With Inorganic Material Patents (Class 51/307)
  • Patent number: 9216492
    Abstract: A superabrasive material and method of making the superabrasive material are provided. The superabrasive material may comprise a superabrasive crystal and a plurality of particles. The plurality of particles may be included within the superabrasive crystal. The plurality of particles may comprise a non-catalyst material.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: December 22, 2015
    Assignee: Diamond Innovations, Inc.
    Inventors: Kai Zhang, Christopher Allen Long
  • Patent number: 9193038
    Abstract: Cutting elements include an ultrahard material body formed at high pressure and high temperature conditions in the absence of catalyzing material to provide a material microstructure comprising a matrix phase of bonded together ultrahard material particles and interstitial regions disposed throughout the matrix phase providing porosity of less than about 6 volume percent. The body may include a substrate attached thereto, and may include an infiltrant material disposed in a population of the interstitial regions. The body may have regions with different porosities, e.g., with a higher porosity region located adjacent a substrate interface and/or along a central region. The body may include more than one infiltrant, each located in different regions. The infiltrant may be introduced into the body during a separate high pressure/high temperature process. The body may include a region which extends a depth from a working surface that is substantially free of any infiltrant.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: November 24, 2015
    Assignee: Smith International Inc.
    Inventor: Georgiy Voronin
  • Patent number: 9193037
    Abstract: A method of making a polycrystalline diamond cutter element includes forming a blend, comprising a first particle size of polycrystalline diamond particles and a second particle size of polycrystalline diamond particles; forming a suspension of nanocrystalline diamond particles suspended in a solvent; and mixing the blend into the suspension to form a polycrystalline diamond mixture comprising nanocrystalline diamond coated polycrystalline diamond particles. The mixture is sintered with a substrate at high temperature and high pressure to form the polycrystalline diamond cutter element.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: November 24, 2015
    Assignee: NATIONAL OILWELL DHT, L.P.
    Inventors: Michael S. Nixon, Guodong Zhan, Michael D. Hughes, Anil Kumar
  • Patent number: 9181620
    Abstract: In one aspect, cutting tools are described having coatings adhered thereto which, in some embodiments, can demonstrate desirable wear resistance and increased cutting lifetimes. A coated cutting tool, in some embodiments, comprises a substrate and a coating adhered to the substrate, the coating comprising at least one Zr doped layer deposited by chemical vapor deposition comprising ZrAl2O3.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: November 10, 2015
    Assignee: KENNAMETAL INC.
    Inventors: Karl Heinz Wendt, Volkmar Sottke, Peter Rudolf Leicht, Yixiong Liu, Mark S. Greenfield, Hartmut Westphal
  • Patent number: 9138867
    Abstract: An engineered coated abrasive product having a three dimensional pattern of abrasive structures formed by embossing an abrasive slurry formulation that was first surface coated with a functional powder, wherein the abrasive slurry includes green, unfired abrasive aggregates having a generally spheroidal or toroidal shape, the aggregates formed from a composition comprising abrasive grit particles and a nanoparticle binder. The coated abrasive product is capable of finishing and repairing defects in surfaces, including coated surfaces.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 22, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Ying Cai, James J. Manning, Jianna Wang
  • Patent number: 9138864
    Abstract: In one aspect, coated cutting tools are described herein. A coated cutting tool described herein comprises a substrate and a coating adhered to the substrate, the coating comprising at least one composite layer deposited by chemical vapor deposition, the composite layer comprising an aluminum oxynitride phase, a metal oxide phase including zirconium oxide, a zirconium sulfur nitride phase and a metal oxynitride phase in addition to the aluminum oxynitride phase, the metal oxynitride phase comprising zirconium oxynitride.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: September 22, 2015
    Assignee: KENNAMETAL INC.
