-xh Reactant Contains A C=x Group, E.g., Carboxylic Acid Ester, Etc. Patents (Class 521/172)
  • Publication number: 20130253086
    Abstract: New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Thomas S. Wilson, Jane P. Bearinger
  • Patent number: 8530535
    Abstract: A polishing pad generates very few scratches on a surface of a polishing object, and is excellent in planarization property. The polishing pad has a high polishing rate and is excellent in planarization property. The polishing pad grooves become very little clogged with abrasive grains or polishing swarf during polishing and, even when continuously used for a long period of time, the polishing rate is scarcely reduced.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: September 10, 2013
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventors: Atsushi Kazuno, Kazuyuki Ogawa, Masahiko Nakamori, Takatoshi Yamada, Tetsuo Shimomura
  • Publication number: 20130231410
    Abstract: The invention relates to rigid polyurethane foams obtainable by reaction of A) organic or modified organic polyisocyanates or mixtures thereof, B) compounds having two or more isocyanate-reactive hydrogen atoms in the presence of C) optionally further polyester polyols, D) optionally polyetherol polyols, E) optionally flame retardants, F) one or more blowing agents, G) catalysts, and H) optionally further auxiliaries and/or additives, wherein component B) comprises the reaction product of a1) 15 to 40 wt % of one or more polyols or polyamines having an average functionality of 2.5 to 8, a2) 2 to 30 wt % of one or more fatty acids and/or fatty acid monoesters, a3) 35 to 70 wt % of one or more alkylene oxides of 2 to 4 carbon atoms.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 5, 2013
    Applicant: BASF SE
    Inventors: Olaf JACOBMEIER, Gunnar Kampf, Christian Koenig
  • Publication number: 20130231413
    Abstract: The invention relates to a polyetherester polyol comprising the reaction product of a1) 5 to 63 wt % of one or more polyols or polyamines or mixtures thereof having an average functionality of 2.5 to 8, a2) 2 to 50 wt % of one or more fatty acids, fatty acid monoesters or mixtures thereof, a3) 35 to 70 wt % of one or more alkylene oxides of 2 to 4 carbon atoms.
    Type: Application
    Filed: February 6, 2013
    Publication date: September 5, 2013
    Inventors: Andreas KUNST, Berend ELING, Markus SCHUETTE, Sebastian KOCH, Christian KOENIG, Marc FRICKE
  • Publication number: 20130210951
    Abstract: Polyols are produced by an alkoxylation process in which a vegetable oil containing hydroxyl functional groups is combined with a DMC catalyst to form a mixture, the DMC catalyst is then activated by adding ethylene oxide and/or propylene oxide to the vegetable oil/catalyst mixture, and ethylene oxide and propylene oxide are added to the mixture containing activated DMC catalyst in amounts such that the total of percentage of ethylene oxide in the polyol plus percentage of primary hydroxyl groups in the polyol produced is from 50 to 77% and the percentage of primary hydroxyl groups is at least 30% but less than 50%. These polyols are useful for the production of molded polyurethane foams, particularly, hot-cure molded polyurethane foams.
    Type: Application
    Filed: April 15, 2011
    Publication date: August 15, 2013
    Inventors: Stanley L. Hager, Micah N. Moore, Jack R. Reese, Brian L. Neal
  • Publication number: 20130197118
    Abstract: A process for producing a polyurethane shoe sole having an article density of 100 to 350 g/L and being made from an organic polyisocyanate, a polyol, a blowing agent consisting of water, and optionally a crosslinking and/or chain-extending agent, a catalyst, and other auxiliaries and/or additives. First, polyisocyanate, polyol and any crosslinking and/or chain-extending agent are mixed and reacted at a temperature of 110° C. to 180° C. to give a prepolymer having polyisocyanate groups. Second, the isocyanate-terminated prepolymer obtained and any remaining polyisocyanate are mixed with any remaining polyol, blowing agent comprising water, and any remaining crosslinking and/or chain-extending agent and also any catalyst and other auxiliaries and/or additives are introduced into a mold and allowed to fully react to give a polyurethane shoe sole.
