With Inorganic Material Patents (Class 51/307)
  • Patent number: 8986406
    Abstract: A polycrystalline diamond (PCD) with diamond grains includes a first zone of the diamond grains and a second zone of the diamond grains. The first zone forms a working surface and a first catalyzing material is disposed within voids of the diamond grains in the first zone. A second catalyzing material is bonded to the diamond grains disposed in the second zone. The first catalyzing material in the first zone is connected to the diamond grains disposed in the first zone less intimately than the second catalyzing material is bonded to the diamond grains in the second zone.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: March 24, 2015
    Inventor: Rusty Petree
  • Patent number: 8986409
    Abstract: An abrasive article includes a body having abrasive particles contained within a bond material. The abrasive particles can include a majority content of silicon nitride and a minority content of sintering material including at least two rare-earth oxide materials. In an embodiment, the rare-earth oxide materials can include Nd2O3 and Y2O3. In a particular embodiment, the abrasive particles comprise a content (wt %) of Nd2O3 that is greater than a content of Y2O3 (wt %).
    Type: Grant
    Filed: June 30, 2012
    Date of Patent: March 24, 2015
    Assignee: Saint-Gobain Ceramics & Plastics, Inc.
    Inventors: Guan Wang, Vimal K. Pujari, Yves Boussant-Roux
  • Patent number: 8986840
    Abstract: Polycrystalline ultra-hard materials and compacts comprise an ultra-hard material body having a polycrystalline matrix of bonded together ultra-hard particles, e.g., diamond crystals, and a catalyst material disposed in interstitial regions within the polycrystalline matrix. The material microstructure is substantially free of localized concentrations, regions or volumes of the catalyst material or other substrate constituent. The body can include a region extending a depth from a body working surface and that is substantially free of the catalyst material. The compact is produced using a multi-stage HPHT process, e.g., comprising two HPHT process conditions, wherein during a first stage HPHT process the catalyst material is melted and only partially infiltrates the precursor ultra-hard material, and during a second stage further catalyst material infiltrates the precursor ultra-hard material to produce a fully sintered compact.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: March 24, 2015
    Assignee: Smith International, Inc.
    Inventors: Yi Fang, Charles Jeffrey Claunch
  • Publication number: 20150075082
    Abstract: A cutting element for an earth-boring drill bit may include a thermally stable cutting table comprising a polycrystalline diamond material. The polycrystalline diamond material may consist essentially of a matrix of diamond particles bonded to one another and a silicon, silicon carbide, or silicon and silicon carbide material located within interstitial spaces among interbonded diamond particles of the matrix of diamond particles. The cutting table may be at least substantially free of Group VIII metal or alloy catalyst material. The cutting element may further include a substrate and an adhesion material between and bonded to the cutting table and the substrate. The adhesion material may include diamond particles bonded to one another and to the cutting table and the substrate after formation of the preformed cutting table.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 19, 2015
    Inventor: Danny E. Scott
  • Patent number: 8980446
    Abstract: The present invention concerns a method for depositing mixed crystal layers with at least two different metals on a substrate by means of PVD methods. To provide a method of depositing mixed crystal layers with at least two different metals on a substrate by means of PVD methods, which gives mixed crystal layers which are as free as possible of macroparticles (droplets) and which have a proportion as high as possible of a desired crystalline phase and which are highly crystalline, it is proposed according to the invention that deposition of the mixed crystal layer is effected with simultaneous application of i) the cathode sputtering method of dual magnetron sputtering or high power impulse magnetron sputtering and ii) arc vapour deposition.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: March 17, 2015
    Assignee: Walter AG
    Inventors: Wolfgang Engelhart, Veit Schier
  • Patent number: 8979956
    Abstract: In an embodiment, a polycrystalline diamond compact includes a substrate and a preformed polycrystalline diamond table having an upper surface, an interfacial surface, and at least one side surface extending therebetween. The interfacial surface of the polycrystalline diamond table is bonded to the substrate. The polycrystalline diamond table includes bonded diamond grains defining interstitial regions. The polycrystalline diamond table includes a first region extending inwardly from at least a portion of the upper surface and at least a portion of the at least one side surface. The first region spaced from the interfacial surface. The polycrystalline diamond table includes at least a second region extending inwardly from the interfacial surface to the upper surface. The first region includes at least a first infiltrant disposed interstitially between the bonded diamond grains thereof. The second region includes at least a second infiltrant disposed interstitially between the bonded diamond grains thereof.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: March 17, 2015
    Assignee: US Synthetic Corporation
    Inventor: Mohammad N. Sani
  • Patent number: 8979957
    Abstract: An abrasive product includes a plurality of abrasive particles and a resin binder cured from a resin composition that includes an aqueous dispersion of melamine methylol having a melamine-to-formaldehyde molar equivalent ratio of between about 1:1 and about 1:3.2, wherein the aqueous dispersion has a pH in a range of between about 8 and about 10. The composition also includes a formaldehyde-based resins, such as a urea-formaldehyde resin or phenol-formaldehyde resin. The melamine methylol comprises between about 1 wt % and about 50 wt % of the combined weight of the formaldehyde-based resin and the melamine methylol.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: March 17, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Abdul Habid Pullichola, Adiseshaiah K. Seshu, Kottotil Mohan Das
