Contains A Magnesium Compound As The Group Iia Metal Compound Patents (Class 526/124.2)
  • Patent number: 6627710
    Abstract: The invention relates to catalyst components, suitable for the preparation of homopolymers and copolymers of ethylene having a broad molecular weight distribution (MWD), which comprise Ti, Mg, Cl, and are characterized by the following properties: surface area, determined by BET method, of lower than 100 m2/g, a total porosity, measured by the mercury method, of higher than 0.25 cm3/g, a pore radius distribution such that at least 45% of the total porosity is due to pores with radius up to 0.1 &mgr;m.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: September 30, 2003
    Assignee: Basell Polyolefine GmbH
    Inventors: Mario Sacchetti, Diego Brita
  • Patent number: 6617405
    Abstract: A process of polymerizing ethylene or ethylene and one or more comonomers in one or more fluidized bed reactors with a catalyst system comprising (i) a supported or unsupported magnesium/titanium based precursor in slurry form, said precursor containing an electron donor; and (ii) an activator containing aluminum in an amount sufficient to essentially complete the activation of the precursor is disclosed. In the process, the precursor and the activator are mixed prior to introduction into the reactor in at least one mixing procedure, and then the mixture is contacted again with additional activator to essentially complete activation of the precursor. In the method, the atomic ratio of aluminum to titanium is in the range of about 1:1 to about 15:1 and the mole ratio of activator to electron donor is about 1:1 to about 2:1, and no additional activator is introduced into the reactor(s).
    Type: Grant
    Filed: July 14, 1999
    Date of Patent: September 9, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventor: Robert James Jorgensen
  • Patent number: 6605562
    Abstract: The present invention relates to catalyst components for the polymerization of olefins, and to the catalyst obtained therefrom, particularly suitable for the stereospecific polymerization of olefins, comprising Ti, Mg, halogen and an electron donor compound selected from heteroatom containing esters of malonic acids (heteroatom containing malonates). Said catalyst components when used in the polymerization of olefins, and in particular of propylene, are capable to give polymers in high yields and with high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: June 28, 2000
    Date of Patent: August 12, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin, Yuri V. Gulevich
  • Publication number: 20030130110
    Abstract: There are provided:
    Type: Application
    Filed: January 21, 2003
    Publication date: July 10, 2003
    Inventors: Tatsuya Miyatake, Masaaki Nabika, Seiki Kiuchi
  • Patent number: 6590046
    Abstract: The present invention relates to a catalyst for polymerization of olefin and the method of polymerization using the same, or more particularly, to a new catalyst for polymerization of olefin of a hybrid concept and the method of polymerization using the same, which comprises synthesizing a titanium compound chelated by means of amide and cyclopentadiene-based ligands, and activating the same by means of conventional MgCl2, etc., instead of using expensive methylaluminoxane. Moreover, the present invention can produce polymers of narrow distribution of molecular weights and even distribution of composition of co-polymers.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: July 8, 2003
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Gap-Goung Kong, Seung-Hwan Jung, Won Lee, Yong-Hwan Kim
  • Patent number: 6586536
    Abstract: Atactic, amorphous, and tacky poly-alpha-olefins containing 100%-65% propylene and optionally up to about 35% ethylene are prepared by polymerizing the monomer(s) at 180-450° F. and at a pressure sufficient to substantially maintain the monomer(s) in the liquid phase. The polymerization is carried out in the presence of catalyst system consisting of (a) a transition metal halide selected from the group consisting of (i) a titanium trihalide and an aluminum alkyl, (ii) a titanium halide on a comminuted magnesium halide support, and (iii) a titanium halide sandwich compound and (b) aluminum alkyl as a co-catalyst.
    Type: Grant
    Filed: March 23, 1995
    Date of Patent: July 1, 2003
    Inventor: Joseph M. Kelley
  • Patent number: 6586543
    Abstract: The present invention provides a process for preparing a substantially amorphous poly-&agr;-olefin, which includes: a) preforming a solid catalyst and, optionally, a first amount of a trialkylaluminum cocatalyst, by contacting the catalyst and optionally the cocatalyst with at least one selected from the group including oxygen and a compound which includes active oxygen, to form a preformed catalyst, wherein the solid catalyst includes magnesium, aluminum and titanium, and wherein said trialkylaluminum cocatalyst includes 1 to 9 carbon atoms in each alkyl group; b) contacting the preformed catalyst with a second amount of the cocatalyst, wherein a molar ratio of trialkylaluminum to the titanium ranges from 40:1 to 700:1, to form a catalyst mixture; c) polymerizing, in the liquid phase, with the catalyst mixture, an olefin or an olefin mixture at a temperature between 30 and 160° C., to produce the poly-&agr;-olefin.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: July 1, 2003
    Assignee: Degussa AG
    Inventors: Hans Guenther Wey, Norbert Schlueter
  • Patent number: 6586540
