Of Chromium Patents (Class 502/319)
-
Patent number: 8318000Abstract: A method of producing a crude product from a hydrocarbon feed is provided. A hydrocarbon feed is contacted with a catalyst containing a Col. 6-10 metal or compound thereof to produce the crude product, where the catalyst has a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?.Type: GrantFiled: January 11, 2012Date of Patent: November 27, 2012Assignee: Shell Oil CompanyInventors: Opinder Kishan Bhan, Scott Lee Wellington
-
Patent number: 8318384Abstract: The present disclosure relates to an ion conductive material useful as an anode catalyst comprising LaCrO3, a vanadium oxide (VOx) and a solid electrolyte, and methods of making the same. The catalysts are useful in solid oxide fuels cells and, in particular, using impure hydrogen.Type: GrantFiled: April 30, 2008Date of Patent: November 27, 2012Assignee: The Governors of the University of AlbertaInventors: Jing-Li Luo, Karl Tze-tang Chuang, Zhengrong Xu, Alan Sanger
-
Publication number: 20120270727Abstract: Provided a compound catalyst allowing for substitution of a rare noble metal such as platinum, palladium and the like or reduction of costs associated with the use thereof. According to the present invention, the oxidation-reduction characteristics thereof may be controlled and catalytic effects similar to those of a noble metal or a transition metal complex may be exhibited by controlling the valence electron concentration of a compound to change the electronic occupation number of the d-band and maintaining the electronic state at the Fermi level of the electronic state identical to a noble metal or a transition metal complex.Type: ApplicationFiled: April 16, 2012Publication date: October 25, 2012Applicant: HITACHI, LTD.Inventor: Shin YABUUCHI
-
Patent number: 8268943Abstract: A process for the preparation of a chromium-type supported olefin polymerization catalyst. A fluidized bed of support particles in an inert carrier gas is established. A chromium (III) compound is added to the fluidized support particles to provide a supported catalyst component. The supported catalyst component is activated to convert at least a portion of the chromium (III) to Chromium (VI). The chromium (III) containing particles may be recovered from the fluidized bed and then activated or they may be activated in the fluidized bed. Also the support particles can be treated in the fluidized bed with other treatment agents. The support particles may be pretreated with a solution of a boron treating agent prior to incorporation of the support in the fluidized bed.Type: GrantFiled: April 24, 2012Date of Patent: September 18, 2012Assignee: Fina Technology, Inc.Inventors: Ricky McCormick, David Knoeppel
-
Patent number: 8242047Abstract: The present invention relates to an oxide catalyst and a phosphoric oxide catalyst for hydrocarbon steam cracking, method for preparing the same and a method for preparing olefin by using the same. More precisely, the present invention relates to an oxide catalyst for hydrocarbon steam cracking represented by formula 1 and a phosphoric oxide catalyst for hydrocarbon steam cracking represented by formula 3 which would be used for the production of olefin such as ethylene and propylene by hydrocarbon steam cracking, and a method for preparing the same. The present invention provides an oxide catalyst and a phosphoric oxide catalyst for hydrocarbon steam cracking that has excellent thermo-stability at high temperature and improved olefin yield. CrZrjAkOx??[Formula 1] CrZrjAkPlOx??[Formula 3] Wherein, j, k, l and x are as indicated in the description.Type: GrantFiled: March 25, 2011Date of Patent: August 14, 2012Assignee: LG Chem, Ltd.Inventors: Jun-seon Choi, Jun-Han Kang, Jong-hun Song, Byoung-gi Park, Chang-hoon Kang, Si-hyun Noh
-
Publication number: 20120184430Abstract: A CO2 reforming catalyst composition includes a hydroxyl group-containing porous oxide, and a composite porous catalyst supported by a porous supporter. The composite porous catalyst includes a catalyst metal.Type: ApplicationFiled: May 16, 2011Publication date: July 19, 2012Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Seung Jae Lee, InHyuk Son, Chan Ho Pak, Hyun Chul Lee, Jeong Kuk Shon, Young Gil Jo
-