    Type: Application
    Filed: January 18, 2013
    Publication date: August 1, 2013
    Inventors: Heinrich BOLLMANN, Andre Kamm, Anand G. Huprikar, Ulrich Holwitt
  • Publication number: 20130197114
    Abstract: A composition and process useful to make flexible polyurethane foams and in particular flexible molded polyurethane foams is disclosed. The usage of dipolar aprotic liquids such as DMSO, DMI, sulfolane, N-methyl-acetoacetamide, N,N-dimethylacetoacetamide as well as glycols containing hydroxyl numbers OH#?1100 as cell opening aides for 2-cyanoacetamide or other similar molecules containing active methylene or methine groups to make a polyurethane foam is also disclosed. The advantage of using cell opener aids results in a) no foam shrinkage; b) lower use levels of cell opener; c) foam performance reproducibility d) optimum physical properties. In addition, combining the acid blocked amine catalyst together with the cell opener and the cell opener aid results in a less corrosive mixture as well as provides a method that does not require mechanical crushing for cell opening.
    Type: Application
    Filed: June 27, 2012
    Publication date: August 1, 2013
    Applicant: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, James Douglas Tobias, Renee Jo Keller
  • Patent number: 8497316
    Abstract: It concerns a crosslinkable and foaming polyester-polyurethane resin moulding composition, comprising: an A component, comprising: A1) at least one poly-functional isocyanate compound, and A2) at least one free radical polymerization initiator a B component, comprising by weight: B1) 100 parts of at least one polyol resin comprising: —B11) 50 to 80 parts of at least one ethylenically unsaturated polyester polyol—B 12) 20 to 50 parts of at least one ethylenically unsaturated monomer, with, B11), being the reaction product of: a) an acid component comprising: a1) at least one ethylenically unsaturated diacid, and a2) at least one saturated diacid with a1/a2 molar ratio so varying to have an unsaturation content in B11) from 0.25/1 to 5/1, and, b) a diol component in excess with respect to component a) B2) from 0.01 to 1.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: July 30, 2013
    Assignee: CCP Composites UK Ltd
    Inventors: Paul Darby, Phil Dean
  • Patent number: 8481606
    Abstract: The invention relates to the production and use of polyester polyols, formed from at least one carboxylic acid anhydride and ethylene glycol, wherein a specialized reaction control substantially suppresses the formation of 1,4-dioxane from diethylene glycol.
    Type: Grant
    Filed: October 24, 2009
    Date of Patent: July 9, 2013
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Johannes Van de Braak, Jürgen Schloβmacher
  • Patent number: 8476328
    Abstract: A method for manufacturing a polishing pad that has high level of optical detection accuracy and is prevented from causing slurry leak from between the polishing region and the light-transmitting region includes preparing a cell-dispersed urethane composition by a mechanical foaming method; placing a light-transmitting region at a predetermined position on a face material or a belt conveyor, continuously discharging the cell-dispersed urethane composition onto part of the face material or the belt conveyor where the light-transmitting region is not placed; placing another face material or belt conveyor on the discharged cell-dispersed urethane composition; curing the cell-dispersed urethane composition to form a polishing region including a polyurethane foam, so that a polishing sheet is prepared; applying a coating composition containing an aliphatic and/or alicyclic polyisocyanate to one side of the polishing sheet and curing the coating composition to form water-impermeable film; and cutting the polishing
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: July 2, 2013
    Assignee: Toyo Tire & Rubber Co., Ltd
    Inventors: Junji Hirose, Takeshi Fukuda
  • Patent number: 8476329
    Abstract: A bioresin composition is used to form a rigid polyurethane article that includes a first and a second biopolyol and is substantially free of aprotic solvents that chemically decompose in the presence of water. The first biopolyol includes a natural oil component. The second biopolyol includes the reaction product of a natural carbohydrate and an alkylene oxide. The rigid polyurethane foam article includes the reaction product of the bioresin composition and an isocyanate which are reacted in the presence of a chemical blowing agent.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: July 2, 2013
    Assignee: BASF SE
    Inventors: Christopher M. Tanguay, Patrick J. Watters, John P. Erickson, Eric W. Banks
  • Patent number: 8470902
    Abstract: A continuous pore elastomer featured by being made of a polyurethane, having a three dimensional network pore structure of which skeletons have an average thickness of 20 ?m or less and 80% or more of the skeletons have a thickness within the range of 2 to 20 ?m, having an apparent density of 0.2 to 0.4 g/cm3, containing a surfactant with a HLB value of 8 or more, and being capable of absorbing water instantly; a process for producing the continuous pore elastomer, comprising a step of extracting out the pore generation agent from the molding with water; and a water-absorbing roller and a swab obtained by using the continuous pore elastomer.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: June 25, 2013
    Assignee: Fushimi Pharmaceutical Company, Limited
    Inventors: Yoshiaki Ito, Katsuyoshi Watanabe
  • Publication number: 20130150475
    Abstract: The invention provides for new flame retardant non-furan dicarboxylic acid (FDCA) based polyols; oligomers and polymers made from these new polyols with flame retardation properties; and methods of using them as a part or all of the flame retardation composition/material, such as foams and binders.