    Abstract: The invention relates to a method for the production of copolymer based on ethylene by continuous copolymerization of ethylene and comonomer in a reactor in the presence of a catalyst. In this method, in a first step of the copolymerization, a mixture comprising ethylene and comonomer of such a composition that a copolymer-containing coating deposits in the reactor is metered into the reactor and/or generated in the reactor, and, in a second step, the concentration of the comonomer in the metered-in mixture and/or in the mixture generated in the reactor is reduced sufficiently and/or the concentration of the ethylene in the metered-in mixture and/or in the mixture generated in the reactor is increased sufficiently that the coating is removed from the reactor either partially or completely. The method has the advantage that the production of copolymer does not have to be interrupted during cleaning of the reactor.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: July 1, 2003
    Assignee: Basell Polyolefine GmbH
    Inventors: Paulus De Lange, Volker Billert, Bernd Brunner, Werner Ritter, Andreas Deckers
  • Patent number: 6569799
    Abstract: The present invention provides to a catalytic system, its method for preparation, and a method for preparation of a copolymer of ethylene and a conjugated diene, which uses this catalytic system. A catalytic system according to the invention comprises: an organometallic complex compound, which is represented by one formula A or B:  in which Ln represents a metal of a lanthanide, the atomic number of which is between 57 and 71; X represents a halogen, which can be chlorine, fluorine, bromine or iodine; and Cp1 and Cp2 each comprise a cyclopentadienyl or fluorenyl group, which is or is not substituted, and P is a bridge corresponding to the formula MR2, in which M is an element of column IVA of Mendeleev's periodic classification, and R is an alkyl group comprising from 1 to 20 atoms of carbon; and a co-catalyst selected from among a magnesium alkyl, a lithium alkyl, an aluminium alkyl, or a Grignard's reagent, and mixtures thereof.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: May 27, 2003
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Fanny Barbotin, Cristophe Boisson, Roger Spitz
  • Patent number: 6566463
    Abstract: This invention provides the multifunctional coagents of the metallic salt of unsaturated carboxylic acid that obtained by the reaction from two mols of mono-basic acid and two mols of di-basic acid as an unsaturated carboxylic acid, and three mols of divalent metal oxide. For making these multifunctional coagents of metallic salt of unsaturated carboxylic acid, one kind or two kinds of mono-basic acid can be used among acrylic acid and methacrylic acid as an unsaturated carboxylic acid. As a di-basic acid, only one kind can be used among maleic acid and fumaric acid. And, as a metal complex for making this multifunctional metallic coagents, the divalent metal oxide such as zinc oxide, magnesium oxide and calcium oxide that can be used. One kind or two and over kinds of metal oxide can be used.
    Type: Grant
    Filed: November 14, 2001
    Date of Patent: May 20, 2003
    Inventor: In Hong Hwang
  • Patent number: 6562914
    Abstract: A process for homo or copolymerizing propylene, wherein propylene is polymerized in the presence of a catalyst at an elevated temperature in a reaction medium in which a major part of the reaction medium is propylene and the polymerization is carried in at least one CSTR or loop reactor, where the polymerization is carried out at a temperature and a pressure which are above the corresponding critical temperature and the pressure of the reaction medium and were the residence time is at least 15 minutes. The process can also have a subcritical loop polymerization before the supercritical stage polymerization or gas phase polymerization after the supercritical stage polymerization.
    Type: Grant
    Filed: April 27, 2000
    Date of Patent: May 13, 2003
    Assignee: Borealis A/S
    Inventors: Henrik Andtsjö, Ismo Pentti, Ali Harlin
  • Patent number: 6544921
    Abstract: There are provided: (I) a solid catalyst component (A-1) for olefin polymerization, which is obtained by a process comprising the step of contacting: (a-1) a carrier of carboxyl group-carrying polymer particles having an average particle diameter of from 1 to 300 &mgr;m, and (b) a transition metal compound of the number 4 group of metals in the periodic table of elements; (II) a catalyst for olefin polymerization, which is obtained by a process comprising the step of contacting: (A-1) the above solid catalyst component, and (B) at least one compound selected from the group consisting of an organoaluminum compound and an organoaluminumoxy compound; (III) a process for producing an olefin polymer, which comprises the step of polymerizing an olefin in the presence of the above catalyst; and (IV) a process for producing the above solid catalyst component (A-1), which comprises the step of contacting: (a-1) the above carrier, and (b) the above transition metal compound.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: April 8, 2003
    Assignee: Sumitomo Chemical Comapny, Limited
    Inventors: Tatsuya Miyatake, Masaaki Nabika, Seiki Kiuchi
  • Patent number: 6541582
    Abstract: A solid catalyst component for the polymerization of olefins CH2═CHR, in which R is hydrogen or a hydrocarbon radical having 1-12 carbon atoms, the solid catalyst component including Mg, Ti, halogen and an electron donor selected from &bgr;-substituted glutarates other than diisopropyl &bgr;-methyl glutarate and which are not alpha-substituted. The catalyst component, when used in the polymerization of olefins, and in particular polypropylene, is capable of providing polymers in high yield and with a high isotactic index expressed in terms of high xylene insolubility.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: April 1, 2003
    Assignee: Basell Poliolefine Italia S.p.A.