    Inventors: Karl Heinz Wendt, Volkmar Sottke, Rodrigo Alejandro Cooper, Peter Leicht, Yixiong Liu
  • Patent number: 9132484
    Abstract: A cutting tool including a base, a TiN layer on the base, a TiCN layer on the TiN layer, and an Al2O3 layer on the TiCN layer. The base contains a cemented carbide. The TiN layer and the TiCN layer contain Nb. A Nb content in the TiCN layer at a middle portion of the TiCN layer in a thickness direction is 0.1% by mass or more, and the Nb content in the Al2O3 layer at a middle portion of the Al2O3 layer in the thickness direction is 0.05% by mass or less.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: September 15, 2015
    Assignee: KYOCERA CORPORATION
    Inventor: Kou Ri
  • Patent number: 9101960
    Abstract: A method for sorting hard metal including the steps of subjecting one or more bodies of hard metal to a heat treatment at a temperature of 500° C. or higher in an atmosphere including at least one reactive gas component prone to form a reaction product with an element that may or may not be present in the one or more bodies. A sorting operation of the one or more bodies is performed based on a presence or absence of the reaction product in a surface portion of the heat treated one or more bodies.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: August 11, 2015
    Assignee: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Stefan Backlund, Ulf Jutterstrom
  • Patent number: 9093401
    Abstract: Greater planarity is achieved between surfaces of a conductive structure and a layer within which the conductive structure resides. A portion of the conductive structure protruding above the surface of the layer is selectively oxidized, at least in part, to form an oxidized portion. The oxidized portion is then removed, at least partially, to facilitate achieving greater planarity. The protruding portions may optionally be formed by selectively disposing conductive material over the conductive structure, when that the conductive structure is initially recessed below the surface of the layer. A further embodiment includes selectively oxidizing a portion of the conductive structure below the surface of the layer, removing at least some of the oxidized portion so that an upper surface of the conductive structure is below the upper surface of the layer, and planarizing the upper surface of the layer to the upper surface of the conductive structure.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: July 28, 2015
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Xunyuan Zhang, Xiuyu Cai
  • Patent number: 9067385
    Abstract: Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar®, Spectra®, ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800° C. in air.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: June 30, 2015
    Assignees: Jefferson Science Associates, LLC, The United States of America as represented by the Administrator of NASA
    Inventors: Jin Ho Kang, Cheol Park, Godfrey Sauti, Michael W. Smith, Kevin C. Jordan, Sharon E. Lowther, Robert George Bryant
  • Patent number: 9052166
    Abstract: A method of forming a ceramic body including forming a mixture made of at least a first powder material (PM1) including carbon having a first average particle size (PS1), a second powder material (PM2) including carbon and different than the first powder material, the second powder material having a second average particle size (PS2) less than the first average particle size (PS1), and an aluminum content (AC2) greater than the aluminum content (AC1) of the first powder material, and further including forming a green body from the mixture, and sintering the green body and forming a ceramic body having a first type of grain having an average grain size of not greater than about 8 times the first average particle size (PS1).
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: June 9, 2015
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Nikolas J. Ninos, Diana R. Tierney
  • Publication number: 20150147680
    Abstract: The present invention relates to highly functional composite nanoparticles including a support body formed of nanoparticles and first phase nanoparticles which are condensed on the surfaces of the support body particles after being evaporated through a physical vapor deposition process, and to a method for producing same. According to the present invention, a physical vapor deposition process is used instead of a wet process so as to produce eco-friendly composite nanoparticles that do not emit hazardous chemicals while having high economic feasibility and process reproducibility.
    Type: Application
    Filed: March 26, 2013
    Publication date: May 28, 2015
    Inventors: Han-Shin Choi, Hye-Sook Joo, Chul-Woong Han
  • Patent number: 9039798
    Abstract: A method for making a super-hard construction comprising a first structure comprising a first material joined to a second structure comprising a second material, in which the coefficient of thermal expansion (CTE) and Young's moduli of the materials of each material are substantially different from each other.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: May 26, 2015
    Assignee: ELEMENT SIX ABRASIVES S.A.