    Type: Application
    Filed: July 15, 2011
    Publication date: June 13, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Herman P. Benecke, Daniel B. Garbark
  • Publication number: 20130116357
    Abstract: The invention relates to the use of solvent-free modified polyisocyanate mixtures on the basis of araliphatic diisocyanates for producing light- and weather-resistant polyurethane bodies having light refraction and low dispersion.
    Type: Application
    Filed: July 15, 2011
    Publication date: May 9, 2013
    Applicant: BAYER INTELLECTUAL PROPERTY GMBH
    Inventors: Hans-Josef Laas, Dorota Greszta-Franz, Reinhard Halpaap, Dieter Mager, Hans-Ulrich Meier-Westhues
  • Patent number: 8426482
    Abstract: Invention relates to a process for producing viscoelastic flexible polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups, wherein as b) a mixture of bi) from 25 to 70% by weight of a hydroxyl-comprising natural oil or fat or a reaction product of a hydroxyl-comprising natural oil or fat with alkylene oxides, bii) from 3 to 30% by weight of at least one polyether having a hydroxyl number of from 100 to 800 mg KOH/g and a functionality of 3-5 selected from the group consisting of polyether prepared by addition of alkylene oxides onto an amine, biii) 20-50% by weight of at least one polyether alcohol having a hydroxyl number of from 10 to 80 mg KOH/g and a functionality of 2-5, where the proportion of ethylene oxide is 5-25% by weight, based on the weight of the polyether alcohol, and at least part of the ethylene oxide is added on at the end of the polyether chain, biv) >0-8% by weight of at least one polyether alcoh
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: April 23, 2013
    Assignee: BASF SE
    Inventors: Ansgar Frericks, Heinz-Dieter Lutter, Edmund Stadler, Heinz-Juergen Schroeder, Kirsten Simon, Andre Meyer, Franck Pomeris
  • Patent number: 8389775
    Abstract: The invention relates to a process for preparing polyether alcohols, which comprises the steps a) reaction of an unsaturated natural oil or fat with a mixture of carbon monoxide and hydrogen, b) reaction of the mixture from step a) with hydrogen, c) reaction of the product from step b) with an alkylene oxide in the presence of a catalyst.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: March 5, 2013
    Assignee: BASF SE
    Inventors: Darijo Mijolovic, Andrea Haunert, Andreas Kunst, Stephan Bauer, Qiang Miao, Berend Eling
  • Publication number: 20130042659
    Abstract: The invention provides polyester polyol compositions and resin blends, useful as components of polyurethane and polyisocyanurate polymers, produced from cyclohexane oxidation reaction byproducts, such as water extracts and non-volatile distillation residues from the reaction. Such byproducts of industrial processes for preparation of adipic acid and caprolactam, important intermediates in the production of various types of nylon, have hitherto largely been used only as fuels. The present invention provides value-added products, methods for making, and methods for using the byproduct-derived polyester polyol compositions. For example, the invention provides polyurethane (PU) and/or polyisocyanurate (PIR) polymers made using the polyol compositions and polyfunctional isocyanates. The PU and PIR polymers can be used as adhesives, binders (e.g., for wood fibers), coatings (e.g., for controlled release fertilizers), and foams.
    Type: Application
    Filed: June 11, 2012
    Publication date: February 21, 2013
    Applicant: INVISTA North America S.a r.l
    Inventors: Richard P. Beatty, Carina Araullo McAdams, Yanhui Sun, Thomas A. Micka
  • Publication number: 20130023599
    Abstract: The present invention provides polyurethane foams and elastomers made with an alkoxylated vegetable oil hydroxylate replacing at least a portion of the typically used petroleum-based polyol(s). Also provided are processes for making the inventive foams and elastomers and for making alkoxylated vegetable oil hydroxylates. The alkoxylated vegetable oil hydroxylates are environmentally-friendly, bio-based polyols which advantageously also offer the potential of improved hydrophobicity in polyurethane foams and elastomers. The inventive polyurethane foams and elastomers may find use in a wide variety of products such as automobile interior parts, polyurethane structural foams, floor coatings and athletic running tracks.