    Inventors: Giampiero Morini, Giulio Balbontin
  • Patent number: 6538078
    Abstract: The present invention relates to a highly active titanium based supported catalyst suitable for olefin (co)polymerization, preparation and use of the same. The catalyst according to the present invention is obtained by supporting a titanium based catalyst component containing a halide promoter on spherical silica. The resultant catalyst is excellent in its particle morphology and flowability, has highly catalytic activity, has excellent hydrogen response and has superior comonomer incorporation, the polymer prepared by using such a catalyst has its particle morphology further improved.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: March 25, 2003
    Assignees: China Petro-Chemical Corporation, Beijing Research Institute of Chemical Industry Sinopec
    Inventors: Hekuan Luo, Ruiguo Tang, Hua Yang, Qinfang Zhao
  • Patent number: 6500906
    Abstract: This invention relates to transition metal catalyst component chelated by chelate ligand, a catalytic system comprising the transition metal catalyst component in the presence of magnesium halide, and a process for olefin polymerization using the catalytic system. The preparation of chelated transition metal catalyst component[A] are prepared by the unique synthetic method, in which Mg[AlR′(OR)3]2 reacts with chelate ligand to form Mg—Al-chelate ligand complex containing chelate ligand, and this complex reacts with metal halide compound to prepare chelated transition metal compound which is quite soluble in non-polar solvents. The olefin polymerization is performed using a catalytic system comprising the chelated transition metal catalyst component[A], MgCl2 support component[C], and an organoaluminum cocatalyst component[B].
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: December 31, 2002
    Assignee: Samsung General Chemicals
    Inventors: Gap-Goung Kong, Sung-Cheol Yoon, Gyo-Hyun Hwang
  • Patent number: 6486274
    Abstract: A Ziegler-Natta type catalyst having an improved hydrogen response provides for narrowing of the MWD of resulting polyolefins polymerized using such catalyst, with such catalyst generally made by a) contacting a soluble magnesium dialkoxide compound of the general formula Mg(OR″)2 with a halogenating agent capable of exchanging one halogen for one alkoxide to form a reaction product A, where R″ is a hydrocarbyl or substituted hydrocarbyl having from 1 to 20 carbon atoms; b) contacting reaction product A with a first halogenating/titanating agent to form reaction product B; and c) contacting reaction product B with a second halogenating/titanating agent to form a catalyst component; wherein in at least one of steps b) and c), the halogenating/titanating agent is a blend of Ti(OPr)4 and TiCl4. Catalyst components, catalysts, catalyst systems, polyolefin polymers, and methods of forming each are disclosed.
    Type: Grant
    Filed: October 13, 2000
    Date of Patent: November 26, 2002
    Assignee: Fina Technology, Inc.
    Inventors: Steven D. Gray, Tim J. Coffy
  • Patent number: 6469112
    Abstract: One aspect of the present invention relates to a catalyst system for use in olefinic polymerization, containing a solid titanium catalyst component; an organoaluminum compound having at least one aluminum-carbon bond; and an organosilicon compound comprising a (cycloalkyl)methyl group. Another aspect of the present invention relates to a method of making a catalyst for use in olefinic polymerization, involving the steps of reacting a Grignard reagent having a (cycloalkyl)methyl group with an orthosilicate to provide an organosilicon compound having a (cycloalkyl)methyl moiety; and combining the organosilicon compound with an organoaluminum compound having at least one aluminum-carbon bond and a solid titanium catalyst component to form the catalyst.
    Type: Grant
    Filed: August 15, 2001
    Date of Patent: October 22, 2002
    Assignee: Engelhard Corporation
    Inventors: Chung-Ping Cheng, Michael D. Spencer
  • Patent number: 6455648
    Abstract: A process is provided which comprises preparing an olefin oligomerization or trimerization catalyst system and producing olefins in the presence of the olefin oligomerization or trimerization catalyst system and a solvent, wherein said catalyst system preparation comprises the steps of first contacting a chromium source and a pyrrole-containing compound to form a chromium/pyrrole mixture; second, contacting said chromium/pyrrole mixture with a metal alkyl to form a catalyst system; and then contacting said catalyst system with an alpha-olefin, preferably ethylene.
    Type: Grant
    Filed: December 29, 1999
    Date of Patent: September 24, 2002
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jeffrey W. Freeman, Warren M. Ewert, Bruce E. Kreischer, Ronald D. Knudsen, Glyndal D. Cowan
  • Patent number: 6455642
    Abstract: The present invention concerns a process for producing homogeneous polyethylene materials and processes for making high density, medium density and low density films therefrom. The process involves producing a polyethylene composition in a multistage reaction sequence of successive polymerization stages in the presence of an ethylene-polymerizing catalyst system. According to the invention, the process is carried out using an unsupported catalyst having magnesium and titanium as active constituents, in at least one loop polymerization stage and at least one gas phase polymerization stage and, operated with different amounts of hydrogen and comonomers to produce a high molecular weight portion in one of the polymerization stages and a low molecular weight portion in another so as to provide a polyethylene composition with the low molecular weight part having a MFR2 of 250 g/10 min or more. With this process it is possible to obtain homogeneous bimodal polyethylene material.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: September 24, 2002
    Assignee: Borealis Technology Oy
    Inventors: Ole Jan Myhre, Auli Nummila-Pakarinen, Jarmo Lindroos, Päivi Waldvogel, Thomas Garoff
  • Patent number: 6455647
    Abstract: The present invention relates to a solid catalyst (D) for olefin polymerization comprising a magnesium-containing solid component (A) carrying thereon an organoaluminum-oxy compound (B) and a metallocene compound (C), the magnesium-containing compound (A) being obtained by heat treating a magnesium compound represented by the general formula: MgX2.nH2O where X represents a halogen atom and n is an integer of 1 to 12, and to a method of producing an olefinic polymer using the catalyst. In the case where the above solid catalyst for olefin polymerization is used, catalyst activity, particularly activity per solid catalyst, is high. Therefore, a deashing treatment step such as catalyst removal can be omitted. Further, the olefinic polymer produced has a narrow molecular weight distribution, and in the case of a copolymer, its monomer composition is uniform.