  • Publication number: 20150068817
    Abstract: A method of making a cutting element includes subjecting a mixture of diamond particles and a carbonate material to high-pressure high-temperature sintering conditions to form a sintered carbonate-polycrystalline diamond body having a diamond matrix of diamond grains bonded together and carbonates residing in the interstitial regions between the diamond grains, the carbonate material having a non-uniform distribution throughout the diamond matrix. The carbonate-polycrystalline diamond body is subjected to a controlled temperature, a controlled pressure condition or a combination thereof, to effect an at least partial decomposition of the carbonate material.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 12, 2015
    Inventors: YAHUA BAO, LIANG ZHAO, J. DANIEL BELNAP, ZHIJUN LIN
  • Publication number: 20150069291
    Abstract: Provided is a method of manufacturing an abrasive particle including a mother particle and a plurality of auxiliary particles formed on a surface of the mother particle, and a method of manufacturing a polishing slurry in which the abrasive particle is mixed with a polishing accelerating agent and a pH adjusting agent.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventor: Seung Won JUNG
  • Patent number: 8974559
    Abstract: PDC is made using a solvent catalyst that has a melting point below that of the cobalt which is used to cement the tungsten carbide supporting substrate. The lower melting temperature allows control of the amount of catalyst that remains in the interstices after HPHT sintering since the process can be done without melting the cobalt in the substrate which would flow into and completely fill the pore volume of the diamond mass.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 10, 2015
    Inventor: Robert Frushour
  • Patent number: 8974561
    Abstract: A manufacturing method of a glass substrate for a magnetic disk is provided whereby nano pits and/or nano scratches cannot be easily produced in polishing a principal face of a glass substrate using a slurry containing zirconium oxide as an abrasive. The manufacturing method of a glass substrate for a magnetic disk includes, for instance, a polishing step of polishing a principal face of a glass substrate using a slurry containing, as an abrasive, zirconium oxide abrasive grains having monoclinic crystalline structures (M) and tetragonal crystalline structures (T).
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: March 10, 2015
    Assignee: Hoya Corporation
    Inventors: Masanori Tamaki, Hiroki Nakagawa, Yoshihiro Tawara
  • Patent number: 8974560
    Abstract: Abrasive aggregates and fixed abrasive articles comprising formaldehyde-free polymer binder and a plurality of abrasive grains are provided that are particularly suitable for machining operations, in which abrasion is carried out to remove material and improve surface quality. Certain embodiments combine an abrasive grain, which can be in the form of microparticles, and a formaldehyde-free polymer binder, which can be in the form of a polymer resin and cross-linking agent. Optionally, the abrasive aggregate can contain a secondary cross-linking agent, or a functional filler, such as a grinding aid.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: March 10, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Jianna Wang, Charles G. Herbert
  • Publication number: 20150059255
    Abstract: A roof-bolt drill bit may have a forward end, a rearward end, and a rotational axis extending between the forward end and the rearward end. A cutting element for the roof-bolt drill bit may include a cutting face and a peripheral surface extending around an outer periphery of the cutting face. The cutting element may include at least one chamfer region and a peripherally extending chamfer extending from the at least one chamfer region along the outer periphery of the cutting element, a width of the at least one chamfer region being greater than a width of the peripherally extending chamfer.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventor: Russell Roy Myers
  • Patent number: 8968435
    Abstract: A coated abrasive product including green, unfired abrasive aggregates having a generally spheroidal or toroidal shape, the aggregates formed from a composition comprising abrasive grit particles and a nanoparticle binder, wherein the abrasive aggregates are dispersed within a polymer resin coating, and wherein the coated abrasive product is capable of polishing an optical component, including ophthalmic lenses without the need to apply an abrasive slurry.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: March 3, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: James J. Manning, Mark E. Sternberg, Jianna Wang
  • Patent number: 8968436
    Abstract: A cutting element include a substrate and a diamond compact including at least two polycrystalline diamond portions separated by at least one metal carbide foil portion. The cutting element is made by placing diamond powder in a reaction container, placing a thin metal layer in the reaction container above or around the diamond powder and binder, placing additional diamond powder in the reaction container above or around the thin metal layer, and placing a pre-sintered substrate containing binder into the reaction container above all diamond powder and thin metal layer components. The assembled reaction container is put into a reactor and is subjected to a high-temperature high-pressure sintering process. The binder in the pre-sintered substrate sweeps through to sinter the first diamond portion, and then reacts with the thin metal layer to form a metal carbide, and then the binder continues to sweep through to sinter the second diamond portion.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: March 3, 2015
    Assignee: Diamond Innovations, Inc.