    Inventors: Lai Hong Lai Sang, Nedret Can, Tleyane Jonas Sono
  • Patent number: 9039796
    Abstract: In the production method for abrasive grains according to the invention, an aqueous solution of a salt of a tetravalent metal element is mixed with an alkali solution, under conditions such that a prescribed parameter is 5.00 or greater, to obtain abrasive grains including a hydroxide of the tetravalent metal element.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: May 26, 2015
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Tomohiro Iwano, Hisataka Minami, Hirotaka Akimoto
  • Publication number: 20150128504
    Abstract: A substance includes diamond particles having a maximum linear dimension of less than about 1 ?m and an organic compound attached to surfaces of the diamond particles. The organic compound may include a surfactant or a polymer. A method of forming a substance includes exposing diamond particles to an organic compound, and exposing the diamond particles in the presence of the organic compound to ultrasonic energy. The diamond particles may have a maximum linear dimension of less than about 1 ?m. A composition includes a liquid, a plurality of diamond nanoparticles dispersed within the liquid, and an organic compound attached to surfaces of the diamond nanoparticles. A method includes mixing a plurality of diamond particles with a solution comprising a liquid solvent and an organic compound, and exposing the mixture including the plurality of diamond nanoparticles and the solution to ultrasonic energy.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Soma Chakraborty, Gaurav Agrawal, Anthony A. DiGiovanni
  • Patent number: 9028575
    Abstract: The present disclosure relates to cubic boron nitride (cBN) cutting elements that have high cBN content and that are cuttable by electric discharge machining (EDM). A cutting element according to an embodiment includes a self-sintered polycrystalline cubic boron nitride (PCBN) compact, having a first phase of cubic boron nitride (cBN) particles and a ceramic binder phase with titanium compounds. The first phase occupies greater than 80% by volume of the self-sintered PCBN compact. The self-sintered PCBN compact has an electrical conductivity sufficient to be cuttable by electrical discharge machining.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: May 12, 2015
    Assignee: Element Six Limited
    Inventors: Yahua Bao, Scott Horman, Xian Yao, Qingyuan Liu
  • Patent number: 9028573
    Abstract: The present disclosure relates to cubic boron nitride (cBN) cutting elements that have high cBN content and that are cuttable by electric discharge machining (EDM). A cutting element according to an embodiment includes a self-sintered polycrystalline cubic boron nitride (PCBN) compact, having a first phase of cubic boron nitride (cBN) particles and a ceramic binder phase with titanium compounds. The first phase occupies greater than 80% by volume of the self-sintered PCBN compact. The self-sintered PCBN compact has an electrical conductivity sufficient to be cuttable by electrical discharge machining.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: May 12, 2015
    Assignee: Element Six Limited
    Inventors: Yahua Bao, Scott Horman, Xian Yao, Qingyuan Liu
  • Patent number: 9028954
    Abstract: The invention relates to a cutting tool comprising a main part and a multilayer coating applied thereon. A first layer A made of a hard material is applied on the main part, said hard material being selected from titanium aluminum nitride (TiAlN), titanium aluminum silicon nitride (TiAlSiN), chromium nitride (CrN), aluminum chromium nitride (AlCrN), aluminum chromium silicon nitride (AlCrSiN), and zirconium nitride (ZrN), and a second layer B made of silicon nitride (Si3N4) is applied directly over the first layer A.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: May 12, 2015
    Assignee: Walter AG
    Inventor: Veit Schier
  • Patent number: 9028953
    Abstract: CVD coated cutting tools are provided. A coated cutting tool described herein, in some embodiments, comprises a PcBN substrate and a polished coating adhered to the substrate including one or more layers of Al2O3 deposited by chemical vapor deposition, wherein the coating has a surface roughness (Ra) less than about 600 nm in an area of the cutting tool for contacting a workpiece.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: May 12, 2015
    Assignee: Kennametal Inc.
