copolymers of ethylene with ultra high molecular weight are obtained in the form of particles having an average diameter of less than 10 micrometers, by way of reaction, in the presence of H.sub.2 O, between:1) a liquid obtained by reacting:A) a titanium compound containing at least one Ti--OR bond, where R is a C.sub.1 -C.sub.20 alkyl, C.sub.3 -C.sub.20 cycloalkyl, or C.sub.6 -C.sub.20 aryl radical; withB) a magnesium compound selected from the group consisting of: halides; compounds comprising at least one --OR or--OCOR group bonded to the magnesium, where R is a C.sub.1 -C.sub.20 alkyl, C.sub.3 -C.sub.20 cycloalkyl, or C.sub.6 -C.sub.20 aryl radical; organometallic compounds; products of the reaction between the above mentioned compounds and electron-donor compounds; and2) a compound or composition capable of halogenating and optionally reducing (A).
    Type: Grant
    Filed: July 15, 1992
    Date of Patent: April 5, 1994
    Assignee: Himont Incorporated
    Inventors: Illaro Cuffiani, Umberto Zucchini
  • Patent number: 5298579
    Abstract: A method of using a catalyst with a suitable cocatalyst in the polymerization or copolymerization of 1-olefins are disclosed. The catalyst is prepared by: a) contacting a Group IIA organometallic compound, like 2-methylpentanoxymagnesium chloride, or a Group III organometallic compound, like triethylaluminum, or a combination thereof, with a porous or nonporous biodegradable substrate having active surface hydroxyl groups, like cellulose, to provide a modified biodegradable substrate; then b) contacting the modified biodegradable substrate with a transition metal compound, such as a transition metal halide or alkoxide, like titanium tetrachloride or vanadium (V) trichloride oxide, to form discrete catalyst particles. The catalyst particles are used in conjunction with a suitable cocatalyst, like triethylaluminum, in the homopolymerization or copolymerization of 1-olefins. During polymerization, porous biodegradable catalyst particles are fragmented into small solid particles that are trapped within polymer.
    Type: Grant
    Filed: November 13, 1992
    Date of Patent: March 29, 1994
    Assignee: Quantum Chemical Corporation
    Inventors: Raymond E. Hoff, Leonard V. Cribbs
  • Patent number: 5286694
    Abstract: A polymerization catalyst is formed by producing a solution of a halide of scandium, yttrium, or a rare earth metal and an alcohol; contacting the solution with an organometallic compound to form a soluble complex; and contacting the soluble complex with a halide ion exchanging source. Optionally an ester or an anhydride can also be combined with the halide solution or the soluble complex. The catalyst thus produced can be combined with an organometallic cocatalyst.
    Type: Grant
    Filed: December 11, 1991
    Date of Patent: February 15, 1994
    Assignee: Phillips Petroleum Company
    Inventors: Ted M. Pettijohn, Henry L. Hsieh
  • Patent number: 5278305
    Abstract: A catalyst and process for the polymerization of cyclic olefins, such as dicyclopentadiene, are disclosed. The catalyst comprises the reaction product of a transition metal halide and a 1,4-hydroquinone of the general formula: ##STR1## wherein R is independently selected from the group of hydrogen, C.sub.1-12 alkyl, C.sub.6-20 aryl, halide, and C.sub.1-6 haloalkyl. Optional co-catalysts include borohydrides, organo tin hydrides and organo aluminum compounds. Polymerization can be carried out in a reaction injection molding process to prepare a molded article.
    Type: Grant
    Filed: December 31, 1992
    Date of Patent: January 11, 1994
    Assignee: Shell Oil Company
    Inventor: Donald R. Kelsey
  • Patent number: 5278263
    Abstract: Pure syndiotactic 1,2-polybutadiene is a thermoplastic resin which has double bonds attached in an alternating fashion to its polymeric backbone. Films, fibers and molded articles can be made utilizing syndiotactic 1,2-polybutadiene. It can also be blended into rubbers and cocured therewith. Syndiotactic 1,2-polybutadiene can be made by solution, emulsion or suspension polymerization. It typically has a melting point which is within the range of about 195.degree. C. to about 215.degree. C. However, it is often desirable for the syndiotactic 1,2-polybutadiene to have a melting point of less than about 195.degree. C. This invention discloses a process for preparing syndiotactic 1,2-polybutadiene having a melting point of less than about 195.degree. C.