    Inventor: Abhijit Prabhakar Suryavanshi
  • Patent number: 8968866
    Abstract: A surface-coated cutting tool excellent in wear resistance is provided. The surface-coated cutting tool of the present invention includes a base material and a coating formed on the base material. The coating includes an inner layer and an outer layer. The inner layer is a single layer or a multilayer stack constituted of two or more layers made of at least one element selected from the group consisting of group IVa elements, group Va elements, group VIa elements in the periodic table, Al, and Si, or a compound of at least one element selected from this group and at least one element selected from the group consisting of carbon, nitrogen, oxygen, and boron. The outer layer includes ?-aluminum oxide as a main component and exhibits an equivalent peak intensity PR(024) of a (024) plane of x-ray diffraction of larger than 1.3.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: March 3, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Chikako Kojima, Yoshio Okada, Hideaki Kanaoka, Hiroyuki Morimoto, Anongsack Paseuth, Erika Iwai
  • Publication number: 20150052823
    Abstract: According to one embodiment, a composite product includes hexagonal boron nitride (hBN), and a plurality of cubic boron nitride (cBN) particles, wherein the plurality of cBN particles are dispersed in a matrix of the hBN. According to another embodiment, a composite product includes a plurality of cBN particles, and one or more borate-containing binders.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 26, 2015
    Applicant: Lawrence Livemore National Security, LLC
    Inventors: Joshua D. Kuntz, German F. Ellsworth, Fritz J. Swenson, Patrick G. Allen
  • Publication number: 20150052825
    Abstract: Shaped ceramic abrasive particles include a first surface having a perimeter having a perimeter comprising at least first and second edges. A first region of the perimeter includes the second edge and extends inwardly and terminates at two corners defining first and second acute interior angles. The perimeter has at most four corners that define acute interior angles. A second surface is disposed opposite, and not contacting, the first surface. A peripheral surface is disposed between and connects the first and second surfaces. The peripheral surface has a first predetermined shape. Methods of making the shaped ceramic abrasive particles, and abrasive articles including them are also disclosed.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 26, 2015
    Inventor: Negus B. Adefris
  • Publication number: 20150052822
    Abstract: A lapping slurry and method of making the lapping slurry are provided. The lapping slurry comprises abrasive grains dispersed in a carrier. The carrier comprises water, ethylene glycol and between about 0.5 wt % to about 60 wt % surfactant. Abrasive particles are positively charged when dispersed in ethylene glycol having a pH in a range of from 5 to 9, as evidenced by zeta potentials.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: DIAMOND INNOVATIONS, INC.