    Inventors: Frank Barry Battaglia, Crystal Jane Nestor, Peter Rudolf Leicht, Kent Lewis Reiner, Charles Graham McNerny
  • Patent number: 9028572
    Abstract: The inventive method comprises chemically-mechanically polishing a substrate with an inventive polishing composition comprising a liquid carrier and abrasive particles that have been treated with a compound.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: May 12, 2015
    Assignee: Cabot Microelectronics Corporation
    Inventors: Steven Grumbine, Shoutian Li, William Ward, Pankaj Singh, Jeffrey Dysard
  • Publication number: 20150122552
    Abstract: A composite material and a methods of making and using the composite material, wherein the composite material provides improved wear resistance and fracture toughness to hard-facing and matrix materials for down hole drilling tools.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Inventors: Ying Wang, Wesley Craig Arceneaux, SR., Jiinjen Albert Sue, Harold A. Sreshta
  • Publication number: 20150121769
    Abstract: Technique to provide an abrasive regeneration method which, from a used abrasive slurry, can recover an abrasive by an efficient method and can thereafter obtain a high-purity regenerated abrasive by a simple method. This abrasive regeneration method uses an abrasive comprising at least one type of abrasive selected from diamond, boron nitride, silicon carbide, alumina, alumina zirconia and zirconium oxide. The abrasive regeneration involves a slurry recovery step (A) for recovering an abrasive slurry discharged from a polishing machine, a separation and concentration step (B) for adding an alkaline earth metal salt as an inorganic salt to the recovered abrasive slurry to aggregate the abrasive, and separating and concentrating the abrasive from a mother liquor, and an abrasive recovery step (C) for recovering the separated and concentrated abrasive.
    Type: Application
    Filed: February 14, 2013
    Publication date: May 7, 2015
    Inventors: Yuuki Nagai, Akihiro Maezawa, Atsushi Takahashi
  • Patent number: 9023125
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate and a preformed polycrystalline diamond table including an interfacial surface bonded to the substrate and an opposing working surface. The preformed polycrystalline diamond table includes a proximal region extending from the interfacial surface to an intermediate location within the preformed polycrystalline diamond table that includes a metallic infiltrant infiltrated from the substrate, and a distal region extending from the working surface to the intermediate location that is substantially free of the metallic infiltrant. A boundary exists between the proximal and distal regions that has a nonplanar irregular profile characteristic of the metallic infiltrant having been infiltrated into the preformed polycrystalline diamond table.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: May 5, 2015
    Assignee: US Synthetic Corporation
    Inventor: Mohammad N. Sani
  • Patent number: 9023466
    Abstract: A cutting tool insert for machining by chip removal comprising a body of a hard alloy of cemented carbide, cermet, ceramics or cubic boron nitride based material onto which a hard and wear resistant coating is deposited by CVD, and the methods of making and using the same. The coating includes at least one ?-Al2O3 layer with a thickness between 0.5 ?m and 40 ?m having a {01-15} and/or {10-15} texture exhibiting excellent wear and metal cutting performance.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 5, 2015
    Assignee: Seco Tools AB
    Inventors: Tommy Larsson, Mats Johansson
  • Publication number: 20150113881
    Abstract: A layer of matrix powder is deposited within a mold opening. A layer of super-abrasive particles is then deposited over the matrix powder layer. The super-abrasive particles have a non-random distribution, such as being positioned at locations set by a regular and repeating distribution pattern. A layer of matrix powder is then deposited over the super-abrasive particles. The particle and matrix powder layer deposition process steps are repeated to produce a cell having alternating layers of matrix powder and non-randomly distributed super-abrasive particles. The cell is then fused, for example using an infiltration, hot isostatic pressing or sintering process, to produce an impregnated structure. A working surface of the impregnated structure that is oriented non-parallel (and, in particular, perpendicular) to the super-abrasive particle layers is used as an abrading surface for a tool.