    Type: Grant
    Filed: October 5, 1992
    Date of Patent: January 11, 1994
    Assignee: The Goodyear Tire & Rubber Company
    Inventor: Gary L. Burroway
  • Patent number: 5275991
    Abstract: A novel catalyst support and a method for preparation thereof, characterized by the presence of selected amounts of a hydrocarbon soluble magnesium-containing compound applied to the support relative to solvent, wherein a surface uniformly and essentially continuously moistened with the solvated magnesium compound in a condition of incipient precipitation to permit the formation of a regular essentially continuous distribution of the magnesium compound onto and conforming to the support material. The drying process under these conditions is effective in maintaining to a high degree the effective surface area and pore volume of the material. The support containing the adsorbed magnesium is then dried in a controlled manner to essential incipient wetness conditions providing a regular spatial distribution of stacked reticular magnesium values at a level of one to five molecular monolayers on the support.
    Type: Grant
    Filed: November 30, 1992
    Date of Patent: January 4, 1994
    Assignee: Quantum Chemical Corporation
    Inventors: Charles K. Buehler, Albert P. Masino, Raghu Menon
  • Patent number: 5276118
    Abstract: A catalyst and process for the metathesis polymerization of cyclic olefins, such as dicyclopentadiene, are disclosed. The catalyst comprises the reaction product of a transition metal halide preferably tungsten, molybdenum, or tantalum halides and a diaryl carbinol of the formula ##STR1## wherein G is independently C.sub.1-12 alkyl, C.sub.1-12 alkoxy, C.sub.1-12 alkylamino, C.sub.6-20 aryl, halide, or C.sub.1-6 haloalkyl; g is independently 0 to 4; R is independently hydrogen or G or the R's are combined as a single bond or as a bridging group X, where X is CH.sub.2, CH.sub.2 CH.sub.2, O, S, SO, SO.sub.2 or NR.sup.1, and R.sup.1 is H or C.sub.1-6 alkyl. Optional co-catalysts include borohydrides, organo tin hydrides and organo aluminum compounds. Polymerization can be carried out in a reaction injection molding process to prepare a molded article.
    Type: Grant
    Filed: December 31, 1992
    Date of Patent: January 4, 1994
    Assignee: Shell Oil Company
    Inventor: Donald R. Kelsey
  • Patent number: 5266665
    Abstract: Cyclic olefin metathesis polymerization catalyst comprising metal compounds wherein said metals consist essentially of a minor amount of a transition metal which Will initiate ring-opening metathesis polymerization of a cyclic olefin and a major amount of at least one second metal which will propagate the polymerization, wherein said catalyst is essentially devoid of pyrophoric metal compounds, e.g. metal alkyls, and preformed metal carbenes. A preferred transition metal is ruthenium. Said second metal can comprise aluminum, copper, hafnium, iron (III), iridium, manganese, molybdenum, nickel, niobium, rhenium, rhodium, tantalum, titanium, tungsten, yttrium, a Lanthanide, zinc or zirconium or a mixture thereof. Using such catalyst cyclic olefin, e.g. norbornene derivatives, can be polymerized, e.g. in an extruder, even in the presence of water.
    Type: Grant
    Filed: June 1, 1990
    Date of Patent: November 30, 1993
    Assignee: Monsanto Company
    Inventor: Christopher J. Hardiman
  • Patent number: 5258343
    Abstract: A polymerization catalyst system is formed by producing a solution of a halide of scandium, yttrium, or a rare earth metal and an alcohol; contacting the solution with a halide ion exchanging source to form a solid. The catalyst thus produced can be combined with an organometallic cocatalyst. Polymers with multimodal molecular weight distribution are produced when a diol is used to prepare the catalyst and an organoaluminum halide is used as cocatalyst. Polymers with broad molecular weight distribution of the unimodal type are produced when using a trialkylaluminum compound or an alkyl aluminum hydride.