    Type: Grant
    Filed: June 8, 2000
    Date of Patent: September 24, 2002
    Assignee: Maruzen Petrochemical Co., Ltd.
    Inventors: Sakae Kamiyama, Toshifumi Takemori, Minoru Iijima, Yukiko Hane, Shigeharu Yamamoto
  • Patent number: 6448348
    Abstract: A catalytic polymerization process for preparing polymer products is provided. The polymerization process is either homopolymerization of olefins or copolymerization of olefins with alpha-olefins. The polymerization process is conducted in the presence of a solid catalyst precursor and a cocatalyst. The catalyst precursor includes a transition metal, a magnesium compound, an aluminum compound and a polyvinylchloride (PVC) support.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: September 10, 2002
    Assignee: Saudi Basic Industries Corporation
    Inventors: Akhlaq Moman, Atieh Abu-Raqabah, Orass Hamed, Raju Raghavan
  • Patent number: 6437061
    Abstract: The present invention relates to MgCl2.mROH.nH2O adducts, where R is a C1-C10 alkyl, 2≦m≦4.2, 0≦n≦0.7 , characterized by an X-ray diffraction spectrum in which, in the range of 2&thgr; diffraction angles between 5° and 15°, the three main diffraction lines are present at diffraction angles 2&thgr; of 8.8±0.2°, 9.4±0.2° and 9.8±0.2°, the most intense diffraction lines being the one at 2&thgr;=8.8±0.2°, the intensity of the other two diffraction lines being at least 0.2 times the intensity of the most intense diffraction line. Catalyst components obtained from the adducts of the present invention are capable to give catalysts for the polymerization of olefins characterized by enhanced activity and stereospecificity.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: August 20, 2002
    Assignee: Basell Technology Company BV
    Inventors: Mario Sacchetti, Gabriele Govoni, Anna Fait
  • Publication number: 20020103311
    Abstract: The invention relates to an improved olefin catalyst, a method of in situ-activated catalyst preparation and a process for the polymerization of olefinic monomers via, for example, a titanium trichloride/magnesium dichloride/tetrahydrofuran reaction product catalyst precursor. The activated catalyst is prepared in situ in a polymerization reactor using an alumoxane based co-catalyst wherein the cumbersome traditional steps of catalyst activation and isolation, prior to polymerization are eliminated. An unexpected advantage of this invention is a significant increase in catalyst productivity while maintaining a relatively constant value of the bulk density of polymeric materials produced while concomitantly producing a polymeric product having a broad molecular weight distribution compared with typical alumoxane-activated metallocene catalysts.
    Type: Application
    Filed: February 14, 2002
    Publication date: August 1, 2002
    Applicant: Saudi Basic Industries Corporation
    Inventors: Atieh Abu-Raqabah, Abdul Wahab Al-Sadoun, Navin Nallaveerapan
  • Patent number: 6417299
    Abstract: There is described a process for producing ethylene/olefin interpolymers which, for a given melt index and density, have a reduced melting peak temperature (Tm). The process involves contacting ethylene and at least one other olefin under polymerization conditions with an olefin polymerization catalyst and at least one modifier comprising at least one element from Group 15 and/or Group 16 in amounts sufficient to reduce the melting peak temperature of the ethylene/olefin interpolymer. Also described herein are novel ethylene/olefin interpolymers resulting from the process.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: July 9, 2002
    Assignee: Eastman Chemical Company
    Inventors: Randal Ray Ford, Jeffrey James Vanderbilt, Darryl Stephen Williams
  • Patent number: 6387839
    Abstract: The present invention provides a compound catalyst system useful for synthesizing polyethylenes or copolymers of ethylene having bimodal or broad molecular weight distributions, prepared by incorporating an organic alcohol as an electron-donor compound and an aluminoxane compound into the prior art compound catalyst systems, thereby promoting the activities of the two active centers, which leads to not only a large improvement in the activity of the catalyst system, but also the formation of polyethylenes and copolymers of ethylene having bimodal or broad molecular weight distributions, which in turn gives polymers having excellent processability and mechanical properties. A process for preparing the solid catalyst component used in the compound catalyst system according to the present invention and use of the compound catalyst system are also disclosed.