    Type: Application
    Filed: January 6, 2015
    Publication date: April 30, 2015
    Inventor: Michel De Reynal
  • Publication number: 20150114725
    Abstract: A polycrystalline diamond composite including a generally circular sintered polycrystalline cutting disc and a refractory substrate operationally connected to the polycrystalline cutting disc. The polycrystalline cutting disc further includes a plurality of coarse diamond grains and a plurality of fine diamond grains. The plurality fine diamond grains are concentrated in an annulus positioned to define an outer edge of the polycrystalline cutting disc.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 30, 2015
    Inventor: Samer ALKHALAILEH
  • Patent number: 9017830
    Abstract: The present invention provides a shearing die having longer life and a method for manufacturing the same. The shearing die includes a pair of substrates, at least one of which has a hard film formed by an arc ion plating method and located at least on a region of a curved surface and on an adjacent region from the end part of the curved surface on the side facing to the surface of the sheet or plate material to 300 ?m along the surface of the substrate. The hard film comprises Al and one or more of Ti and Cr, and has a thickness of 1 to 5 ?m, such that a number of metal particles having a diameter of 20 ?m or more, which are present on a line segment having a length of 10 mm on a surface of the hard film, is 2 or less.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: April 28, 2015
    Assignees: Kobe Steel, Ltd., Nippon Koshuha Steel Co., Ltd.
    Inventors: Kenji Yamamoto, Yasuhiro Hayashida, Junji Yoshida
  • Patent number: 9017439
    Abstract: An abrasive article includes a shaped abrasive particle including a body having a first height (h1) at a first end of the body defining a corner between an upper surface, a first side surface, and a second side surface, and a second height (h2) at a second end of the body opposite the first end defining an edge between the upper surface and a third side surface, wherein the average difference in height between the first height and the second height is at least about 50 microns. The body also includes a bottom surface defining a bottom area (Ab) and a cross-sectional midpoint area (Am) defining an area of a plane perpendicular to the bottom area and extending through a midpoint of the particle, the body has an area ratio of bottom area to midpoint area (Ab/Am) of not greater than about 6.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: April 28, 2015
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Doruk O. Yener, Jennifer H. Czerepinski, Sujatha Iyengar, Michael D. Kavanaugh
  • Patent number: 9017438
    Abstract: Embodiments of the invention relate to polycrystalline diamond compacts (“PDCs”) comprising a polycrystalline diamond (“PCD”) table including a thermally-stable region having at least one low-carbon-solubility material disposed interstitially between bonded diamond grains thereof, and methods of fabricating such PDCs. In an embodiment, a PDC includes a substrate, and a PCD table bonded to the substrate. The PCD table includes a plurality of diamond grains exhibiting diamond-to-diamond bonding therebetween and defining a plurality of interstitial regions. The PCD table further includes at least one low-carbon-solubility material disposed in at least a portion of the plurality of interstitial regions. The at least one low-carbon-solubility material exhibits a melting temperature of about 1300° C. or less and a bulk modulus at 20° C. of less than about 150 GPa.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: April 28, 2015
    Assignee: US Synthetic Corporation
    Inventors: David P. Miess, Michael A. Vail, Kenneth E. Bertagnolli, C. Eugene McMurray, Paul Douglas Jones
  • Patent number: 9017809
    Abstract: In one aspect, cutting tools are described having coatings adhered thereto. A coated cutting tool, in some embodiments, comprises a substrate and a coating adhered to the substrate, the coating comprising at least one composite layer deposited by chemical vapor deposition comprising an aluminum oxynitride phase and a metal oxide phase, the metal oxide phase including at least one oxide of a metallic element selected from Group IVB of the Periodic Table.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: April 28, 2015
    Assignee: Kennametal Inc.