    Inventor: Shuang Ji
  • Patent number: 8961632
    Abstract: A method of making an abrasive particle distribution includes: sorting an initial lot of abrasive particles into a plurality of sublots including first and second sublots of the abrasive particles according to their average particle diameter and aspect ratio, and combining the first and second sublots. The initial lot conforms to an abrasives industry specified nominal grade. The first sublot has an average particle diameter and aspect ratio less than the second sublot. A sum of the first sublot and the second sublot contains fewer abrasive particles than the initial lot. The resultant abrasive particle distribution and abrasive articles including the same are also disclosed.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: February 24, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Gary M. Palmgren, Brian D. Goers
  • Patent number: 8961719
    Abstract: A method for making a treated super-hard structure, the method including providing a super-hard structure comprising super-hard material selected from polycrystalline cubic boron nitride (PCBN) material or thermally stable polycrystalline diamond (PCD) material; subjecting the super-hard structure to heat treatment at a treatment temperature of greater than 700 degrees centigrade at a treatment pressure at which the super-hard material is not thermodynamically stable, for a treatment period of at least about 5 minutes to produce the treated super-hard structure.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Element Six Limited
    Inventors: Stig Åke Andersin, Bernd Heinrich Ries, Frank Friedrich Lachmann, Lars-Ivar Nilsson
  • Patent number: 8961677
    Abstract: A stable suspension of ethylpolysilicate nanoparticles having a size of between about 5 nm and 120 nm are in water and stabilized with between about 0.05 and 5 weight percent tetraalkylammonium hydroxide. The particles are between about 95% and 99.5% hydrolyzed and have superior removal rates when used in chemical mechanical polishing. A process for making ethylpolysilicate nanoparticles includes the step of adding reverse osmosis water and 25% tetramethylammonium hydroxide and ammonium hydroxide to a reactor, agitating the mixture and heating the mixture to about 80° C. Tetraethylalkoxy silane is added to the mixture and the mixture stirred and hydrolyzed. Ethanol is then removed. The mixture was then subjected to a vacuum to remove additional distillate. The material left in the reactor was then transferred to a plastic drum.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: February 24, 2015
    Assignee: Silbond Corporation
    Inventors: Walter L. Magee, Jr., Charlotte Corbett
  • Patent number: 8961631
    Abstract: There is provided a process for producing a fluorinated nanodiamond dispersion liquid, including a purification step of mixing a fluorinated nanodiamond with an alcohol having a carbon number of 4 or fewer, then conducting an ultrasonic treatment to produce a suspension, and subjecting the obtained suspension to a classification treatment by centrifugation to produce a dispersion liquid of fluorinated nanodiamond; a drying step to prepare a dry fluorinated nanodiamond by removing the alcohol from the dispersion liquid of fluorinated nanodiamond that is obtained by the purification step; and a redispersion step to prepare the fluorinated nanodiamond dispersion liquid by mixing the dry fluorinated nanodiamond that is obtained by the drying step, with an aprotic polar solvent and then conducting an ultrasonic treatment.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: February 24, 2015
    Assignee: Central Glass Company, Limited
    Inventor: Akifumi Yao
  • Publication number: 20150050862
    Abstract: A polishing composition contains abrasive grains and water. 50% by mass or more of the abrasive grains consists of particles A having particle sizes between 40 nm and 80 nm inclusive, and 10% by mass or more of the abrasive grains consists of particles B having particle sizes between 150 nm and 300 nm inclusive. The polishing composition is used to polish a surface of a compound semiconductor substrate.
    Type: Application
    Filed: March 4, 2013
    Publication date: February 19, 2015
    Applicant: FUJIMI INCORPORATED
    Inventors: Masayuki Serikawa, Tomomi Akiyama
  • Patent number: 8956722
    Abstract: The invention thus relates to a layer system (1) for the formation of a surface layer on a surface of a substrate, in particular on the surface of a tool, in particular on the surface of a shaping tool, wherein the layer system includes at least a first surface layer of the composition (VaMebMcXd)?(NuCvOw)?, where (a+b+c+d)=?, ?=100%, with respect to the atoms Va,Meb,Mc,Xd present in the layer, (u+v+w)=?. ?=100 with respect to the atoms N, C, O present in the layer, with the sum of all the atoms in the layer (?+?)=100 at %, where 40???80 at % applies, and where Meb is at least one element from the group of chemical elements including Zr, Hf, Nb, Ta, Mo, W, Ni, Cu, Sc, Y, La, Ce, Pr, Nd, Pm, Sm of the periodic system of chemical elements and Mc is at least one element of the group of chemical elements including Ti, Cr, and Xd is at least one element from the group of chemical elements including S, Se, Si, B of the periodic system of elements, where 0?u?100, 0?v?100 and 0?w?80.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: February 17, 2015
    Assignee: Oerlikon Metaplas GmbH
    Inventors: Joerg Vetter, Georg Erkens
  • Patent number: 8955209
    Abstract: A method for bonding together components, such as a tip and a shaft which include mutually facing carbide end surfaces. The tip includes circumferentially spaced flutes formed in its cylindrical outer periphery. The shaft has a cylindrical outer periphery and a plurality of coolant holes extending through the shaft. Bonding of the tip to the shaft is performed by inserting gauge wires into the coolant holes and associated flutes, and positioning brazing material between the first and second end surfaces. A water-soluble bond-blocking material is applied to the gauge wires for preventing brazing of the gauge wires to the brazing material. The brazing material is heated to braze the first and second end surfaces together while the flutes and their associated coolant holes are maintained in alignment by the gauge wires. Then, the gauge wires are removed, and residual bond-blocking material is dissolved in water.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: February 17, 2015
    Assignee: Diamond Innovations, Inc.