    Type: Grant
    Filed: December 28, 1999
    Date of Patent: May 14, 2002
    Assignees: China Petrochemical Corporation, Beijing Research Institute of Chemical Industry Sinopec
    Inventors: Maozhu Jin, Yuexiang Liu, Renqi Peng, Huibo Shen, Meizhen Yin, Zhaowen Ma, Changbing Xie, Yijing Sun, Baolan Zhu, Baoquan Xing
  • Patent number: 6388028
    Abstract: The present invention relates to spherical solid catalyst components for the polymerization of olefins, comprising a titanium compound, supported on a magnesium halide, containing more than one Ti-halogen link and optionally containing groups different from halogen in an amount lower than 0.5 mole per mole of Ti. Spherical solid compounds of the invention are characterized by having a surface area, measured by the BET method, of lower than 70 m2/g, a total porosity, measured by the mercurium method, higher than 0.5 cm3/g and a pore radius such that at least 50% have values higher than 800 Å.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: May 14, 2002
    Assignee: Basell Technology Company bv
    Inventors: Mario Sacchetti, Illaro Cuffiani, Gianni Pennini
  • Patent number: 6353056
    Abstract: In a process for the preparation of block copolymers from vinylaromatic monomers and dienes, the monomers are polymerized in the presence of at least one alkali metal organyl or alkali metal alkoxide and at least one magnesium, aluminum or zinc organyl.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: March 5, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Konrad Knoll, Hermann Gausepohl, Volker Warzelhan, Christian Schade, Wolfgang Fischer
  • Patent number: 6337377
    Abstract: A process for producing an olefin polymer using a catalyst in which (A) is a solid catalyst component which includes magnesium, titanium, halogen and an electron donative compound as essential constituents; (B) is an organoaluminum component; and (C) is at least two electron donative compounds (&agr;) and (&bgr;), wherein the pentad stereoregularity of a xylene insoluble fraction of a homopolyproylene is 0<mmrr/mmmm≦0.0068 when electron donative compound (&agr;) is used in combination with (A) and (B), and the pentad stereoregularity of a xylene insoluble fraction homoproplyene of a is 0.0068<mmrr/mmmm ≦0.0320 when electron donative compound (&bgr;) is used in combination with (A) and (B). A polypropylene produced in the process can be used to obtain a biaxially oriented film. (A) and (B). A polypropylene produced in the process can be used to obtain a biaxially oriented film.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: January 8, 2002
    Assignee: Sumitomo Chemical Company, Ltd.
    Inventors: Takeshi Ebara, Koji Mizunuma, Toshio Sasaki, Kazuki Wakamatsu, Junichi Kimura, Yoichi Obata
  • Patent number: 6337376
    Abstract: A method to prepare a polyolefin in the presence of a catalyst comprising: (A) a solid catalyst component prepared by reacting a homogenous solution consisting of (i) at least one member selected from the group consisting of metal magnesium and a hydroxylated organic compound, and oxygen-containing organic compounds of magnesium, (ii) at least one oxygen-containing organic compound of titanium and (iii) at least one silicon compound, first with (iv) at least one first organoaluminum halide compound of the formula: AlR5zX3−z  wherein R5 is a hydrocarbon group having from 1 to 20 carbon atoms, X is a halogen atom, and 1≦z≦2, and wherein the atomic ratio of gram atoms of Al in the component (iv) to gram atoms of Mg in the component (i) (Al/Mg) is from 0.1 to 2.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: January 8, 2002
    Assignee: Tosoh Corporation
    Inventors: Yutaka Naito, Fumiharu Takahashi, Mitsuhiro Mori, Yozo Kondo
  • Patent number: 6335411
    Abstract: Ethylene polymer having a blow-up ratio (RB) of at least 1.4, a resistance to crazing under stress (ESCR) of at least 55 h and a melt index (MI5) of at least 0.2 g/10 min. Processes for obtaining this ethylene polymer using different catalytic systems, the first based on titanium and zirconium used in a polymerization in two reactors; the second consisting of a mixture of a titanium catalyst and a titanium and zirconium catalyst, used in a polymerization in two reactors; the third based on chromium on a support comprising at least two constituents chosen from silica, alumina and aluminium phosphates, used in a polymerization in a single or in two reactors.
    Type: Grant
    Filed: April 2, 1999
    Date of Patent: January 1, 2002
    Assignee: Solvay Polyolefins Europe -Belgium
    Inventors: Benoît Koch, Michel Promel, Jiang Bian
  • Patent number: 6329476
    Abstract: A novel loop/slurry olefin polymerization process is provided which produces ultra high molecular weight ethylene homopolymers and ultra high molecular weight ethylene copolymers. Catalyst systems used are selected from the group consisting of inorganic oxide supported titanium-containing catalyst systems, inorganic oxide supported organo-zirconium catalyst systems and inorganic oxide supported organo-hafnium catalyst systems.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: December 11, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Joel L. Martin, Joseph J. Bergmeister, Eric T. Hsieh, Max P. McDaniel, Elizabeth A. Benham, Steven J. Secora
  • Patent number: 6313227
    Abstract: Provided are a propylene-ethylene block copolymer having MFR of from 0.01 to 1.0 g/10 min and comprised of (A) from 85 to 97% by weight a 25° C. xylene-insoluble fraction and (B) from 3 to 15% by weight of a 25° C. xylene-soluble fraction, wherein the fraction (A) is such that its stereospecificity index measured through 13C-NMR is at least 98.0%, its intrinsic viscosity [&eegr;] falls between 2.5 and 5.5 dl/g, and its weight-average molecular weight, Mw, measured through GPC and the content, S, of the fraction having a molecular weight of at most 104.5 therein satisfy S (wt. %)≦−5.3×10−6 Mw+7.58, and the fraction (B) is such that its ethylene unit content measured through 13C-NMR falls between 30 and 70% by weight, and its intrinsic viscosity [&eegr;] falls between 2.5 and 9.0 dl/g; and its blow-molded articles.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: November 6, 2001
    Assignee: Idemitsu Petrochemical Co., Ltd.