    Inventors: Volkmar Sottke, Doris Lenk, Hartmut Westphal, Hendrikus Van Den Berg, Peter Leicht, Mark Greenfield, Yixiong Liu
  • Publication number: 20150107163
    Abstract: A superabrasive compact and a method of making the superabrasive compact are disclosed. A superabrasive compact may comprise a plurality of polycrystalline superabrasive particles made of surface functionalized superabrasive particle The surface functionalized superabrasive particles may have halogens or organic moiety instead of hydrogen.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: Diamond Innovations, Inc.
    Inventor: Valeriy V. Konovalov
  • Patent number: 9011563
    Abstract: Methods of making a superabrasive tool precursor are disclosed, along with such precursors and associated tools. Particularly, methods are disclosed for orienting superabrasive particles in a viscous binding material in order to provide tools based thereupon and having desired performance characteristics.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: April 21, 2015
    Inventor: Chien-Min Sung
  • Patent number: 9012327
    Abstract: A low defect chemical mechanical polishing composition for polishing silicon oxide containing substrates is provided comprising, as initial components: water, a colloidal silica abrasive; and, an additive according to formula I.
    Type: Grant
    Filed: September 18, 2013
    Date of Patent: April 21, 2015
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Yi Guo
  • Publication number: 20150105006
    Abstract: Embodiments of the present invention generally relate to a blade for isolating devices within a wafer and the method of isolating. The blade has a core material, a cutting material disposed on the core material, and a plating material covering a portion of the core and cutting materials. The edge of the blade is not covered by the plating material. During operation, a portion of the plating material is removed to expose the underlying core and cutting materials based on the wearing of the core and cutting materials at the edge of the blade.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Applicant: HGST NETHERLANDS B.V.
    Inventors: Jacey R. BEAUCAGE, Christian R. BONHÔTE, Trevor W. OLSON
  • Patent number: 9005323
    Abstract: Disclosed herein are abrasive grains based on zirconia alumina melted in an electric arc furnace, comprising a content of 52 to 62 wt % Al203 and 35 to 45 wt % ZrO2, wherein the high-temperature phases of the zirconia are stabilized by a combination of reduced Ti compounds and yttrium oxide.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: April 14, 2015
    Assignee: Center for Abrasives and Refractories Research & Development C.A.R.R.D. GmbH
    Inventor: Knuth Gebhardt
  • Publication number: 20150096238
    Abstract: A method for manufacturing an abrasive grain, comprising a step of obtaining a particle including a hydroxide of a tetravalent metal element by mixing a metal salt solution comprising a salt of the tetravalent metal element with an alkali liquid, and a step of heating the particle including a hydroxide of a tetravalent metal element.
    Type: Application
    Filed: March 26, 2013
    Publication date: April 9, 2015
    Inventor: Tomohiro Iwano
  • Publication number: 20150098887
    Abstract: A polishing liquid comprising an abrasive grain, an additive, and water, wherein the abrasive grain includes a hydroxide of a tetravalent metal element, produces absorbance of 1.00 or more and less than 1.50 for light having a wavelength of 400 nm in an aqueous dispersion having a content of the abrasive grain adjusted to 1.0 mass %, and produces absorbance of 0.035 or more for light having a wavelength of 400 nm in a liquid phase obtained when centrifuging an aqueous dispersion having a content of the abrasive grain adjusted to 1.0 mass % for 50 minutes at a centrifugal acceleration of 1.59×105 G.
    Type: Application
    Filed: March 26, 2013
    Publication date: April 9, 2015
    Inventors: Tomohiro Iwano, Hisataka Minami, Toshiaki Akutsu, Koji Fujisaki
  • Patent number: 8999023
    Abstract: A composite sintered body according to the present invention contains at least cubic boron nitride and a binder. Cubic boron nitride has a continuous skeleton structure as a result of bonding of a plurality of first cubic boron nitride particles to each other. The binder has a continuous structure as a result of bonding of a plurality of binder particles to each other, that are present in a region except for a bonding interface where the first cubic boron nitride particles are bonded to each other. Second cubic boron nitride particles isolated from the first cubic boron nitride particles forming the skeleton structure are dispersed in the continuous structure of the binder particles.