    Inventors: Dwight E. Dyer, Ray Phillip Conley
  • Patent number: 8956430
    Abstract: A polishing composition containing a silica, an acid, a surfactant, and water, wherein (a) the acid has solubility in water at 25° C. of 1 g or more per 100 g of an aqueous saturated solution; (b) the surfactant is a sulfonic acid represented by the formula (1) or (2), or a salt thereof; and (c) the polishing composition has a pH of a specified range; and a polishing process of a substrate using the polishing composition are provided. The polishing composition is suitably used, for example in polishing a substrate for disk recording media such as magnetic disks, optical disks and opto-magnetic disks.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: February 17, 2015
    Assignee: Kao Corporation
    Inventor: Norihito Yamaguchi
  • Publication number: 20150041224
    Abstract: A polycrystalline compact comprises a plurality of grains of hard material and a plurality of nanoparticles disposed in interstitial spaces between the plurality of grains of hard material. The nanoparticles have cores of a first material and at least one oxide material on the cores. An earth-boring tool comprises such a polycrystalline compact. A method of forming a polycrystalline compact comprises combining a plurality of hard particles with a plurality of nanoparticles to form a mixture and sintering the mixture to form a polycrystalline hard material comprising a plurality of interbonded grains of hard material. A method of forming a cutting element comprises infiltrating interstitial spaces between interbonded grains of hard material in a polycrystalline material with a plurality of nanoparticles.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 12, 2015
    Inventor: Anthony A. DiGiovanni
  • Patent number: 8951099
    Abstract: A chemical mechanical polishing (CMP) conditioner includes a ceramic substrate having a major surface, and an abrasive coating overlying the major surface. The major surface can include micro-protrusions arranged in a curved pattern. Alternatively, the micro-protrusions can be arranged in an irregular pattern.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: February 10, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Jianhui Wu, Richard W. J. Hall, Eric M. Schulz, Srinivasan Ramanath
  • Patent number: 8951318
    Abstract: A composite sintered body according to the present invention contains at least cubic boron nitride and a binder. Cubic boron nitride has a continuous skeleton structure as a result of bonding of a plurality of first cubic boron nitride particles to each other. The binder has a continuous structure as a result of bonding of a plurality of binder particles to each other, that are present in a region except for a bonding interface where the first cubic boron nitride particles are bonded to each other. Second cubic boron nitride particles isolated from the first cubic boron nitride particles forming the skeleton structure are dispersed in the continuous structure of the binder particles.
    Type: Grant
    Filed: May 28, 2007
    Date of Patent: February 10, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Katsumi Okamura, Satoru Kukino, Tomohiro Fukaya
  • Publication number: 20150033637
    Abstract: A body of polycrystalline diamond (PCD) material having a diamond content of at most 95 percent of the volume of the PCD material, a binder content of at least 5 percent of the volume of the PCD material, and comprising diamond grains having a mean diamond grain contiguity of greater than 60 percent and a standard deviation of less than 2.2 percent is disclosed. Also disclosed is a method of making such a body of polycrystalline diamond material.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 5, 2015
    Inventor: Kaveshini Naidoo
  • Patent number: 8945251
    Abstract: A cutting tool with a substrate which is coated with a coating layer containing TiaAlbNbdMe(C1-xNx), where M represents one or more elements selected from among Si, W, Mo, Ta, Hf, Cr, Zr and Y, where 0.1?a?0.7, 0?b?0.8, 0.02?d?0.25, 0?e?0.25, a+b+d+e=1.0 and 0?x?1 and is provided with a rake face; a flank face; a cutting edge between the rake face and the flank face; and droplets on the surface of the coating layer. The droplets include finer droplets having particle diameters of 300 nm or less; and coarser droplets having particle diameters of 1000 nm or more. The flank face has a higher percentage of the finer droplets than the rake face. An Nb content in the coarser droplets on the flank face is higher than an Nb of the coarser droplets on the rake face.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: February 3, 2015
    Assignee: Kyocera Corporation
    Inventors: Masahiro Waki, Mitsuru Hasegawa
  • Patent number: 8945250