    Type: Application
    Filed: September 26, 2012
    Publication date: January 24, 2013
    Applicant: Bayer MaterialScience LLC
    Inventors: Yu-Ling Hsiao, Richard G. Skorpenske, Bryan D. Kaushiva, Kenneth G. McDaniel, Jose F. Pazos, Stanley L. Hager, Karl W. Haider
  • Patent number: 8357729
    Abstract: A conductive toner supply roller and a method of manufacturing the supply roller. The method includes preparing a polyurethane foam, impregnating the polyurethane foam with an impregnation solution including an electroconductive polymer, a binder resin, an electroconductive agent and a solvent, and drying the resulting polyurethane foam, cutting the dried polyurethane foam, and inserting a shaft into the cut polyurethane foam, and polishing an outer surface of the resulting polyurethane foam. The resulting conductive toner supply roller has a low or medium resistance, and may be user in an electrostatic recording apparatus such as a printer, a facsimile machine, a copier or the like.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: January 22, 2013
    Assignee: Samsung Electronics Co., Ltd
    Inventor: Tae-hyun Kim
  • Patent number: 8334035
    Abstract: Polyester polyols are produced by reacting terephthalic acid with a glycol corresponding to the formula H—(OCH2CH2)n—OH and an aliphatic dicarboxylic acid. These polyester polyols are particularly useful for the production of polyurethane) (PUR) and polyurethane/polyisocyanurate (PUR/PIR) foams for use in insulation applications.
    Type: Grant
    Filed: March 27, 2010
    Date of Patent: December 18, 2012
    Assignee: Bayer MaterialScience AG
    Inventors: Hartmut Nefzger, Erika Bauer, Uwe Kuenzel, Jürgen Schloβmacher, Lutz Brassat
  • Patent number: 8318822
    Abstract: It is an object of the invention to provide a vibration damping and sound absorbing material containing a plant-derived polyol which material largely contributes a decrease of environmental load and has excellent vibration damping and sound absorbing properties, and it is another object of the invention to provide a production process of the material. Specifically, disclosed is a vibration damping and sound absorbing material which is suitably used for cars. A vibration damping and sound absorbing material comprises a polyurethane foam which comprises, as raw materials, a polyol and/or a polymer-dispersed polyol in which polymer fine particles obtainable by polymerizing an unsaturated bond-containing compound are dispersed in a polyol, and water, a catalyst and a polyisocyanate, wherein the polyol comprises (A) a plant-derived polyol produced using a raw material obtainable by a plant.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: November 27, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kazuto Usaka, Kouichi Sano, Hiroyuki Utsumi
  • Patent number: 8318827
    Abstract: The invention described herein relates to an essentially closed-cell two-component polyurethane foam containing an pesticide, which upon curing provides a barrier to insect infestation.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 27, 2012
    Assignee: Fomo Products, Inc.
    Inventor: Anthony J. Taylor
  • Patent number: 8318821
    Abstract: Provided is a process for producing a rigid foamed synthetic resin, wherein, as a blowing agent, a hydrocarbon compound and water are used, and a rigid foamed synthetic resin provided with dimensional stability, heat insulating properties, and possibly reduced weight can be obtained. The process involves reacting a polyol (P) with a polyisocyanate (I) in the presence of a blowing agent, a foam stabilizer and a catalyst, wherein the blowing agent has at least a C2-8 hydrocarbon compound and water; the polyol (P) has a specific polyesterpolyol (A), a specific polyetherpolyol (B), and a polymer-dispersed polyol (Z) having fine polymer particles (M) dispersed; and the isocyanate index of the polyol (P) and the polyisocyanate (I) is over 200 and at most 400.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: November 27, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Yuko Hayashi, Hiroshi Wada
  • Patent number: 8304467
    Abstract: A polishing pad generates very few scratches on a surface of a polishing object, and is excellent in planarization property. The polishing pad has a high polishing rate and is excellent in planarization property. The polishing pad grooves become very little clogged with abrasive grains or polishing swarf during polishing and, even when continuously used for a long period of time, the polishing rate is scarcely reduced.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: November 6, 2012
    Assignee: Toyo Tire & Rubber Co., Ltd.