    Inventors: Kenji Tanaka, Yasuhisa Sugita, Masaru Nakagawa, Tetsuya Nakamura
  • Patent number: 6306985
    Abstract: Disclosed is a high activity solid catalyst for synthesizing low-, medium- and high-density polyethylenes by a slurry phase process, prepared by using commercial powered magnesium as raw material, forming a magnesium halide in the nascent state, followed by successively treating said magnesium halide with an alcohol compound and an alkyl aluminum compound, then reacting the resulting suspension of the spheroidal, porous solid complex carrier with a titanium compound in the presence of an electron donor compound an alkyl aluminum compound to obtain a main catalyst component and finally mixing the catalyst component with an organometallic compound as cocatalyst.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: October 23, 2001
    Assignee: China Petrochemical Corporation
    Inventors: Mingwei Xiao, Shijiong Yu, Xiaofeng Ye
  • Patent number: 6303716
    Abstract: Disclosed is a catalyst for synthesizing low-, medium- and high-density polyethylene, prepared by using commercial powdered magnesium as a raw material, forming a magnesium halide in the nascent state, then reacting said magnesium halide with a titanium compound and an alkyl aluminum compound in the presence of an electron donor compound to form a complex, supporting said complex onto silica carrier and drying the resulting mixture by heating to form a solid main catalyst component, and finally mixing said main catalyst component with an organometallic compound as cocatalyst. The catalyst according to the present invention is characterized by a simple preparing procedure, smooth and stable reaction, uniform heat liberation and less agglomerates when used for gas phase polymerizing ethylene, high polymerization activity, high sensitivity to the modification by hydrogen and high copolymerization power, and the products thus obtained have good product morphology.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: October 16, 2001
    Assignees: China Retrochemical Corp., Shanghai Research Institute of Chemical Industry Sinopec Unila
    Inventors: Mingwei Xiao, Zixiao Chai, Xiaofeng Ye
  • Patent number: 6281302
    Abstract: A solid catalyst component for olefin polymerization prepared by a method which comprises contacting the following components (a), (b), (c) and (d): (a) a polymer carrier containing a carbonyl group; (b) an organometallic compound of metal of Group I, II or XIII of the Periodic Table; (c) a transition metal compound of Group IV of the Periodic Table; and (d) a phenol compound, a catalyst for olefin-polymerization comprising said solid catalyst component and an organoaluminum compound and/or organoaluminum oxide compound, and a method for producing an olefin polymer with said catalyst.
    Type: Grant
    Filed: June 29, 1998
    Date of Patent: August 28, 2001
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Naofumi Naga, Kotohiro Nomura, Tatsuya Miyatake
  • Patent number: 6268443
    Abstract: A solid catalyst component for olefin polymerization superior in shatter resistance and narrowness of particle size distribution, is provided, which component is prepared by spraying a mixture of Mg compound with an alcohol in a molten state, in a column; cooling the inside of the column; to obtain a component (B); partly removing the alcohol from (B), to obtain a solid component (C); contacting a halogen-containing Ti compound and an electron donor with (C); to obtain (D); contacting (D) with a halogen-containing Ti compound; in the above process, specifying the composition formulas of (A), (B) and (C); specifying the X-ray diffraction spector of (C) in comparison of that of (B); and contacting (C) with a halogen-containing Ti compound and an electron donor using an aliphatic hydrocarbon of a specified b.p., in a specified temperature.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: July 31, 2001
    Assignee: Chisso Corporation
    Inventors: Toshihiro Uwai, Masami Tachibana, Jun Saito
  • Patent number: 6262195
    Abstract: A multi-stage process for preparing ethylene (co)polymers having broad molecular weight distributions is disclosed, said process comprising: (A) a first polymerization stage in which, in the presence of a Ti or V catalyst, a first ethylene polymer is prepared; (B) a treatment stage in which the catalyst used in the first stage is deactivated and in which a bridged bis-2-indenyl zirconocene is supported on the ethylene polymer produced in stage (A), optionally in the presence of a suitable cocatalyst; and (C) a second polymerization stage in which ethylene is polymerized in the presence of the product obtained from stage (B). Furthermore, polyethylene obtainable by the above process is disclosed, having intrinsic viscosity ranging from 0.5 to 6 dl/g, Mw/Mn>8 and cold xylene solubility<1.2% wt.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: July 17, 2001
    Assignee: Montell Technology Company bv
    Inventors: Tiziano Dall'Occo, Giovanni Baruzzi, Colin J. Schaverien
  • Patent number: 6232255
    Abstract: A catalyst system for the polymerization of olefins which includes a solid catalyst component and a cocatalyst. The solid catalyst component includes the contact product of silica, an alkyl magnesium-containing species, a compound having the structural formula E(YZ)mX4-m, where E is an atom of an element of Group 14 of the Periodic Table of the Elements; Y is an atom of an element of Group 16 of the Periodic Table of the Elements; Z is hydrogen, hydrocarbyl or mixtures thereof; X is hydrogen, halogen, hydrocarbyl or mixtures thereof; and m is an integer of 1 to 4 and a tetravalent titanium compound. The cocatalyst includes a mixture of at least two compounds having the structural formula AlRxX13-x, where R is the same or different and is hydrocarbyl; X1 is halogen; and x is an integer of 1 to 3 with the proviso that at least one of the compounds is defined by x being 3 and at least one of the compounds as defined by x being 1 or 2.