    Abstract: A cutting tool insert for turning of hardened steels and tool steels includes a textured CVD ?-Al2O3 coated cemented carbide body. The cemented carbide body has 4.0-7.0 wt-% Co and 0.25-0.50 wt-% Cr and an S-value of 0.68-0.88 and a coercivity (Hc) of 28-38 kA/m. The ?-Al2O3 layer has a thickness ranging from 7 to 12 ?m, is composed of columnar grains having a length/width ratio from 2 to 12 and is deposited on an MTCVD Ti(C,N) layer having a thickness from 4 to 12 ?m. The alumina layer is characterised by a pronounced (006) growth texture.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: February 3, 2015
    Assignee: Seco Tools AB
    Inventor: Hindrik Engstrom
  • Patent number: 8945249
    Abstract: Embodiments of methods for measuring one or more magnetic characteristics of a polycrystalline diamond (“PCD”) element and use of those results to adjust one or more process parameters for fabricating a PCD element and/or for quality control are disclosed. Measurements of one or more magnetic characteristics may be used to adjust process parameters for fabrication of a PCD element to, for example, control catalyst concentration and/or the extent of diamond-to-diamond bonding in the PCD element.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: February 3, 2015
    Assignee: US Synthetic Corporation
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli
  • Patent number: 8945707
    Abstract: The surface-coated cutting tool of the present invention is characterized in that a region of 10 ?m in a surface of the base material from point a? to point b? has two to seven cracks with a width of not more than 200 nm, or two to ten pores are present per length of 10 ?m in the surface of the base material from point a? to point b?, where points a? and b? are points defined respectively by lines drawn perpendicularly from points a and b to the surface of the base material where point a is a position located away from an edge ridgeline toward a rake face by distance La and point b is a position located away from the edge ridgeline toward a flank face by distance Lb.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: February 3, 2015
    Assignee: Sumitomo Electric Hardmetal Corp.
    Inventors: Hideaki Kanaoka, Yoshio Okada, Chikako Kojima, Anongsack Paseuth, Erika Iwai, Hiroyuki Morimoto
  • Patent number: 8945253
    Abstract: An abrasive article including a bonded abrasive body having a bond material present in an amount of not greater than about 15 vol % for the total volume of the body, abrasive particulate material contained in the bond material, the abrasive particulate material including abrasive agglomerates and unagglomerated abrasive particles, wherein the body comprises an abrasive particulate ratio (APp:APagg) within a range between 3:1 and about 1:3, wherein APp represents the amount (vol %) of unagglomerated abrasive particles present in the body and APagg represents the amount (vol %) of abrasive agglomerates present in the body, and a porosity of at least about 42 vol % of the total volume of the bonded abrasive body.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: February 3, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Nilanjan Sarangi, John Campaniello, James M. Gaffney, Stephen E. Fox, John R. Besse, Stephen Woods, Renaud Fix
  • Publication number: 20150027065
    Abstract: The present invention relates to a diamond composite comprising diamond particles embedded in a binder matrix comprising SiC and a Mn+1AXn-phase, where no diamond-to-diamond bonding are present. For the Mn+1AXn-phase n=1-3, M is one or more elements selected from the group Sc, Ti, Zr, Hf, V, Nb, Ta, Cr and Mo, A is one or more elements selected from the group Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, and Pb and X is carbon and/or nitrogen.
    Type: Application
    Filed: December 19, 2012
    Publication date: January 29, 2015
    Inventors: Andreas Blomqvist, Susanne Norgren, Malin Martensson, Ehsan Jalilian, Thomas Easley
  • Publication number: 20150030650
    Abstract: The invention relates to a suspension of cerium oxide particles, of which the particles (secondary particles) have an average size of at most 200 nm, these secondary particles consisting of primary particles whose average size measured by TEM is of at most 150 nm with a standard deviation of at most 30% of the value of said average size, and for which the ratio of the average size measured by TEM to the average size measured by BET is at least 1.5. This suspension is prepared from a solution of a cerium III salt, comprising a colloidal dispersion of cerium IV, which is brought into contact, in the presence of nitrate ions and under an inert atmosphere, with a base; the medium obtained is subjected to a thermal treatment under an inert atmosphere and then acidified and washed. The suspension can be used for polishing.