    Inventors: Atsushi Kazuno, Kazuyuki Ogawa, Masahiko Nakamori, Takatoshi Yamada, Tetsuo Shimomura
  • Publication number: 20120278956
    Abstract: Plant growth substrates that lack organic components, such as organic soil, peat or bark material. In certain aspects sponge-like matrix materials are provided that are porous, retains water and can be used to maintain plant growth. Matrix materials, for instance, can comprise an admixture of a hydrophilic polymer, such as a polyurethane, and an amorphous silica. Methods of growing and maintaining plants and plant parts in such materials are also provided.
    Type: Application
    Filed: April 26, 2012
    Publication date: November 1, 2012
    Inventor: Gary R. Hartman
  • Patent number: 8299136
    Abstract: Polymeric composite materials, particularly highly filled polyurethane composite materials are described herein. Such highly filled polyurethane composite materials may be formed by reaction and extrusion of one or more polyols, one or more di- or poly-isocyanates, and from about 45 to about 85 weight percent of inorganic filler such as fly ash. Certain polyols, including plant-based polyols can be used. Certain composite materials also contain chain extenders and/or crosslinkers. The polyurethane composite material may also contain fibers such as chopped or axial fibers which further provide good mechanical properties to the composite material. Shaped articles containing the polyurethane composite material have been found to have good mechanical properties, such that the shaped articles are suitable for building applications.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: October 30, 2012
    Assignee: Century-Board USA, LLC
    Inventor: Wade H. Brown
  • Patent number: 8293808
    Abstract: A flexible polyurethane foam prepared by reacting, in the presence of a blowing agent, a polyisocyanate with an active hydrogen-containing composition that includes a modified vegetable oil-based polyol. The foams exhibit good load-bearing properties, relatively high sag factors, and/or good color retention upon exposure to light.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: October 23, 2012
    Assignee: Cargill, Incorporated
    Inventors: Ron Herrington, Jeffrey Malsam
  • Patent number: 8288448
    Abstract: The polishing pad is suitable for planarizing at least one of semiconductor, optical and magnetic substrates. The polishing pad includes a cast polyurethane polymeric material formed with an isocyanate-terminated reaction product formed from a prepolymer reaction of a prepolymer polyol and a polyfunctional isocyanate. The isocyanate-terminated reaction product has 4.5 to 8.7 weight percent unreacted NCO; and the isocyanate-terminated reaction product is cured with a curative agent selected from the group comprising curative polyamines, curative polyols, curative alcoholamines and mixtures thereof. The polishing pad contains at least 0.1 volume percent filler or porosity.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: October 16, 2012
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventor: Mary Jo Kulp
  • Patent number: 8283389
    Abstract: Method of forming a composition comprising impregnated polylactic acid (PLA) resin beads, by impregnating PLA resin beads with CO2. The method is carried out by contacting the beads with liquid CO2, and holding the impregnated beads at a temperature and pressure that prevents the beads from foaming while allowing the level of impregnated CO2 to reduce to about 4 to 20 weight % relative to the total weight of the beads and CO2.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: October 9, 2012
    Assignee: Biopolymer Network Limited
    Inventors: Michael Ralph Juergen Witt, Samir Shah
  • Publication number: 20120245243
    Abstract: The present invention relates to a process for producing a polyurethane foam, where the blowing agent used is present in the supercritical or near-critical state. A reaction mixture is introduced into a closed mould, where the closed mould has been set up in such a way that its interior volume and/or the pressure prevailing in its interior can be altered after the introduction of the mixture by external influence. Through the selection of the surfactant it is possible to obtain microemulsions of the blowing agent in the polyol phase. The invention further relates to a nanocellular polyurethane foam obtainable by the process of the invention.
    Type: Application
    Filed: November 3, 2010
    Publication date: September 27, 2012
    Applicant: Bayer Intellectual Property GmbH
    Inventors: Stefan Lindner, Wolfgang Friederichs, Reinhard Strey, Thomas Sottmann, Elena Khazova, Lorenz Kramer, Verena Dahl, Agnes Chalbi
  • Publication number: 20120239161
    Abstract: The present disclosure relates to reticulated elastomeric matrices, and more particularly to at least partially degradable elastomeric elements that are compressible and exhibit resilience in their recovery and that can be employed in diverse applications including, without limitation, biological implantation, especially in humans.