    Type: Grant
    Filed: September 16, 1999
    Date of Patent: May 15, 2001
    Assignee: Equistar Chemicals, LP
    Inventors: Linda N. Winslow, Garry L. Fields, Kenneth W. Johnson
  • Patent number: 6232422
    Abstract: Porous particles of MgCl2 having the form of essentially regular polyhedrons with six or eight faces in which the paired symmetrically opposite faces are essentially parallel, two of which faces are large and elongated and form the too face and the bottom face of a polyhedron such that on each of them the longest diagonal (D) is larger than the shortest distance (d) separating two opposite sides, which large elongated faces are surrounded essentially perpendicularly by the other essentially rectangular faces that form the sides of the said polyhedron, the length of the smaller side (e) of each of the said essentially rectangular faces being less than the shortest distance (d) separating the two opposite sides of the large elongated faces, catalytic components supported on the particles, catalyst systems utilizing the catalytic products, process for making the particles, and polyolefins obtained utilizing the catalytic systems.
    Type: Grant
    Filed: April 26, 1994
    Date of Patent: May 15, 2001
    Assignee: Atofina
    Inventors: Roger Spitz, Thierry Soto, Claude Brun, Laurent Duranel
  • Patent number: 6228956
    Abstract: Process for the gas-phase polymerization of olefins of the formula CH2═CHR where R is hydrogen or an alkyl or aryl radical with 1 to 8 carbon atoms carried out in one or more reactors having a fluidized or mechanically agitated bed, using a catalyst obtained by reaction of a titanium halide or haloalcoholate and optionally an electron-donor compound supported on an active Mg-dihalide with an Al-trialkyl compound and optionally an electron-donor compound, comprising the steps of: a) contacting the catalyst components in the absence of polymerizable olefin or optionally in the presence of said olefin in an amount to from up to 3 g per g of solid catalyst component; b) prepolymerizing propylene or mixtures of propylene with ethylene or an alpha-olefin to form a propylene polymer having an insolubility in xylene of at least 60% by weight, in an amount of from 5 g of polymer per g of solid catalyst component to 10% by weight of the final catalyst yield; and c) polymerizing one or more CH2═CHR olefins
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 8, 2001
    Assignee: Montell Technology Company BV
    Inventors: Massimo Covezzi, Paolo Galli, Gabriele Govoni, Roberto Rinaldi
  • Patent number: 6228791
    Abstract: The present invention is a solid catalyst component for polymerization of olefins prepared by contacting a magnesium compound, a tetravalent halogen-containing titanium compound, a diester of an aromatic dicarboxylic acid, an aromatic hydrocarbon and an organic aluminum compound containing a hydroxyl group represented by the following general formula (R1CO2)mAl(OH)3-m or aluminum hydroxide. The catalyst for polymerization of olefins comprising said solid catalyst component, an organic aluminum compound represented by the general formula R2pAlQ3-p and an organic silicon compound represented by the general formula R3qSi(OR4)4-q can retard the rate of forming a polymer having a low molecular weight or a low stereoregular polymer which is soluble in a polymerization solvent in slurry polymerization and can obtain a high stereoregular polymer in a high yield, and also can obtain a copolymer having an excellent property in a high yield in the copolymerization of olefins.
    Type: Grant
    Filed: July 6, 1999
    Date of Patent: May 8, 2001
    Assignee: Toho Titanium Co., Ltd.
    Inventors: Takuo Kataoka, Masayoshi Saito, Isa Nishiyama
  • Patent number: 6225420
    Abstract: A procatalyst and a process for the preparation of a multimodal ethylene homopolymer or copolymer by gas-phase polymerisation is described. The procatalyst used in the process is prepared by: a) contacting the support, preferably silica with a halogenating agent, preferably ethyl aluminium dichloride to obtain a first reaction product, b) contacting the first reaction product with a compound or mixture containing hydrocarbyl and one or more of hydrocarbyloxy, monoalkylamido, dialkylamido, carboxylato and alkoxymethoxy groups linked to magnesium, thereby to obtain a second reaction product (the procatalyst precursor), and c) contacting the second reaction product with a titanium compound, preferably TiCl4. In step a) the molar ratio of the alkyl metal chloride to the surface hydroxyls of the inorganic oxide is preferably between 1:1 and 10:1. In step b) the atomic ratio of the magnesium to the chlorine of the alkyl metal chloride of step a) preferably is between 1:1.5 to 1:2.5.
    Type: Grant
    Filed: June 9, 1998
    Date of Patent: May 1, 2001
    Assignee: Boreallis A/S
    Inventors: Ulf Palmqvist, Solveig Johansson, Lars Thorn, Peter Idelmann, Anders Wahlström, Daniel Lindgren
  • Patent number: 6214948
    Abstract: Process for the polymerization of olefins using a catalytic system comprising a solid precursor containing at least one neutral halogenated metallocene derived from a transition metal and at least one ionizing agent, and an organometallic compound derived from a metal chosen from groups IA, IIA, IIB, IIIA, and IVA of the Periodic Table.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: April 10, 2001
    Assignee: Solvay Polyolefins Europe-Belgium
    Inventor: Nicola Zandona
  • Patent number: 6214759
    Abstract: The present invention relates to a method for producing a Ti/V supported catalyst useful in polymerization of ethylene and copolymerization of ethylene and &agr;-olefin. The method includes a treatment, by a titanium compound and a vanadium compound, of the magnesium-containing carrier, which is obtained by reaction of an organomagnesium compound of the structure of MgPh2.nMgCl2.mR2O (n=0.37˜0.7; m≧1; R2O=ether; Ph=phenyl) with an organic chloride compound in a mole ratio of organic chloride compound/Mg≧0.5, at −20˜80° C. According to the method for producing the catalyst, it is possible to provide a catalyst which can control the distribution of molecular weight, and when polymerization is performed using this catalyst, it is possible to restrain the inactivation and to secure a sufficient activity. Moreover, the polymer produced by the use of this catalyst proves to have a high bulk density and an adjusted particle size distribution.