Patent number: 8207081Abstract: A novel M—Pd—Cr2O3 (M?Pt, Ru, Rh, Os, Au and Ag) nanocomposite cocatalysts and its preparation method. The cocatalysts loaded on CdS photocatalyst enhances the photocatalytic activities toward H2 evolution from aqueous solutions (NH4)2SO3, a regenerable electron donor, under sunlight radiation. An embodiment provides a new and facile method and system for the preparation of M—Pd—Cr2O3 nanocomposite cocatalysts at room temperature. Pd—Cr2O3 loaded CdS photocatalyst has higher hydrogen evolution activity than that of a plain Pd metal loaded CdS and its performance is comparable to that of Pt/CdS photocatalyst. Formation of a Pd—Cr2O3 composite with reduced size of nanoparticles results in an increase in the photocatalyst activity for H2 evolution.Type: GrantFiled: March 2, 2010Date of Patent: June 26, 2012Assignee: University of Central Florida Research Foundation, Inc.Inventors: Cunping Huang, Weifeng Yao, Nazim Muradov, Ali Raissi
-
Publication number: 20120157297Abstract: Presented are one or more aspects and/or one or more embodiments of catalysts, methods of preparation of catalyst, methods of deoxygenation, and methods of fuel production.Type: ApplicationFiled: December 16, 2011Publication date: June 21, 2012Inventors: Thien Duyen Thi NGUYEN, Krishniah Parimi
-
Publication number: 20120149559Abstract: An eggshell catalyst useful for a Fischer-Tropsch (FT) synthesis or other reactions comprises a homogeneously dispersed transition metal and a promoter situated in an active phase in a precisely selected outer region of a catalyst pellet. The active phase region is controlled to a specific depth, which permits the control of the catalysts selectivity, for example, the size of the hydrocarbon chains formed in the FT process. A method of preparing these eggshell catalysts involves a non-aqueous synthesis where polar and non-polar solvents of relatively low vapor pressure are employed to define the depth of penetration of metal species in a refractory oxide substrate, which is followed by fixing and activating metallic catalytic species in the structure by calcination of the catalyst particles.Type: ApplicationFiled: August 23, 2010Publication date: June 14, 2012Inventors: John T. Wolan, Alisyed Gardezi
-
Patent number: 8178468Abstract: A catalyst that includes one or more metals from Column 6 of the Periodic Table and/or one or more compounds of one or more metals from Column 6 of the Periodic Table and a support. The support comprises from 0.01 grams to 0.2 gram of silica and from 0.80 grams to 0.99 grams of alumina per gram of support. The catalyst has a surface area of at least 315 m2/g, a pore size distribution with a median pore diameter of at most 100 ?, and at least 80% of its pore volume in pores having a pore diameter of at most 300 ?. The catalyst exhibits one or more peaks between 35 degrees and 70 degrees, and at least one of the peaks has a base width of at least 10 degrees, as determined by x-ray diffraction at 2-theta. Methods of preparation of such catalyst are described herein. Methods of contacting a hydrocarbon feed with hydrogen in the presence of such catalyst to produce a crude product. Uses of crude products obtained. The crude product composition is also described herein.Type: GrantFiled: April 10, 2009Date of Patent: May 15, 2012Assignee: Shell Oil CompanyInventors: Opinder Kishan Bhan, Scott Lee Wellington
-
Publication number: 20120115713Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an active catalyst component comprising a surface, and a metal oxide film coated on the surface of the active catalyst component. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as improved resistance to catalytic deactivation due to sulfur and nitrogen compounds present in the hydrocarbon feedstreams.Type: ApplicationFiled: November 9, 2010Publication date: May 10, 2012Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventors: Chuansheng Bai, Adrienne J. Thornburg, Heather A. Elsen, William G. Borghard, Cody R. Cole
-
Publication number: 20120111768Abstract: Exemplary embodiments of the present invention relate to the processing of hydrocarbon-containing feedstreams in the presence of an interstitial metal hydride comprising a surface, with a metal oxide integrally synthesized and providing a coating on the surface of the interstitial metal hydride. The catalysts and processes of the present invention can improve overall hydrogenation, product conversion, as well as sulfur and nitrogen reduction in hydrocarbon feedstreams.Type: ApplicationFiled: November 9, 2010Publication date: May 10, 2012Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANYInventor: Heather A. Elsen
-