    Type: Application
    Filed: January 17, 2012
    Publication date: September 20, 2012
    Applicant: BIOMERIX CORPORATION
    Inventors: Arindam DATTA, Lawrence P. LAVELLE, JR., Craig FRIEDMAN, Balakrishna HARIDAS
  • Publication number: 20120214891
    Abstract: The present invention relates to polyester polyols based on aromatic dicarboxylic acids or derivatives thereof and to the use of the polyester polyols for producing polyurethanes.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 23, 2012
    Applicant: BASF SE
    Inventors: Lionel GEHRINGER, Gunnar KAMPF, Sirus ZARBAKHSH, Joachim-Thierry ANDERS
  • Patent number: 8247467
    Abstract: The invention relates to a process for producing flexible polyurethane foams by reacting a) polyisocyanates with b) compounds having at least two hydrogen atoms which are reactive toward isocyanate groups in the presence of c) blowing agents, wherein the component b) comprises at least one polyether carbonate polyol bi) which can be prepared by addition of carbon dioxide and alkylene oxides onto H-functional starter substances using DMC catalysts and has a functionality of at least 2, a hydroxyl number in the range from 10 to 500 mg KOH/g and a content of incorporated carbon dioxide in the form of carbonate units of at least 2% by weight.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: August 21, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Darijo Mijolovic, Stephan Bauer, Stephan Goettke
  • Patent number: 8247466
    Abstract: A polyurethane foam sponge that picks up at least 80% of water in a wipe dry performance test is made by variably felting (compressing under heat and pressure) a foam sheet to a compression ratio of about 1.05 to 2.9. The resulting foam sponge has from 5% to 25% of its top and bottom surface portions modified by the variable felting, while its core portion remains substantially unmodified.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: August 21, 2012
    Assignee: FXI, Inc.
    Inventor: Linda Brown
  • Patent number: 8236866
    Abstract: A high resilience (HR) polyurethane foam comprising the reaction product of (1) at least one polyisocyanate comprising at least about 5 weight percent of at least one methylene diphenyl diisocyanate isomer, derivative or a combination thereof and (2) an admixture of at least one natural oil based polyol and at least one additional polyol which is not a natural oil based polyol, wherein the admixture comprises at least about 10 weight percent natural oil based polyol and at least about 40 weight percent additional polyol having an equivalent weight of at least about 1700 Daltons; and the foam has a resiliency indicated by a ball rebound of at least 40 percent as measured according to the procedures of ASTM D 3574, Test H.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 7, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Francois M. Casati, Jean-Marie Sonney
  • Publication number: 20120196947
    Abstract: The present disclosure relates to the preparation of ketal compounds from glycerol and levulinic acid and esters, and uses thereof, in particular the manufacture of polyurethanes.
    Type: Application
    Filed: April 12, 2012
    Publication date: August 2, 2012
    Applicant: SEGETIS, INC.