    Type: Grant
    Filed: December 18, 1991
    Date of Patent: November 2, 1993
    Assignee: Phillips Petroleum Company
    Inventor: Ted M. Pettijohn
  • Patent number: 5258344
    Abstract: A polymerization catalyst is formed by contacting an alcohol with a transition metal compound. In a second embodiment, a solution is formed by contacting a Group IIA or Group IIB metal halide and an alcohol, the solution is then contacted with a transition metal compound to produce a catalyst. Either catalyst can be combined with an organometallic cocatalyst. Polymers with multimodal molecular weight distribution are produced when a diol is used to prepare the catalyst and an organoaluminum halide is used as cocatalyst. Polymers with broad molecular weight distribution of the unimodal type are produced when using a trialkylaluminum cocatalyst.
    Type: Grant
    Filed: June 30, 1992
    Date of Patent: November 2, 1993
    Assignee: Phillips Petroleum Company
    Inventor: Ted M. Pettijohn
  • Patent number: 5252529
    Abstract: A solid catalyst for olefin polymerization comprising [A] a particulate carrier composed of (i) an oxide of at least one element selected from among those belonging to the groups of II, III and IV of the periodic table, and containing (ii) at least 1.0% by weight of water, [B] an organoaluminum oxy compound, and [C] a transition metal compound of a metal belonging to the group IV B of the periodic table containing a ligand having a cyclopentadienyl skeleton,wherein the organoaluminum oxy compound [B] and the transition metal compound [C] are supported on the particulate carrier [A].
    Type: Grant
    Filed: May 20, 1992
    Date of Patent: October 12, 1993
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Takashi Ueda, Kazunori Okawa
  • Patent number: 5238892
    Abstract: This invention relates to a supported catalyst composition useful in the polymerization of olefins and to a method for its production. The invention particularly relates to the use of undehydrated silica gel containing from about 6 to about 20 percent by weight adsorbed water as the catalyst support material. The catalyst is formed by first reacting a trialkylaluminum compound with a metallocene, and subsequently reacting the resulting material with the undehydrated silica gel. The resulting supported metallocene-alumoxane catalyst has a level of activity comparable to that of conventionally made supported catalysts which are achieved at active metal loadings which are reduced from the loadings used in the previously known metallocene-alumoxane catalysts by at least 20%, and preferably 50%.
    Type: Grant
    Filed: June 15, 1992
    Date of Patent: August 24, 1993
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Main Chang
  • Patent number: 5234879
    Abstract: When asymmetric olefins or a monomer mixture containing asymmetric monomers is polymerized by a catalyst composition containing esters of carboxylic acid e.g. as a so-called donor, and alcohol the ester group can be transesterified with the alcohol to an ester containing another alkyl group during the preparation and/or polymerization of the catalyst. This is advantageous particularly when an adduct of a so-called spray-crystallized Mg-halide and alcohol is used as the catalyst carrier, because the alkoxy group of the alcohol of the carrier and the alkoxy group of the ester of the donor can be transesterified and thus obtain the preferable effects of both esters on the run of the polymerization reaction. Hereby, a solvent having a high boiling point should be used as the intermediate agent, so that the transesterification reaction can take place. Most preferable have been found hydrocarbons having high boiling points, especially nonane and decane.
    Type: Grant
    Filed: November 30, 1992
    Date of Patent: August 10, 1993
    Assignee: Neste OY
    Inventors: Thomas Garoff, Timo Leinonen, Eero Iiskola
  • Patent number: 5234878
    Abstract: The present invention provides an olefin polymerization solid catalyst prepared by pre-polymerizing olefin in a suspension containing[A] a component obtainable by bringing a particulate carrier, an organoaluminum compound [A-a] and water into contact with one another,[B] a transition metal compound containing a ligand having a cycloalkadienyl skeleton and, if necessary,[C] an organoaluminum compound.