Patent number: 8158550Abstract: The invention relates to a multilayer catalyst for the partial oxidation of hydrocarbons in gaseous phase, comprising a monolithic ceramic or metallic substrate having a solid macroporous structure consisting of one or more structures, on which a first active layer with a crystal-line perovskitic structure is deposited, having general formula AxA? 1-xByB? 1-YO3±? wherein: A is a cation of at least one of the rare earth elements, A? is a cation of at least one element selected from groups Ia, IIa and VIa of the periodic table of elements, B is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb, or VIII of the periodic table of elements, B? is a cation of at least one element selected from groups IVb, Vb, VIb, VIIb or VIII of the periodic table of elements Mg2+ or Al3+, x is a number which is such that 0?x?1, y is a number which is such that 0?y?1, and ? is a number which is such that 0???0, 5, a second more external active layer consisting of a dispersion of a noble metal and a possible sType: GrantFiled: May 26, 2004Date of Patent: April 17, 2012Assignee: Consiglio Nazionale Delle RicercheInventors: Stefano Cimino, Francesco Donsi, Raffaele Pirone, Gennaro Russo
-
Patent number: 8138348Abstract: The present invention provides a method of producing oligomers of olefins, comprising reacting olefins with a chromium based catalyst under oligomerization conditions. The catalyst can be the product of the combination of a chromium compound and a pyridyl mono-oxazoline compound. In particular embodiments, the catalyst compound can be used to trimerize or tetramerize ethylene to 1-hexene, 1-octene, or mixtures of 1-hexene and 1-octene.Type: GrantFiled: December 13, 2007Date of Patent: March 20, 2012Assignee: ExxonMobil Chemical Patents Inc.Inventors: Lily J. Ackerman, Gary Michael Diamond, Keith Anthony Hall, James M. Longmire, Mark L. Micklatcher
-
Publication number: 20120046164Abstract: Disclosed herein is fine particles of core-shell structure, each particle being composed of a core particle which is formed from a first material and has the face-centered cubic crystal structure and a shell layer which is formed from a second material differing from the first material on the surface of the core particle and has the face-centered cubic crystal structure, the fine particles containing particles which are multiply twinned fine particles and are surrounded by the {111} crystal plane.Type: ApplicationFiled: August 2, 2011Publication date: February 23, 2012Applicant: SONY CORPORATIONInventors: Shinji Tanaka, Shuji Goto, Shigetaka Tomiya
-
Patent number: 8114806Abstract: A catalyst and a method of preparation of said catalyst is described herein. The catalyst includes one or more metals from Columns 6-10 of the Periodic Table and/or one or more compounds of one or more metals from Columns 6-10 of the Periodic Table, a pore size distribution with a median pore diameter ranging from 105 ? to 150 ?, with 60% of the total number of pores in the pore size distribution having a pore diameter within 60 ? of the median pore diameter, with at least 50% of its pore volume in pores having a pore diameter of at most 600 ?, and between 5% and 25% of its pore volume in pores having a pore diameter between 1000 ? and 5000 ?. Methods of producing said catalyst are described herein. Crude products and products made from said crude products are described herein.Type: GrantFiled: April 10, 2009Date of Patent: February 14, 2012Assignee: Shell Oil CompanyInventors: Opinder Kishan Bhan, Scott Lee Wellington
-
Patent number: 8101541Abstract: A stationary or fluid bed dehydrogenation catalyst containing an alumina carrier, with chromium and alkali metals consisting of only sodium and potassium, added as promoters. The resultant catalyst demonstrates greater selectivity and olefin yield than prior art dehydrogenation catalysts, especially after aging.Type: GrantFiled: July 14, 2008Date of Patent: January 24, 2012Assignee: Sud-Chemie Inc.Inventor: Vladimir Fridman
-
Publication number: 20110312488Abstract: A catalyst system for generating at least one polyol from a feedstock comprising saccharide is disclosed. Generating the polyol involves, contacting hydrogen, water, and a feedstock comprising saccharide, with a catalyst system to generate an effluent stream comprising at least one polyol and recovering the polyol from the effluent stream. The catalyst system comprises at least one metal component with an oxidation state greater than or equal to 2+.Type: ApplicationFiled: July 28, 2011Publication date: December 22, 2011Applicant: UOP LLCInventors: John Q. Chen, Tom N. Kalnes, Joseph A. Kocal
-