    Inventor: Sergey SELIFONOV
  • Patent number: 8232364
    Abstract: The present invention relates to improved gel masses prepared from a reaction mixture of NCO prepolymers and selected compounds containing groups reactive towards isocyanate groups. This invention is also directed to a process for the production of these gel masses and to the production of pressure-distributing elements comprising these gel masses.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: July 31, 2012
    Assignee: TechnoGel GmbH
    Inventors: Andreas Hoffman, Heinz-Dieter Ebert, Matteo Mason
  • Patent number: 8217092
    Abstract: A multicomponent polyurethane/vinyl ester hybrid foam system for forming a gradient foam with soft and rigid foam regions, with a polyol component (A), a polyisocyanate component (B), and a component (C), which contains a catalyst for the polymerization of the vinyl monomer, with the polyol component (A) containing, as vinyl monomer, a mixture of vinyl esters of at least one polymerizable hydroxyvinyl ester and at least one branched, at least trifunctional, polymerizable vinyl ester, and the polyisocyanate component (B) containing a thermally activatable free radical-forming agent as catalyst for the polymerization of the vinyl monomers, with the proviso that the proportion by weight of the vinyl ester mixture is greater than the proportion by weight of the at least one polyol as well as the proportion by weight of the at least one polyisocyanate.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: July 10, 2012
    Assignee: Hilti Aktiengesellschaft
    Inventor: Arne Reinheimer
  • Patent number: 8217093
    Abstract: A two-component polyurethane/vinyl ester hybrid foam system is formed of a polyol component (A), which contains at least one polyol, a catalyst for the reaction of the polyol with the polyisocyanate, at least one polymerizable vinyl monomer and water or a blowing agent on the basis of a compressed or liquefied gas as foam-forming agent, and a polyisocyanate component (B), which contains at least one polyisocyanate and a catalyst for the polymerization of the vinyl monomer, and is designed for use as a flame retardant material and material for filling openings, cable and pipe bushings in walls, floors and/or of buildings for the purpose of fire protection.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: July 10, 2012
    Assignee: Hilti Aktiengesellschaft
    Inventor: Arne Reinheimer
  • Publication number: 20120136085
    Abstract: A polyurethane foam which is obtained by a reaction between a diol component and a diisocyanate component, with the diol component being a mixture of a polyether-based diol and a polyester-based diol, and a pneumatic tire to which the polyurethane foam is applied are provided. When a soft polyurethane foam is produced using a mixture of a polyether-based diol and a polyester-based diol as the diol component, and by varying the content of the expanding agent during the production process, and when the polyurethane foam is disposed in the cavity of a pneumatic tire, the polyurethane foam thus produced has an effect of reducing the resonance noise generated in the cavity of the tire and improving durability of the tire.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 31, 2012
    Applicant: Hankook Tire Co., Ltd.
    Inventors: Seok-Ju CHOI, Hak-Joo KIM
  • Patent number: 8188156
    Abstract: Disclosed is a polyol composition containing an aromatic polyester polyol having a hydroxyl number of 300-500 mgKOH/g and an average number of functional groups of 2.0-2.5, a medium-chain polyether polyol having a hydroxyl number of 100-250 mgKOH/g and an average number of functional groups of 2.0-4.0 and composed of a polyoxypropylene unit, and a long-chain polyether polyol having a hydroxyl number of 15-40 mgKOH/g, an average number of functional groups of 2.0-4.0 and an oxyethylene content of not more than 14% by weight and mainly composed of a polyoxypropylene unit.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: May 29, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kenji Yamanaka, Masayoshi Idomoto, Kouji Fukui, Masashi Obata, Katsumi Inaoka, Masaaki Shibata
  • Patent number: 8182909
    Abstract: A method of producing a viscoelastic polyurethane foam coating in which a polyisocyanate is reacted with a polyol to form a prepolymer. The prepolymer is reacted with a polyol having at least one pendant carboxylic acid group to form a prepolymer with a pendant carboxylic acid group. The prepolymer with a pendant carboxylic acid group is neutralized with a tertiary amine and then reacted with water or an organic or inorganic polyamine. An energy absorbing unit in which the coating produced by the above method is provided on a viscoelastic polyurethane foam layer.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: May 22, 2012
    Assignee: Walter Wurdack, Inc.
    Inventors: Marc S. Schneider, William Wurdack
  • Publication number: 20120123009
    Abstract: The present invention relates to a method for producing a polyester polyol having a concentration of ether groups in the range from 9.0 mol/kg of polyester polyol to 22 mol/kg polyester polyol, characterized in that (i) in a first step (A) isophthalic acid, optionally in the form of a C1-C4 alkyl ester, and/or terephthalic acid, optionally in the form of a C1-C4 alkyl ester, is reacted with (B) oligoethylene glycol of the formula H—(OCH2CH2)n—OH having a numerical average number of oxyethylene groups n in the range from 3.0 to 9.0, in the presence of at least one catalyst selected from the group made up of tin(II) salts, bismuth(II) salts, and titanium tetraalkoxylates, at a temperature in the range from 160° C. to 240° C.