    Type: Grant
    Filed: February 12, 1991
    Date of Patent: August 10, 1993
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Toshiyuki Tsutsui, Takashi Ueda
  • Patent number: 5231065
    Abstract: A method for making polymerization catalysts is disclosed which comprises contacting a soluble complex prepared from the combination of a metal dihalide and a transition metal compound with a particulate material comprising zirconium phosphate and then reacting the resulting mixture with an organoaluminum halide to produce a catalyst precursor. The catalyst precursor is then contacted with a halogen containing compound selected from halides of Groups IVA and VA to produce the catalyst. Novel catalysts prepared in accordance with the invention method, novel polymerization processes therewith and novel polymers having relatively high melt flow rates while retaining good mechanical strength are also disclosed.
    Type: Grant
    Filed: December 16, 1991
    Date of Patent: July 27, 1993
    Assignee: Phillips Petroleum Company
    Inventors: Gil Hawley, Max McDaniel, Simon Kukes
  • Patent number: 5229342
    Abstract: A complex alkoxide compound containing magnesium, titanium and boron species comprises the reaction product of elemental magnesium, titanium tetraalkoxide, an alkyl borate ester and alkanol at elevated temperature in an inert diluent. This complex alkoxide compound is contacted with a tetravalent titanium halide, a halohydrocarbon and an electron donor to form an olefin polymerization procatalyst. Contact of the procatalyst with an organoaluminum cocatalyst and a selectivity control agent produces a high activity catalyst for the polymerization of lower .alpha.-olefins to polymer product of good properties in good catalyst productivity.
    Type: Grant
    Filed: June 24, 1992
    Date of Patent: July 20, 1993
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 5204303
    Abstract: The invention relates to a method for the preparation of a supported procatalyst intended for the polymerization of olefines, in which particles are formed of magnesium dihalide and alcohol, the particles are reacted with an organic compound of a metal from the groups I-III, the thus obtained particulate product is activated by means of a titanium and/or vanadium compound and optionally a donor, and optionally a prepolymerization is carried out for the activated particles. A problem of such a method is how to form particles of magnesium dihalogenide and alcohol having a structure advantageous for the polymerization of olefins. The problem has in the present invention been solved so that the particles are formed by spray crystallizing (spray freezing) a mixture of magnesium dihalide and alcohol to complex particles of magnesium dihalide and alcohol. The hydroxyl content of the particles so obtained is much greater than earlier, which results in a much more active procatalyst than the preceding ones.
    Type: Grant
    Filed: September 16, 1991
    Date of Patent: April 20, 1993
    Assignee: Neste Oy
    Inventors: Inkeri T. Korvenoja, Arja-Liisa Kostiainen, Fero I. Iiskola, Pekka J. E. Sormunen, Bill B. B. Gustatsson, Hilkka R. Knuuttila, Ulf Palmqvist
  • Patent number: 5198399
    Abstract: A catalyst, a method of preparing the catalyst, and a method of using the catalyst with a suitable cocatlayst in the polymerization or copolymerization of 1-olefins are disclosed. The catalyst is prepared by: a) contacting a group IIA organometallic compound, like 2-methylpentanoxymagnesium chloride, or a Group III organometallic compound, like triethylaluminum, or a combination thereof, with a porous or nonporous biodegradable substrate having active surface hydroxyl groups, like cellulose, to provide a modified biodegradable substrate; then b) contacting the modified biodegradable substrate with a transition metal compound, such as a transition metal halide or alkoxide, like titanium tetrachloride or vanadium(V)trichloride oxide, to form discrete catalyst particles. The catalyst particles are used in conjunction with a suitable cocatlalyst, like triethylaluminum, in the homopolymerization or copolymerization of 1-olefins.