Patent number: 8062990Abstract: A pliable refractory metal carrier (46) may have coated thereon an anchor layer (47) to improve adherence to the carrier (46) of a catalytic coating (48). The conformable catalyst member (26, 82, 82?, 126, 226, 326) may be bent to conform to a curved or bent exhaust pipe (20, 220, 320) within which it is mounted. The pliable metal carrier may be in the form of a tube such as carrier (46) having perforations (54) formed therein, or it may be a metal strip (76) which is folded into accordion pleats (80) and has perforations (78) formed therein. The perforations (54, 78) serve to permit the passage of exhaust gas therethrough. A series of interior closures (58) and annular baffles (60) may be provided to import a serpentine flow path to gases flowed through an exhaust pipe (22) containing a conformable catalyst member (226) therein. A mounting member (68) may be supplied to fasten one end of the conformable catalyst member (226) to the discharge end of an exhaust pipe (220).Type: GrantFiled: July 2, 2003Date of Patent: November 22, 2011Assignee: BASF CorporationInventors: Michael P. Galligan, Joseph C. Dettling, Shau-Lin F. Chen, Matthew P. Larkin
-
Patent number: 8053386Abstract: The present invention relates to a heteropoly acid catalyst which is used for the production of methacrylic acid by gas phase oxidation of methacrolein and a preparing method thereof. The present invention, thereby, provides a novel heteropoly acid catalyst having excellent methacrolein conversion rate, methacrylic acid selectivity and yield.Type: GrantFiled: November 29, 2007Date of Patent: November 8, 2011Assignee: LG Chem, Ltd.Inventors: Gyo-hyun Hwang, Min-ho Kil, Hyun-kuk Noh, Won-ho Lee, Min-suk Kim
-
Publication number: 20110212384Abstract: Anode catalysts for conversion of hydrocarbon feeds in solid oxide fuel cell membrane reactors. An anode catalyst may be a mixture of a metal with a metal oxide, for example a mixture of copper or copper-nickel alloy or copper-cobalt alloy with Cr2O3. Mixed oxides can be prepared by dissolving into water soluble salts of the different metals, chelating the metal ions with a chelating agent, neutralizing the solution, removing water by evaporation to form a gel which then is dried, and finally heating the dried gel to form a mixed oxide of the different metals. The chelating agent can be citrate ions, and ammonia can be added to the solution until the pH of the solution is about 8. The mixed oxide so formed then is reduced, for example by hydrogen, to form a composite comprising the metal (Cu, Cu—Co, Cu—Ni) and metal oxide, here Cr2O3.Type: ApplicationFiled: February 9, 2011Publication date: September 1, 2011Applicant: THE GOVERNORS OF THE UNIVERSITY OF ALBERTAInventors: Jing-li Luo, Xian-zhu Fu, Nemanja Danilovic, Karl T. Chuang, Alan R. Sanger, Andrzej Krzywicki
-
Publication number: 20110201768Abstract: A system and method for activating chromium catalyst, including: increasing temperature of a chromium catalyst at a first rate for a first period of time to a first temperature; and increasing temperature of the chromium catalyst at a second rate for a second period of time from the first temperature to a second temperature, wherein the first rate is greater than the second rate, and wherein the first period precedes the second period.Type: ApplicationFiled: February 16, 2010Publication date: August 18, 2011Applicant: Chevron Phillips Chemical Company LPInventors: Elizabeth A. Benham, Max P. McDaniel
-
Patent number: 7994089Abstract: A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.Type: GrantFiled: September 8, 2008Date of Patent: August 9, 2011Assignee: University of Houston SystemInventors: Peter Strasser, Shirlaine Koh, Prasanna Mani, Srivastava Ratndeep
-
Publication number: 20110189589Abstract: A composite catalyst for a chemical reaction includes a porous metal catalyst that catalyzes a plurality of reactants to provide a reaction product, and a reaction-enhancing material disposed within pores defined by the porous metal catalyst. The reaction-enhancing material enhances attraction of at least one reactant of the plurality of reactants into the pores defined by the porous metal catalyst and enhances expulsion of the reaction product from the pores defined by the porous metal catalyst. A fuel cell according to an embodiment of the current invention has a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. The at least one of the first and second electrodes is at least one of coated with or comprises a composite catalyst.Type: ApplicationFiled: January 28, 2011Publication date: August 4, 2011Applicant: The Johns Hopkins UniversityInventors: Jonah Daedalus Erlebacher, Joshua Synder
-