    Type: Grant
    Filed: May 28, 2007
    Date of Patent: April 7, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Katsumi Okamura, Satoru Kukino, Tomohiro Fukaya
  • Patent number: 8999025
    Abstract: Embodiments of the invention relate to methods of fabricating a polycrystalline diamond compacts and applications for such polycrystalline diamond compacts. In an embodiment, a method of fabricating a polycrystalline diamond body includes mechanically milling non-diamond carbon and a sintering aid material for a time and aggressiveness sufficient to form a plurality of carbon-saturated sintering aid particles and sintering a plurality of diamond particles in the presence of the plurality of carbon-saturated sintering aid particles to form the polycrystalline diamond body.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: April 7, 2015
    Assignee: US Synthetic Corporation
    Inventors: David P. Miess, Michael A. Vail, C. Eugene McMurray
  • Patent number: 8999511
    Abstract: A cBN sintered body tool has the following feature. In at least one cross sectional surface of the cBN sintered body tool taken along a plane perpendicular to a joining surface having the largest area in joining surfaces between the cBN sintered body and the joining layer, a point C and a point D are assumed to represent points away by ¼ of the length of a line segment connecting a point A and a point B shown in a figure. A value obtained when an area of a region surrounded by a line segment connecting the point C and the point D, the first cBN particle, the second cBN particle, and the binder phase is divided by the length of the line segment connecting the point A and point B to each other is 0.14-0.6 ?m.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: April 7, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Yasunori Kobayashi, Satoru Kukino, Makoto Setoyama
  • Patent number: 8999024
    Abstract: An abrasive element comprises a body of crystalline abrasive material. The body has an array of cutting elements formed of crystalline abrasive material which projects from a surface of the body. The shape, size and form of the projections is controlled in the production process. The body may be a natural or synthetic crystal. The body may be a film formed by deposition. The body may be diamond or cubic boron nitride. The body may be monocrystalline or polycrystalline. The projections may be aligned along a crystallographic plane or planes.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 7, 2015
    Assignee: The University of Nottingham
    Inventors: Dragos Axinte, Paul Butler-Smith, Mark Daine
  • Patent number: 8999531
    Abstract: A coated cBN sintered body has excellent wear resistance, fracture resistance, adhesiveness between a substrate and a coating, and a tool life of which is elongated as compared with conventional cBN sintered bodies. The coated cBN sintered body has a cBN sintered body substrate and a coating coated on the surface thereof. The cBN sintered body includes 76 to 90% by volume of cBN, and 10 to 24% by volume of a binder phase and inevitable impurities. An average grain size of cBN is 0.5 to 5.0 ?m, an average value of the thickness of the binder phase is 0.05 to 0.8 ?m, and the standard deviation of the thickness of the binder phase is 0.8 ?m or less.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: April 7, 2015
    Assignee: Tungaloy Corporation
    Inventors: Takahide Kudoh, Naohiro Kagawa, Takashi Umemura
  • Publication number: 20150089881
    Abstract: A method of forming a shaped abrasive particle includes having a body formed by an additive manufacturing process.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventors: Adam STEVENSON, Amin MBARKI, David LOUAPRE, Doruk O. YENER, Jennifer H. CZEREPINSKI, Nabil NAHAS
  • Publication number: 20150090502
    Abstract: A shear claw drill bit includes a bit body and a plurality of pick receptacles fixedly attached to the bit body. Each pick receptacle has a pick cavity. The shear claw drill bit further includes a plurality of picks. Each pick has a cutter cavity. The shear claw drill bit also includes a plurality of polycrystalline diamond compact (PDC) cutters. Each PDC cutter is disposed in the cutter cavity of a respective pick of the plurality of picks. A portion of each PDC cutter protrudes out of the cutter cavity of the respective pick.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 2, 2015
    Applicant: VAREL INTERNATIONAL IND., L.P.