    Type: Application
    Filed: May 18, 2010
    Publication date: May 17, 2012
    Applicant: BAYER MATERIAL SCIENCE AG
    Inventors: Hartmut Nefzger, Erika Bauer, Johannes Van De Braak, Jürgen Schlossmacher, Silvia Kasperek
  • Patent number: 8178593
    Abstract: The invention provides B-sides of urethane formulations, wherein the B-sides comprise both alcohol and epoxy moieties. Also provided are urethane formulations comprising the B-side of the invention, as well as A-sides comprising isocyanate molecules.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: May 15, 2012
    Assignee: The Curators of the University of Missouri
    Inventors: Galen Suppes, Fu-Hung Hsieh, Yuan-Chan Tu, Pimphan Kiatsimkul
  • Patent number: 8178591
    Abstract: Microcellular polyurethane flexible foams having densities no greater than 0.3 g/cc which are suitable for use as lightweight shoe sole components are produced with carbon dioxide in an amount such that the polyurethane-forming mixture has a free rise density of from about 0.03 to about 0.3 g/cc. At least a portion of that carbon dioxide is dissolved as a gas into one or both of the reaction components. The amount of dissolved carbon dioxide must be such that the froth density of the isocyanate and/or isocyanate-reactive component(s) in which the carbon dioxide is dissolved will be from about 0.1 to about 0.8 g/cc. Additional carbon dioxide may be formed by the reaction of water and isocyanate during the polyurethane-forming reaction but the total amount of CO2 present should be controlled to ensure that the polyurethane-forming mixture has a free rise density of from about 0.03 to 0.3 g/cc.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: May 15, 2012
    Assignees: Bayer MaterialScience LLC, Bayer MaterialScience AG
    Inventors: Usama E. Younes, David M. Baily, Charles R. Carpenter
  • Patent number: 8173719
    Abstract: The subject of the invention is a water-impermeable flexible polyurethane foam obtained by reacting a polyol component, which comprises at least one hydrophobic polyol, with a polyisocyanate component in the presence of a foaming agent, characterized in that it has a compression force of less than or equal to 12 kPa for 50% compression. Advantageously it has a density not exceeding 150 kg/m3, preferably not exceeding 60 kg/m3. The foam may be obtained by a cast-foam manufacturing process or by molding. It can be used as a water-impermeable seal.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: May 8, 2012
    Assignee: Saint-Gobain Performance Plastics Chaineux
    Inventors: Georges Moineau, Marc Mertens, Dominique Petit
  • Patent number: 8148440
    Abstract: Process for preparing rigid urethane-modified polyisocyanurate foams from polyisocyanates and polyfunctional isocyanate-reactive components in the presence of a blowing agent, a metal salt trimerisation catalyst and a functionalised carboxylic acid.
    Type: Grant
    Filed: February 5, 2004
    Date of Patent: April 3, 2012
    Assignee: Huntsman International LLC
    Inventors: Joern Kuester, Roberto Fare, David Alexander Ferguson
  • Patent number: 8148437
    Abstract: The present invention relates to a process for producing integral polyurethane foams, in which a) organic polyisocyanates are mixed with b) relatively high molecular weight compounds having at least two reactive hydrogen atoms, c) blowing agents, d) dialkyl cyclohexanedicarboxylates and, if appropriate, e) chain extenders and/or crosslinkers, f) catalysts and g) other auxiliaries and/or additives to form a reaction mixture, the reaction mixture is introduced into a mold and allowed to react to form an integral polyurethane foam. The present invention further relates to integral polyurethane foams comprising dialkyl cyclohexanedicarboxylates, the use of such foams in the interior of road vehicles or as shoe soles and the use of dialkyl cyclohexanedicarboxylates as internal mold release agents in the production of integral polyurethane foams.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: April 3, 2012
    Assignee: BASF SE
    Inventors: Marco Ortalda, Tony Spitilli
  • Patent number: 8143321
    Abstract: The present invention provides compounds produced by the reaction of glycidyl ethers and glycidyl esters with ether compounds including N,N,N?-trimethyl-bis-(aminoethyl) ether. N,N,N?-trimethyl-bis-(aminoethyl) ether and its derivatives can be used as polyurethane catalysts.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: March 27, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Juan Jesus Burdeniuc, Stephan Herman Wendel, John William Mitchell
  • Patent number: RE43432
    Abstract: Single component compositions for making a moisture-cured polyurethane foam are disclosed. Foam produced from the compositions of the present invention produce very low foaming pressure due to their 60-95 percent open-cell content. After these compositions are applied and cure, they form a permanent seal around the perimeter of installed fenestration products.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: May 29, 2012
    Assignee: Dow Global Technologies LLC
    Inventors: Robert G. Braun, Jess M. Garcia, Deborah A. Schutter