Patent number: 7985830Abstract: Methods for synthesizing dimeric or polymeric reaction products of nitrogen aromatics comprise contacting a composition comprising the nitrogen aromatic with a catalyst composition. The catalyst comprises a first metal substrate having a second reduced metal coated on the substrate.Type: GrantFiled: December 30, 2009Date of Patent: July 26, 2011Assignee: GM Global Technology Operations LLCInventors: Andrew M. Mance, Tao Xie, Belabbes Merzougui, Charlene A. Hayden
-
Patent number: 7981274Abstract: A catalytic element useful for promoting catalytic gas phase reactions is provided, comprising a porous ceramic body comprising a multiplicity of open pores having a coating comprising a basic oxide material and a catalyst material selected from transition metal and noble metal compounds.Type: GrantFiled: July 21, 2008Date of Patent: July 19, 2011Assignee: Pall CorporationInventors: Manfred Nacken, Steffen Heidenreich
-
Patent number: 7981831Abstract: Catalysts are described in which an active catalyst is disposed on a low surface area, oxide support. Methods of forming catalysts are described in which a Cr-containing metal is oxidized to form a chromium oxide layer and an active catalyst is applied directly on the chromium oxide layer. Methods of making new catalysts are described in which the surface is sonicated prior to depositing the catalyst. Catalyst systems and methods of oxidation are also described. The inventive systems, catalysts and methods are, in some instances, characterized by surprisingly superior results.Type: GrantFiled: December 18, 2007Date of Patent: July 19, 2011Assignee: VelocysInventors: Barry Lee-Mean Yang, Ruiqiang Long, Junko M. Watson, Abhishek Gupta
-
Publication number: 20110172086Abstract: A catalyst unit is described comprising a cylinder with a length C and a diameter D, wherein said unit has five holes arranged in a pentagonal pattern extending longitudinally therethrough, with five flutes running along the length of the unit, said flutes positioned equidistant adjacent holes of said pentagonal pattern. The catalyst may be used particularly in steam reforming reactors.Type: ApplicationFiled: August 24, 2009Publication date: July 14, 2011Applicant: JOHNSON MATTHEY PLCInventors: David James Birdsall, Mileta Babovic, Mikael Per Uno Carlsson, Samuel Arthur French, Michiel Nijemeisland, William Maurice Sengelow, Edmund Hugh Stitt
-
Publication number: 20110160478Abstract: The present invention pertains to a catalyst for the synthesis of organic alkyl carbamates, the method for preparing the same and the use thereof. The catalyst comprises a catalytically active component and a catalyst support, and the catalytically active component being carried by the catalyst support, wherein the catalytically active component comprises a transition metal oxide, and the general formula of the transition metal oxide is EOx, wherein E is selected from transition metal element and x is in the range of 0.5-4.Type: ApplicationFiled: February 13, 2009Publication date: June 30, 2011Inventors: Youquan Deng, Yubo Ma, Liguo Wang, Xiaoguang Guo, Shigo Zhang, Yude He, Stefan Wershofen, Stephan Klein, Zhiping Zhou
-
Publication number: 20110150742Abstract: Disclosed is a catalyst composition for reducing NOx through two steps including reacting NOx with H2 thus producing ammonia which is then reacted with NOx, instead of direct NOx reduction by H2, and a method of reducing NOx using the catalyst composition.Type: ApplicationFiled: August 6, 2008Publication date: June 23, 2011Applicant: HEESUNG CATALYSTS CORPORATIONInventors: Hyun-Sik Han, Eun-seok Kim, Gon Seo, Se-Min Park, Yun-Je Lee
-
Patent number: 7943108Abstract: Processes for purifying silicon tetrafluoride source gas by subjecting the source gas to one or more purification processes including: contacting the silicon tetrafluoride source gas with an ion exchange resin to remove acidic contaminants, contacting the silicon tetrafluoride source gas with a catalyst to remove carbon monoxide, by removal of carbon dioxide by use of an absorption liquid, and by removal of inert compounds by cryogenic distillation; catalysts suitable for removal of carbon monoxide from silicon tetrafluoride source gas and processes for producing such catalysts.Type: GrantFiled: September 11, 2008Date of Patent: May 17, 2011Assignee: MEMC Electronic Materials, Inc.Inventors: Vithal Revankar, Jameel Ibrahim
-