    Type: Grant
    Filed: January 17, 1992
    Date of Patent: March 30, 1993
    Assignee: Quantum Chemical Corporation
    Inventors: Raymond E. Hoff, Leonard V. Cribbs
  • Patent number: 5192731
    Abstract: In accordance with the present invention, there are provided carrier-supported titanium catalyst components containing magnesium, aluminum, halogen and titanium as essential ingredients, which are obtained by a reaction of[I] a magnesium containing support obtained by previously bringing a support into contact with an organometallic compound of a metal of the Group II to IIIA of the periodic table having at least one hydrocarbon group attached directly to the metal atom or with a halogen containing compound, followed by contact with a magnesium compound in the liquid state having no reducing ability,[II] a reducing organometallic compound, and[III] a titanium compound in the liquid state, and processes for preparing the same and, at the same time, catalysts containing the above-mentioned catalyst components for use in preparing ethylene polymer and processes for preparing ethylene polymer using the catalyst for use in preparing ethylene polymer.
    Type: Grant
    Filed: October 23, 1991
    Date of Patent: March 9, 1993
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Kazumitsu Kawakita, Akinori Toyota
  • Patent number: 5188998
    Abstract: A transition-metal catalyst component for a Ziegler catalyst system, obtainable by1) mixing an inorganic, oxidic carrier with a transition-metal starting component in an organic solvent,2) removing the solvent by evaporation,3) mixing the solid-phase intermediate from step (2) with3.1) an organoaluminum catalyst component of the formula AlR.sub.m X.sub.3-m, whereR is a C.sub.1 - to C.sub.18 -hydrocarbon radical,m is from 1 to 3, andX is OR, chlorine, bromine or hydrogen, and3.2) an organic carboxylate or an organosilicon compound or a mixture thereof in an organic solvent, and4) if desired, isolating the solid-phase intermediate by filtration, washing and drying,and the use thereof for the homopolymerization or copolymerization of ethene are described.
    Type: Grant
    Filed: March 19, 1991
    Date of Patent: February 23, 1993
    Assignee: BASF Aktiengesellschaft
    Inventors: Ulrich Bueschges, Roland Saive
  • Patent number: 5188997
    Abstract: A solid component of a catalyst for the (co)polymerization of ethylene is composed of a silica carrier and a catalytically active part which includes titanium, magnesium, chlorine and also alkoxy groups, and is obtained: by suspending an activated silica in an ethanolic solution of magnesium chloride; by contact of the suspension with an alkoxy or halogen alkoxyde of titanium and with a silicon halide; by eliminating the ethanol from the resulting suspension in order to recover a solid matter; and by making this solid react with an aluminum alkyl chloride.
    Type: Grant
    Filed: September 5, 1991
    Date of Patent: February 23, 1993
    Assignee: ECP Enichem Polimeri s.r.l.
    Inventors: Luciano Luciani, Maddalena Pondrelli, Renzo Invernizzi, Italo Borghi
  • Patent number: 5188999
    Abstract: A catalyst support in the form of solid particles consisting essentially of a complex of MgCl.sub.2 and alcohol of the formula MgCl.sub.2, x(n-BuOH) in which 0.1.ltoreq.x.ltoreq.2, and which has a specific surface of 1 to 20 m.sup.2 /g and a particle porosity of 1 to 2 cm.sup.3 /g, and the process of making such support, and catalytic components comprising such support, a transition metal, and optionally, an electron donor.
    Type: Grant
    Filed: November 14, 1990
    Date of Patent: February 23, 1993
    Assignee: Atochem
    Inventors: Laurent Duranel, Jean Malinge, Marie-Laure Bousque
  • Patent number: 5180702
    Abstract: A polymerization catalyst is formed by producing a solution of a Group IIA or Group IIB halide and an alcohol; contacting the solution with an organometallic compound to form a soluble complex; and contacting the soluble complex with a halide ion exchanging source. An ester or an anhydride can also be combined with the halide solution or the soluble complex. The catalyst thus produced can be combined with an organometallic cocatalyst.
    Type: Grant
    Filed: December 11, 1991
    Date of Patent: January 19, 1993
    Assignee: Phillips Petroleum Company
    Inventor: Ted M. Pettijohn
  • Patent number: 5157008
    Abstract: Hydrocarbon solvent solutions of alkylaluminoxane are made by mixing trimethylaluminum and a hydrocarbylaluminum compound, which compound contains at least one hydrocarbyl group having 2 or more carbon atoms, in a hydrocarbon solvent and thereafter adding water or a hydrated compound so as to form a solution of alkylaluminoxane in said solvent.
    Type: Grant
    Filed: August 1, 1991
    Date of Patent: October 20, 1992
    Assignee: Ethyl Corporation
    Inventors: Samuel A. Sangokoya, Milham S. Howie, Aaron L. Dunaway
  • Patent number: 5155078
    Abstract: In accordance with the present invention, there are provided carrier-supported titanium catalyst components containing magnesium, aluminum, halogen and titanium as essential ingredients, which are obtained by a reaction of[I] a magnesium containing support obtained by previously bringing a support into contact with an organometallic compound of a metal of the Group II to IIIA of the periodic table having at least one hydrocarbon group attached directly to the metal atom or with a halogen containing compound, followed by contact with a magnesium compound in the liquid state having no reducing ability,[II] a reducing organometallic compound, and[III] a titanium compound in the liquid state, and processes for preparing the same and, at the same time, catalysts containing the above-mentioned catalyst components for use in preparing ethylene polymer and processes for preparing ethylene polymer using the catalyst for use in preparing ethylene polymer.
    Type: Grant
    Filed: June 17, 1991
    Date of Patent: October 13, 1992
    Assignee: Mitsui Petrochemical Industries, Ltd.
    Inventors: Mamoru Kioka, Kazumitsu Kawakita, Akinori Toyota
  • Patent number: 5151399
    Abstract: A complex alkoxide compound containing magnesium, titanium and boron species comprises the reaction product of elemental magnesium, titanium tetraalkoxide, an alkyl borate ester and alkanol at elevated temperature in an inert diluent. This complex alkoxide compound is contacted with a tetravalent titanium halide, a halohydrocarbon and an electron donor to form an olefin polymerization procatalyst. Contact of the procatalyst with an organoaluminum cocatalyst and a selectivity control agent produces a high activity catalyst for the polymerization of lower .alpha.-olefins to polymer product of good properties in good catalyst productivity.
    Type: Grant
    Filed: October 18, 1990
    Date of Patent: September 29, 1992
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 5151397
    Abstract: A polymerization catalyst is formed by combining a metal halide compound, a solvent, an effective amount of water to reduce fines and increase particle size, and a transition metal compound to form a first catalyst component and mixing the first catalyst component with a precipitating agent. After mixing the first catalyst component and the precipitating agent, the mixture can be heated to a temperature higher than the mixing temperature to reduce polymer fines. In the alternative prepolymer can be deposited on the catalyst(s) in an amount effective to reduce polymer fines. Optionally the catalyst can be treated with a halide ion exchanging source. The catalyst can also be combined with an organometallic cocatalyst.
    Type: Grant
    Filed: December 16, 1991
    Date of Patent: September 29, 1992
    Assignee: Phillips Petroleum Company
    Inventors: Kent E. Mitchell, Stanley J. Marwil
  • Patent number: 5151398
    Abstract: Crystallizable 3,4-polyisoprene can be synthesized in organic solvents to quantitative yields after short polymerization times by utilizing the catalyst systems of this invention. The 3,4-polyisoprene made utilizing this catalyst system is strain crystallizable and can be employed in tire treads which provide improved traction and improved cut growth resistance. This invention specifically discloses a process for the synthesis of 3,4-polyisoprene which comprises polymerizing isoprene monomer in an organic solvent at a temperature which is within the range of about -10.degree. C. to about 100.degree. C. in the presence of a catalyst system which is comprised of (a) an organoiron compound, (b) an organoaluminum compound, (c) a chelating aromatic amine, and (d) a protonic compound; wherein the molar ratio of the chelating amine to the organoiron compound is within the range of about 0.
    Type: Grant
    Filed: June 17, 1991
    Date of Patent: September 29, 1992
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Wen-Liang Hsu, Adel F. Halasa
  • Patent number: 5141910
    Abstract: A complex alkoxide compond precursor of an olefin polymerization catalyst component is produced by contacting a magnesium alkoxide, a titanium alkoxide and a borate ester in alkanol solution. Akanol is removed from the resulting complex alkoxide compound alcoholate and the resulting product is contacted with tetravalent titanium halide, halohydrocarbon and an electron donor. The resulting solid olefin polymerization procatalyst is contacted with organoaluminum cocatalyst and a selectivity control agent. The resulting olefin polymerization catalyst affords polyolefin product in good productivity and with good stereospecificity.
    Type: Grant
    Filed: September 13, 1991
    Date of Patent: August 25, 1992
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 5132263
    Abstract: A complex, magnesium-containing, titanium-containing solid olefin polymerization procatalyst precursor is produced by reaction of magnesium alkoxide, titanium tetraalkoxide and a phenolic compound followed by removal of alkanol. Conversion of this solid to an olefin polymerization procatalyst and the procatalyst to an olefin polymerization catalyst results in a catalyst which is used to polymerize lower .alpha.-olefin monomers. The polymer product is obtained in good yield and has good properties including a relatively high bulk density and a relatively narrow particle size distribution.
    Type: Grant
    Filed: August 26, 1991
    Date of Patent: July 21, 1992
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 5132261
    Abstract: The present invention relates to a catalyst for the polymerization of olefins, and provides a catalyst component of magnesium support type which has a high catalytic activity as well as improved catalytic grain strength sufficient for practical use and which hardly deteriorates even after storage for a long time. The catalyst component is obtained by contacting(a) metallic magnesium with(b) a hydrocarbon represented by the general formula RX wherein R is a hydrocarbon group of 1 to 20 carbon atoms and X is a halogen atom, then contacting the resulting composition with(c) a compound represented by the general formula X.sup.1 nM(OR.sup.1).sub.m-n wherein X.sup.1 is a hydrogen atom, halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is a boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.gtoreq.0, and(d) a titanium alkoxide represented by the general formula Ti(OR.sup.2).sub.4 wherein R.sup.
    Type: Grant
    Filed: January 7, 1991
    Date of Patent: July 21, 1992
    Assignee: Tonen Corporation
    Inventors: Masahide Murata, Hiroyuki Furuhashi, Seizaburo Kanazawa, Teruo Yashiro, Masafumi Imai, Akira Nakano
  • Patent number: 5130283
    Abstract: According to the present invention, there is provided a catalyst component of metal oxide support type which has a high catalytic activity, that is, a little catalyst residue in a polymer, as well as improved catalytic grain strength sufficient for practical use and which hardly deteriorates even after storage for a long time. The catalyst component is obtained by contacting(a) a metal oxide with(b) a dihydrocarbyl magnesium, then contacting the resulting composition with(c) a compound represented by the general formula X.sup.1 .sub.n M(OR.sup.1).sub.m-n wherein X.sup.1 is a hydrogen atom, halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is a boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.gtoreq.0, and(d) a titanium alkoxide represented by the general formula Ti(OR.sup.2).sub.4 wherein R.sup.
    Type: Grant
    Filed: January 7, 1991
    Date of Patent: July 14, 1992
    Assignee: Tonen Corporation
    Inventors: Masahide Murata, Hiroyuki Furuhashi, Akira Nakano, Teruo Yashiro, Seizaburo Kanazawa, Masafumi Imai
  • Patent number: 5128294
    Abstract: A catalyst component useful in propylene polymerization in combination with a dialkyl aluminum halide cocatalyst comprises the product of reaction of TiCl.sub.3 which is substantially free of extraneous halide with a selected electron donor compound which is dissolved in a liquid hydrocarbon solvent in which the TiCl.sub.3 is dispersed. The electron donor compound is selected from certain organic acid esters, hindered phenolic compounds and silyl esters.The catalyst of the invention provides increased activity, molecular weight control, increased isotacticity of propylene polymer products and prevents catalyst feed line pluggage, among other advantages.
    Type: Grant
    Filed: April 20, 1989
    Date of Patent: July 7, 1992
    Assignee: Quantum Chemical Corporation
    Inventors: Charles K. Buehler, Cindy S. Senger, Kenneth W. Johnson
  • Patent number: 5124298
    Abstract: An improved olefin polymerization process employs an olefin polymerization catalyst produced from a polymerization procatalyst made from a magnesium alkoxide, a titanium tetraalkoxide, a tetravalent titanium halide, a phenolic compound and an alkanol. The procatalyst precursor is contacted with a tetravalent titanium halide and an electron donor to form the procatalyst which is subsequently converted to the olefin polymerization catalyst by contact with a cocatalyst and a selectively control agent.
    Type: Grant
    Filed: July 15, 1991
    Date of Patent: June 23, 1992
    Assignee: Shell Oil Company
    Inventor: Robert C. Job
  • Patent number: 5114897
    Abstract: Olefins are polymerized under solution polymerization conditions in the presence of the solid catalytic product resulting from removing the liquid components from the product resulting from admixing in an inert diluent and in an atmosphere which excludes moisture and oxygen (A) at least one hydrocarbon soluble organomagnesium compound; (B) at least one organic hydroxyl-containing compound; (C) at least one reducing halide source; (D) at least one transition metal (Tm) alkoxide.
    Type: Grant
    Filed: May 31, 1991
    Date of Patent: May 19, 1992
    Assignee: The Dow Chemical Company
    Inventors: Joseph G. Schell, Jr., Gary R. Marchand, Larry A. Meiske
  • Patent number: 5114896
    Abstract: This invention relates to a process for the production of a catalytic component for the polymerization of olefins, in particular, for the production of a catalytic component capable of exhibiting a high polymerization activity in the polymerization of olefins and giving a polymer containing less low molecular weight components in effective manner. This process is characterized by a process for the production of a catalytic component for the polymerization of olefins, which comprises contacting (a) metallic magnesium, (b) a halogenated hydrocarbon represented by the general formula RX wherein R is an alkyl group, ary group or cycloalkyl group having 1 to 20 carbon atoms and (c) a compound represented by the general formula X.sup.1.sub.n M(OR.sup.1).sub.m-n in which X.sup.1 is a hydrogen atom, a halogen atom or a hydrocarbon group of 1 to 20 carbon atoms, M is boron, carbon, aluminum, silicon or phosphorus atom, R.sup.1 is a hydrocarbon group of 1 to 20 carbon atoms, m is the atomic valence of M and m>n.
    Type: Grant
    Filed: April 29, 1991
    Date of Patent: May 19, 1992
    Assignee: Tonen Corporation
    Inventors: Teruo Yashiro, Seizaburo Kanazawa, Akira Nakano, Masahide Murata, Masafumi Imai
  • Patent number: 5108972
    Abstract: Hydrocarbon-soluble complexes of magnesium haloalkoxides and alcohols (X.sub.n Mg(OR).sub.2-n.mR'OH pR"OH) are prepared in a non-Grignard reaction involving combination of sources of magnesium, halide, and alkoxide in the presence of an excess of the alcohol for the desired alkoxy group and an amount of lower alkyl alcohol to effect the desired solubilization of the complex.
    Type: Grant
    Filed: October 12, 1990
    Date of Patent: April 28, 1992
    Assignee: Akzo NV
    Inventors: Bor-Ping E. Wang, Elliot I. Band, Andrzej M. Piotrowski, Richard J. Amata
  • Patent number: 5106806
    Abstract: Improved lower .alpha.-olefin polymerization catalysts are produced from an organoaluminum cocatalyst, a selectivity control agent and a specified magnesium-containing, titanium-containing, halide-containing procatalyst. The procatalyst is produced from an electron donor, tetravalent titanium halide and a complex alkoxide compound formed from magnesium alkoxide, titanium alkoxide and a phenolic compound. The catalyst is utilized produce poly-.alpha.-olefin in good yield, which polymer is characterized by a relatively low xylene solubles content and a relatively high bulk density.
    Type: Grant
    Filed: October 18, 1990
    Date of Patent: April 21, 1992
    Assignee: Shell Oil Company
    Inventor: Robert C. Job