    Inventor: William W. King
  • Patent number: 8991042
    Abstract: A method for fabricating a semiconductor device includes (a) depositing an insulating film on a semiconductor substrate; (b) forming a recess in the insulating film; (c) depositing a conductive film on the insulating film while filling the recess with the conductive film; and (d) polishing the conductive film. Step (d) includes a first polishing substep of using a first polisher pad conditioned with a first dresser and a second polishing substep of using a second polisher pad conditioned with a second dresser different from the first dresser.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 31, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Manabu Sakamoto, Tetsuya Shirasu, Naoki Idani
  • Patent number: 8992644
    Abstract: A plastic soft composition is formed of soft base material constantly provided with plasticity, porous fine particles for polishing contained in the base material, and the like, and a polishing process and a coating process are performed to a painted surface and the like using the plastic soft composition. The fine particles for polishing are impregnated with a coating agent (a surface protective agent) added with an activator which is emulsified by contact with water, and the coating agent is held in concave portions formed in the fine particles. Both polishing work and coating work are achieved by sliding the plastic soft composition on a painted surface by a palm pressure of a user.
    Type: Grant
    Filed: December 11, 2009
    Date of Patent: March 31, 2015
    Assignee: Joybond Co., Ltd.
    Inventor: Tadao Kodate
  • Patent number: 8993132
    Abstract: A cubic boron nitride sintered body tool has, at least at a cutting edge, a cubic boron nitride sintered body composed of a cubic boron nitride particle and a binder phase. The binder phase contains at least Al2O3 and a Zr compound. On any straight line in the sintered body, the mean value of a continuous distance occupied by Al2O3 is 0.1-1.0 ?m, and the standard deviation of the continuous distance occupied by Al2O3 is not more than 0.8. On the straight line, X/Y is 0.1-1 where X represents the number of points of contact between Al2O3 and the Zr compound, and Y represents the sum of the number of points of contact between Al2O3 and cBN and the number of points of contact between Al2O3 and binder phase component(s) other than Al2O3 and the Zr compound.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 31, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Katsumi Okamura, Machiko Abe, Satoru Kukino
  • Patent number: 8992645
    Abstract: An abrasive article including a bonded abrasive having a body formed of abrasive grains contained within a bond material, wherein the body grinds a superabrasive workpiece having an average Vickers hardness of at least about 5 GPa at an average specific grinding energy (SGE) of not greater than about 350 J/mm3, at a material removal rate of at least about 8 mm3/sec, and wherein grinding is a centerless grinding operation.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: March 31, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Rachana Upadhyay, Srinivasan Ramanath, Christopher Arcona, John E. Gillespie
  • Patent number: 8986408
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) fabricated by sintering a mixture including diamond particles and a selected amount of graphite particles, polycrystalline diamond compacts (“PDCs”) having a PCD table comprising such PCD, and methods of fabricating such PCD and PDCs. In an embodiment, a method includes providing a mixture including graphite particles present in an amount of about 0.1 weight percent (“wt %”) to about 20 wt % and diamond particles. The method further includes subjecting the mixture to a high-pressure/high-temperature process sufficient to form PCD.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: March 24, 2015
    Assignee: US Synthetic Corporation
    Inventor: Mohammad N. Sani
  • Patent number: 8986410
    Abstract: A method of forming an abrasive article includes providing a green body having abrasive particles including microcrystalline alumina, and heating the green body via microwave radiation to form a bonded abrasive body including the abrasive particles and a bond material comprising a vitreous phase.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: March 24, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Nilanjan Sarangi, Sandhya Jayaraman Rukmani