Publication number: 20110076225Abstract: A hydrogen generator capable of operating in any orientation and having no moving parts includes a catalyst retaining structure. The catalyst retaining structure is disposed in a housing and serves to separate the housing into a fuel holding portion and a hydrogen chamber. The catalyst retaining structure also includes one or more pores, each pore being in communication with the fuel holding and hydrogen chambers. A catalyst, that promotes the generation of hydrogen gas upon contact with the fuel, is disposed within the pores. The fuel enters the pores and thereupon generates hydrogen gas which passes into the hydrogen chamber. Contact of the fuel with the catalyst in the pores may be controlled and the position of the fuel-hydrogen interface within the pore may be moved so as to regulate the generation of hydrogen. The catalyst retaining structure can take different forms, including one or more hollow elongated members or plates, and may further incorporate hydrophobic and/or hydrophilic membranes.Type: ApplicationFiled: November 19, 2007Publication date: March 31, 2011Inventors: Shailesh A. Shah, Michael T. Kelly
-
Patent number: 7910518Abstract: A geometrically shaped solid carrier is provided that improves the performance and effectiveness of an olefin epoxidation catalyst for epoxidizing an olefin to an olefin oxide. In particular, improved performance and effectiveness of an olefin epoxidation catalyst is achieved by utilizing a geometrically shaped refractory solid carrier in which at least one wall thickness of said carrier is less than 2.5 mm.Type: GrantFiled: March 10, 2008Date of Patent: March 22, 2011Assignee: SD Lizenzverwertungsgesellschaft mbH & Co. KGInventors: Serguei Pak, Andrzej Rokicki, Howard Sachs
-
Publication number: 20110059843Abstract: The present invention provides porous body precursors and shaped porous bodies. Also included are catalysts and other end-use products based upon the shaped porous bodies and thus the porous body precursors. Finally, processes for making these are provided. The porous body precursors incorporate at least a first oxophilic high oxidation state transition metal. Because the oxophilic high oxidation state transition metal is incorporated into the porous body precursors, it is thought that it will become relatively uniformly distributed therethrough, and thus, provide property enhancements to shaped porous bodies and catalysts based thereupon.Type: ApplicationFiled: April 29, 2009Publication date: March 10, 2011Inventor: Kevin E. Howard
-
Publication number: 20110039954Abstract: Multi-functional catalyst and processes utilizing the catalyst in single-stage conversion of syngas into hydrocarbon compounds are provided. The multi-functional catalyst, which comprises two or more catalytic materials situated within molecular distances of each other, facilitates conversion of syngas into one or more intermediate compounds and then into desired hydrocarbon compounds, such as high octane gasoline, diesel, jet fuel, olefins, and xylenes.Type: ApplicationFiled: August 13, 2010Publication date: February 17, 2011Applicant: BLACK & VEATCH CORPORATIONInventors: Jianli Hu, Jon C. Erickson
-
Publication number: 20110034728Abstract: The present invention relates to a catalyst for reacting carbonitriles with water, wherein the catalyst comprises at least 60% by weight of manganese dioxide with an empirical formula MnOx where x is in the range from 1.7 to 2.0, and at least one plasticizer. The present invention further relates to a process for preparing the catalysts detailed above and to a process for preparing carboxamides by reacting carbonitriles with water in the presence of the present catalyst.Type: ApplicationFiled: February 26, 2009Publication date: February 10, 2011Applicant: Evonik Roehm GmbHInventors: Alexander May, Bernd Vogel, Hermann Siegert, Kurt-Alfred Gaudschun, Thomas Quandt
-
Patent number: 7875571Abstract: A method for producing a catalyst by contacting a mixed metal oxide catalyst with water, and optionally, an aqueous metal oxide precursor to produce a modified mixed metal oxide, and calcining the modified mixed metal oxide.Type: GrantFiled: August 20, 2007Date of Patent: January 25, 2011Assignee: Rohm and Haas CompanyInventors: Leonard Edward Bogan, Jr., Ruozhi Song
-
Patent number: 7851402Abstract: The invention relates to soluble metal oxides and mixed metal oxides and to solutions comprising metal oxides and mixed metal oxides. The invention further relates to a process for preparing a soluble metal oxide and a soluble mixed metal oxide and additionally relates to a process for modifying the solubility of a soluble metal oxide. The metal oxides, mixed metal oxides and solutions thereof have a number of applications and in particular are suitable for use as catalysts and also as precursors for the formation of metal films.Type: GrantFiled: November 22, 2004Date of Patent: December 14, 2010Assignee: National University of Ireland, GalwayInventors: Patrick Desmond Cunningham, James McManus