    Type: Application
    Filed: October 3, 2014
    Publication date: January 29, 2015
    Inventors: Guillaume CRINIERE, Laurent THIERS
  • Patent number: 8940063
    Abstract: A cloth backing for an abrasive article is treated by combining a phenolic resin, a latex and a colloidal silicon oxide composition to prepare a colloidal formulation, which is then applied to the cloth backing and cured. Coated abrasive articles are formed by applying a make coat formulation to the treated cloth backing, applying an abrasive and then curing the make coat formulation.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: January 27, 2015
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Yu Xiang Yang, Adiseshaiah K. Seshu, Lin Hua Feng
  • Patent number: 8936665
    Abstract: The present invention relates to a method for producing diamond-metal composites comprising mixing diamond particles with metal-filler particles forming a diamond/metal-filler mixture, forming a green body of the diamond/metal-filler mixture, optionally green machining the green body to a work piece before or after pre-sintering by heating the green body to a temperature ?500° C., infiltrating the green body or the work piece with one or more wetting elements or infiltrating the green body or the work piece with one or more wetting alloys, which infiltration step being carried out under vacuum or in an inert gas atmosphere at a pressure ?200 Bar. The invention relates further to a green body, a diamond metal composite, and use of the diamond metal composite.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: January 20, 2015
    Assignee: Alfa Laval Corporate AB
    Inventor: Jie Zheng
  • Publication number: 20150013234
    Abstract: A superabrasive blank and a method of making the superabrasive blank are disclosed. A superabrasive blank may comprise a plurality of polycrystalline superabrasive particles made of surface modified superabrasive particles. The surface modified superabrasive particles may have sphericity less than about 0.70. The substrate attached to a superabrasive volume formed by the polycrystalline superabrasive particles.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventor: Neil Krishnan
  • Publication number: 20150014067
    Abstract: A method of forming a thermally stable cutting element may include providing a cutting element including a substrate fixed to a polycrystalline diamond cutting table; enclosing the substrate and at least a portion of the polycrystalline diamond cutting table within a protective element to form a partially enclosed cutting element; exerting a compressive squeeze on the cutting element of about 5-25%; and exposing the partially enclosed cutting element to a leaching solution so that at least part of an unenclosed portion of the polycrystalline diamond table is in contact with the leaching solution.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Inventors: Giuseppe Muzzi, Alysia C. White, Anthony Griffo, James Ray Podesta
  • Patent number: 8932377
    Abstract: A system for producing thermally stable cutting elements may include a heat source, a pressure vessel, at least one polycrystalline diamond body attached to a carbide substrate, and a leaching agent is disclosed, wherein the heat source includes a container comprising at least one receiving mechanism and at least one retention mechanism, and wherein the carbide substrate is disposed in the at least one receiving mechanism of the pressure vessel, and wherein the leaching agent is disposed in the pressure vessel, and wherein the leaching agent removes the catalyzing material from the interstitial spaces interposed between the diamond particles of the at least one polycrystalline diamond body, and wherein the at least one retention mechanism of the pressure vessel seals at least a portion of the carbide substrate into the at least one receiving mechanism and prevents the leaching agent from contacting at least a portion of the carbide substrate.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: January 13, 2015
    Assignee: Smith International, Inc.
    Inventors: J. Daniel Belnap, Peter Thomas Cariveau, Loel Corbett, Ronald K. Eyre
  • Patent number: 8932376
    Abstract: Thermally stable diamond-bonded compacts include a diamond-bonded body having a thermally stable region extending a distance below a diamond-bonded body surface. The thermally stable region comprises a matrix first phase of bonded together diamond crystals, and a second phase interposed within the matrix phase. At least some population of the second phase comprises a reaction product formed between an infiltrant material and the diamond crystals at high pressure/high temperature conditions. The diamond bonded body further includes a polycrystalline diamond region that extends a depth from the thermally stable region and has a microstructure comprising a polycrystalline diamond matrix phase and a catalyst material disposed within interstitial regions of the matrix phase. The compact includes a substrate attached to the diamond-bonded body.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: January 13, 2015
    Assignee: Smith International, Inc.
    Inventor: Stewart N. Middlemiss
  • Patent number: 8932707
    Abstract: A hard film excellent in abrasion resistance and heat resistance includes: a first film consisting of AlaCrb(SiC)c?dN, where ? denotes one or more elements of groups IVa, Va, VIa (except Cr) of the periodic table, B, C, Si, and Y; a b, c, and d are atom ratios within ranges of 0.35?a?0.76, 0.12?b?0.43, 0.05?c?0.20, and 0?d?0.20, respectively; an atom ratio b/a of Cr to Al is within a range of 0.25?b/a?0.67; and a+b+c+d=1 is satisfied. The first film disposed on a top surface, the hard film having a total thickness Ttotal within a range of 0.5 ?m to 15 ?m with a thickness T1 of the first film or, if another film portion having the same film components as the first film is included, a thickness including the film thickness T1 and the another film portion accounting for 20% or more of the total thickness Ttotal.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: January 13, 2015
    Assignee: OSG Corporation
    Inventors: Hiroaki Sugita, Takamasa Suzuki
  • Publication number: 20150008047
    Abstract: A polycrystalline compact comprises a plurality of diamond grains of micron size, submicron size, or both, and a plurality of crushed diamond nanoparticles disposed in interstitial spaces between the plurality of diamond grains. A method of forming a polycrystalline compact comprises combining a plurality of micron and/or submicron-sized diamond grains and a plurality of crushed diamond nanoparticles to form a mixture and sintering the mixture in a presence of a binder to form a polycrystalline hard material comprising a plurality of inter-bonded diamond grains and diamond nanoparticles. Cutting elements comprising a polycrystalline compact and earth-boring tools bearing such compacts are also disclosed.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventor: Anthony A. DiGiovanni
  • Publication number: 20150008048
    Abstract: Cutting elements earth-boring tools may include a substrate and a polycrystalline diamond table secured to the substrate. At least a portion of the polycrystalline diamond table may be formed from a plurality of core particles comprising a diamond material and having an average diameter of between 1 ?m and 500 ?m. A coating material may be adhered to and covering at least a portion of an outer surface of each core particle of the plurality of core particles, the coating material being an amine terminated group. A plurality of nanoparticles selected from the group of carbon nanotubes, nanographite, nanographene, non-diamond carbon allotropes, surface modified nanodiamond, nanoscale particles of BeO, and nanoscale particles comprising a Group VIIIA element may be adhered to the coating material.
    Type: Application
    Filed: September 23, 2014
    Publication date: January 8, 2015
    Inventors: Soma Chakraborty, Oleksandr V. Kuznetsov, Gaurav Agrawal
  • Patent number: 8926722
    Abstract: The present invention relates to a multilayer coating system deposited on at least a portion of a solid body surface and containing in the multilayer architecture Al—Cr—B—N individual layers deposited by means of a physical vapor deposition method characterized in that in at least a portion of the overall thickness of the multilayer coating system the Al—Cr—B—N individual layers are combined with Ti—Al—N individual layers, wherein the Al—Cr—B—N and Ti—Al—N individual layers are deposited alternately one on each other, and wherein the thickness of the Al—Cr—B—N individual layers is thicker than the thickness of the Ti—Al—N individual layers, and thereby the residual stress of the multilayer coating system is considerably lower in comparison to the residual stress of the corresponding analogical Al—Cr—B—N monolayer coating.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: January 6, 2015
    Assignee: Oerlikon Trading AG, Truebbach
    Inventors: Markus Lechthaler, Christian Tritremmel
  • Publication number: 20150000208
    Abstract: The present invention is directed to a method for producing a slurry used in a wire saw, including: re-pulverizing with a jet mill part or all of the abrasive grains pulverized with a roller mill or a ball mill such that the abrasive grains have an average circularity of 0.900 or more; and blending the abrasive grains whose the average circularity is 0.900 or more with a coolant to produce the slurry, and to a slurry including blended abrasive grains having an average circularity of 0.900 or more. The invention enables suppression of reduction in slicing capability due to reduction in abrasive-grains concentration and of increased costs due to reduction in slicing quality and in productivity, even when abrasive grains having a grain diameter smaller than that of #2000-size abrasive grains are used to reduce a kerf loss.
    Type: Application
    Filed: October 4, 2012
    Publication date: January 1, 2015
    Inventor: Koji Kitagawa
  • Publication number: 20150000209
    Abstract: A shaped abrasive particle having a major surface-to-side surface grinding orientation percent difference (MSGPD) of not greater than about 35%.
    Type: Application
    Filed: June 27, 2014
    Publication date: January 1, 2015
    Inventors: David Louapre, Kristin Breder, Sujatha Iyengar, Adam D. Lior