    Type: Grant
    Filed: April 14, 1999
    Date of Patent: April 10, 2001
    Assignee: Samsung General Chemicals Co., Ltd.
    Inventors: Ho-Sik Chang, Youn-Kyung Kang
  • Patent number: 6211106
    Abstract: A catalyst composition for preparing high-syndiotacticity polystyrene polymers which comprises: (a) a titanium complex represented by the following formula of TiR′1R′2R′3R′4 or TiR′1R′2R′3, wherein R′1, R′2, R′3, and R′4 are, independently, an alkyl group, an aryl group, an alkoxy group, an aryloxy group, an amino group, a hydrogen atom, or a halogen atom; (b) a cyclopentadienyl complex represented by the following formula: wherein R1-R13 are, independently, alkyl group, aryl group, silyl group, halogen atom, or hydrogen atom; Ra and Rb are, independently, alkyl group, aryl group, alkoxy, aryloxy group, cyclopentadienyl group, hydrogen atom, or halogen atom; and Xa is a Group IIA element and Xb is a Group IIIA element.
    Type: Grant
    Filed: June 18, 1998
    Date of Patent: April 3, 2001
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Cherng Tsai, Yi-Chun Chen, Sheng Te Yang, Meei-Hwa Wang, Shian-Jy Wang
  • Patent number: 6207726
    Abstract: A photocurable prepreg composition which is characterized by easy control of a B stage state of a thermosetting resin such as an unsaturated polyester resin or an epoxy acrylate resin, excellent storage stability, and remarkable curability after being shaped; as well as a production method therefor. A photocurable prepreg composition which contains an unsaturated polyester resin and/or an epoxy acrylate resin; at least two photopolymerization initiators with photosensitivity in different wavelength ranges; and an inorganic or an organic fiber-reinforcing material and/or filler, and which composition is treated with light of a specific wavelength such that at least one photopolymerization initiator and radical-polymerizable unsaturated groups remain partially in said resin; a production method therefor; and formed articles produced therefrom.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: March 27, 2001
    Assignees: Showa Denko Kabushiki Kaisha, Showa Highpolymer Co., Ltd.
    Inventors: Kazuo Ohtani, Tomio Yamamoto, Hidetake Sendai, Shuichi Sugita, Hirotoshi Kamata, Takeo Watanabe
  • Patent number: 6197899
    Abstract: A process is disclosed for the particle form polymerization of olefins. The process employs a titanium-containing having hydrocarbon soluble titanium components. The resulting catalyst is pretreated with an organometallic reducing agent prior to the introduction of the catalyst into the polymerization zone to give a catalyst which can be used satisfactorily in a loop reactor with lower levels of cocatalyst.
    Type: Grant
    Filed: February 27, 1995
    Date of Patent: March 6, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Kent E. Mitchell, Max P. McDaniel, M. Bruce Welch, Elizabeth A. Benham, Grover W. Cone
  • Patent number: 6194342
    Abstract: The present invention relates to supported catalysts for the polymerization of alpha-olefins which comprise the reaction product of: (a) an Al-alkyl compound; (b) a silicon compound containing at least one Si—OR or Si—OCOR or Si—NR2 bond, R being a hydrocarbyl radical; (c) a solid comprising, as essential support, a Mg dihalide in active form and, supported thereon, a Ti halide or a halo-Ti-alcoholate and a particular type of electron donor compound. The present invention also relates to supported catalyst components.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: February 27, 2001
    Assignee: Montell Technology Company BV
    Inventors: Sandro Parodi, Roberto Nocci, Umberto Giannini, Pier Camillo Barbe′, Umberto Scata′
  • Patent number: 6194526
    Abstract: A process to produce a polymer is provided. The process comprises polymerizing monomers wherein the monomers comprise ethylene, 1-butene, and 1-hexene. The total amount of 1-butene and 1-hexene in the polymer is less than 10 mole percent of the polymer, and the mole ratio of 1-butene to 1-hexene is in a range of 4:1 to 9:1. The polymerizing is conducted in a loop reactor under slurry polymerization conditions with a diluent that comprises isobutane, where the isobutane is a majority of the diluent by weight. A catalyst that comprises titanium, magnesium, and halide and a cocatalyst that comprises organoaluminum are utilized. The polymerizing is conducted at a temperature from 73° C. to 85° C. The polymer produced has a heterogeneity index (Mw/Mn) from about 3 to about 7, a density from about 0.915 to about 0.925 grams per cubic centimeter, a melt index from about 0.25 to about 3.5 grams per ten minutes, and a shear ratio from about 24 to about 30.
    Type: Grant
    Filed: July 7, 1998
    Date of Patent: February 27, 2001
    Assignee: Phillips Petroleum Company
    Inventors: Elizabeth A. Benham, Rhutesh K. Shah, Ashish M. Sukhadia, Joel L. Martin, Max P. McDaniel