-
Patent number: 7829749Abstract: A new P-N-P ligand is useful in ethylene oligomerizations. In combination with i) a source of chromium and ii) an activator such as methylalumoxane; the ligand of this invention may be used to prepare an oligomer product that contains a mixture of hexenes and octenes. The hexenes and octenes produced with this ligand contain very low levels of internal olefins when produced under preferred reaction conditions.Type: GrantFiled: September 1, 2009Date of Patent: November 9, 2010Assignee: Nova Chemicals (International) S.A.Inventors: Xiaoliang Gao, Charles Ashton Garret Carter, Lee Douglas Henderson
-
Publication number: 20100279858Abstract: Apparatus for activating a catalyst is described, comprising means for passing high-temperature gases across a catalyst, a primary filter for filtering said gases, means for cooling the filtered gases, and a secondary filter for filtering the cooled gases which collects at least 99.97% of all residual particles smaller than 0.3 ?m, wherein the secondary filter is disposable and/or has a design pressure less than 0.5 bar.Type: ApplicationFiled: February 4, 2009Publication date: November 4, 2010Inventors: Brent Walworth, Marc Parisel
-
Patent number: 7820583Abstract: A nanocomposite particle, its use as a catalyst, and a method of making it are disclosed. The nanocomposite particle comprises titanium dioxide nanoparticles, metal oxide nanoparticles, and a surface stabilizer. The metal oxide nanoparticles are formed hydrothermally in the presence of the titanium dioxide nanoparticles. The nanocomposite particle is an effective catalyst support, particularly for DeNOx catalyst applications.Type: GrantFiled: August 24, 2006Date of Patent: October 26, 2010Assignee: Millennium Inorganic Chemicals, Inc.Inventors: Guoyi Fu, Steven M. Augustine
-
Patent number: 7811961Abstract: According to one embodiment of the present invention, an enhanced NH3 adsorbing automotive exhaust composition including a catalyst composition suitable for use in a selective catalytic reduction (SCR) system and an acidified support composition for enhancing NH3 adsorption capacity of the automotive exhaust composition is disclosed.Type: GrantFiled: October 9, 2006Date of Patent: October 12, 2010Assignee: Ford Global Technologies, LLCInventors: Hungwen Jen, George Graham, Robert McCabe
-
Patent number: 7803734Abstract: The present invention relates to a metal catalyst containing fine metal particles, characterized in that the fine metal particles have a particle diameter of 3 nm or less and also have a proportion of metallic bond state of 40% or more, which is ascribed by subjecting to waveform separation of a binding energy peak peculiar to the metal as measured by using an X-ray photoelectron spectrometer. The fine metal particles are preferably fine platinum particles. The fine metal particles are preferably supported on the surface of carrier particles by reducing ions of metal to be deposited through the action of a reducing agent in a reaction system of a liquid phase containing the carrier particles dispersed therein, thereby to deposit the metal on the surface of carrier particles in the form of fine particles. The proportion of metallic bond state of the fine metal particles is adjusted within the above range by reducing after deposition thereby to decrease the oxidation state.Type: GrantFiled: May 20, 2005Date of Patent: September 28, 2010Assignee: Sumitomo Electric Industries, Ltd.Inventors: Masatoshi Majima, Kohei Shimoda, Kouji Yamaguchi
-
Patent number: 7803736Abstract: A process for preparing supported, titanized chromium catalysts is disclosed. The process comprises A) bringing a support material into contact with a protic medium comprising a titanium compound and a chromium compound; B) optionally removing the solvent; C) optionally calcining the precatalyst obtained after step B); and D) optionally activating the precatalyst obtained after step B) or C) in an oxygen-containing atmosphere at from 400° C. to 1100° C.Type: GrantFiled: December 9, 2003Date of Patent: September 28, 2010Assignee: Basell Polyolefine GmbHInventors: Wolfgang Rohde, Guido Funk, Andreas Haufe, Anke Bold, Neil Nadalin
-
Patent number: 7799727Abstract: A layered composition which can be used in various processes has been developed. The composition comprises an inner core such as a cordierite core and an outer layer comprising a refractory inorganic oxide, a fibrous component and an inorganic binder. The refractory inorganic oxide layer can be alumina, zirconia, titania, etc. while the fibrous component can be titania fibers, silica fibers, carbon fibers, etc. The inorganic oxide binder can be alumina, silica, zirconia, etc. The layer can also contain catalytic metals such as gold and platinum plus other modifiers. The layered composition is prepared by coating the inner core with a slurry comprising the refractory inorganic oxide, fibrous component, an inorganic binder precursor and an organic binding agent such as polyvinyl alcohol. The composition can be used in various hydrocarbon conversion processes.Type: GrantFiled: December 15, 2009Date of Patent: September 21, 2010Assignee: UOP LLCInventors: Dean E. Rende, James E. Rekoske, Jeffery C. Bricker, Jeffrey L. Boike, Masao Takayama, Kouji Hara, Nobuyuki Aoi
-
Patent number: 7785551Abstract: A catalyst and a method for selectively reducing nitrogen oxides with ammonia are provided. The catalyst includes a first component of copper, chromium, cobalt, nickel, manganese, iron, niobium, or mixtures thereof, a second component of cerium, a lanthanide, a mixture of lanthanides, or mixtures thereof, and a zeolite. The catalyst may also include strontium as an additional second component. The catalyst selectively reduces nitrogen oxides to nitrogen with ammonia at low temperatures. The catalyst has high hydrothermal stability. The catalyst has high activity for conversion of nitrogen oxides in exhaust streams, and are not significantly influenced by the NO/NO2 ratio. The catalyst and the method may have special application to selective reduction of nitrogen oxides in exhaust gas from diesel vehicles, although the catalyst and the method have broad application to a wide range of gas streams that contain nitrogen oxides.Type: GrantFiled: November 20, 2008Date of Patent: August 31, 2010Assignee: Catalytic Solutions, Inc.Inventors: Stephen J. Golden, Svetlana Iretskaya
-
Patent number: 7776784Abstract: A hydrodesulfurization catalyst used for hydrodesulfurization of catalytically cracked gasoline comprises a support composed mainly of alumina modified with an oxide of at least one metal selected from the group consisting of iron, chromium, cobalt, nickel, copper, zinc, yttrium, scandium and lanthanoid-based metals, with at least one metal selected from the group consisting of Group 6A and Group 8 metals loaded as an active metal on the support. Hydrogenation of olefins generated as by-products during hydrodesulfurization of the catalytically cracked gasoline fraction, as an important constituent base of gasoline, can be adequately inhibited to maintain the octane number, while sufficiently reducing the sulfur content of the hydrodesulfurized catalytically cracked gasoline fraction.Type: GrantFiled: July 13, 2004Date of Patent: August 17, 2010Assignees: Nippon Oil Corporation, Petroleum Energy CenterInventors: Hideshi Iki, Shigeto Hatanaka, Eitaro Morita, Shinya Takahashi
-
Patent number: 7772149Abstract: A Cr trapping agent is disposed so that it contacts with constituting components of the substrate containing Cr. As the Cr trapping agent, an element or Ag is used, wherein the element is stronger in basicity than alkali metals or alkaline earth metals. Since the Cr trapping agent prevents transfer of Cr towards the alkali metals or alkaline earth metals, the reaction between Cr and alkali metals or alkaline earth metals is prevented.Type: GrantFiled: December 6, 2006Date of Patent: August 10, 2010Assignees: Hitachi, Ltd., Honda Motor Co., Ltd., Nippon Steel Materials Co., Ltd.Inventors: Masato Kaneeda, Hidehiro Iizuka, Norihiro Shinotsuka, Masahiro Sakanushi, Kimihiro Tokushima, Hiroki Hosoe, Masayuki Kasuya, Toshio Iwasaki, Shogo Konya
-
Publication number: 20100183484Abstract: A photocatalytic device for reacting with volatile organic compounds includes a photocatalyst and at least one additive, such as hafnium oxide and zirconium oxide, that is capable of forming a stable silicate with silicon dioxide. The additive reacts with volatile silicon-containing compounds to form stable silicate compounds. As a result, the silicon-containing compounds are unavailable for deactivation of the photocatalyst.Type: ApplicationFiled: July 31, 2007Publication date: July 22, 2010Applicant: CARRIER CORPORATIONInventors: Wayde R. Schmidt, Treese Campbell-Hugener, Tania Bhatia
-
Patent number: 7759277Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.Type: GrantFiled: March 19, 2009Date of Patent: July 20, 2010Assignee: Kabushiki Kaisha ToshibaInventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino