Plural Oxyalkylene Groups Bonded Directly To Each Other Patents (Class 568/606)
  • Patent number: 10722999
    Abstract: A chemical mechanical polishing pad for polishing a semiconductor substrate is provided containing a polishing layer that comprises a polyurethane reaction product of a reaction mixture comprising (i) one or more diisocyanate, polyisocyanate or polyisocyanate prepolymer, (ii) from 40 to 85 wt. % based on the total weight of (i) and (ii) of one or more blocked diisocyanate, polyisocyanate or polyisocyanate prepolymer which contains a blocking agent and has a deblocking temperature of from 80 to 160° C., and (iii) one or more aromatic diamine curative. The reaction mixture has a gel time at 80° C. and a pressure of 101 kPa of from 2 to 15 minutes; the polyurethane reaction product has a residual blocking agent content of 2 wt. % or less; and the polishing layer exhibits a density of from 0.6 to 1.2 g/cm3.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: July 28, 2020
    Assignees: Rohm and Haas Electronic Materials CMP Holdings, Inc., Nitta Haas Inc., Dow Global Technologies LLC
    Inventors: Thomas P. Willumstad, Bainian Qian, Rui Xie, Kenjiro Ogata, George C. Jacob, Marty W. DeGroot
  • Patent number: 9035105
    Abstract: A polyether polyol based on renewable materials is obtained by the in situ production of a polyether from a hydroxyl group-containing vegetable oil, at least one alkylene oxide and a low molecular weight polyol having at least 2 hydroxyl groups. The polyol is produced by introducing the hydroxyl group-containing vegetable oil, a catalyst and an alkylene oxide to a reactor and initiating the alkoxylation reaction. After the alkoxylation reaction has begun but before the reaction has been 20% completed, the low molecular weight polyol having at least 2 hydroxyl groups is continuously introduced into the reactor. After the in situ made polyether polyol product having the desired molecular weight has been formed, the in situ made polyether polyol is removed from the reactor. These polyether polyols are particularly suitable for the production of flexible polyurethane foams.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: May 19, 2015
    Assignee: Bayer MaterialScience LLC
    Inventors: Jack R. Reese, Stanley L. Hager, Micah Moore
  • Patent number: 8987410
    Abstract: Process for preparing a macromonomer, in which a starting compound H2C?CR1—C6H4-s(R4)s—R3—OH or H2C?CR2—CO—NH—R3—OH, where R1 and R2 are each H or a linear or branched alkyl radical having from 1 to 4 carbon atoms, R3 is a linear or branched alkylene, aralkylene radical which has from 1 to 20 carbon atoms and can contain one or more hydroxy groups and the radicals R4 are each, independently of one another, a linear or branched alkyl, aralkyl, alkoxy or aralkoxy radical having from 1 to 20 carbon atoms and s=0-4, is, after partial deprotonation, reacted with at least one hydroxy-functional oxirane compound in the presence of an inhibitor of free-radical polymerization with opening of the oxirane ring, where the molar ratio of the molar amounts used n(starting compound):n(oxirane compound) is in the range from 1:100 to 1:1. Macromonomers which can be obtained by the process, polymers which can be obtained therefrom and their use as additives in coating compositions, plastics and cosmetics.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: March 24, 2015
    Assignee: BYK-Chemie GmbH
    Inventors: Wojciech Jaunky, Albert Frank, Alfred Bubat, Jürgen Omeis
  • Publication number: 20150065753
    Abstract: In a process for separating a mixture comprising cyclohexanone and phenol, at least a portion of the mixture is distilled in the presence of a solvent including at least two alcoholic hydroxyl groups attached to non-adjacent saturated carbon atoms and at least one hemiketal defined by the formula (I) or the formula (II): wherein R1, the same or different at each occurrence, is independently an alkylene group having from 2 to 10 carbon atoms, R2 is an alkylene group having from 4 to 10 carbon atoms, and R3 is hydrogen or the following group: and/or an enol-ether derived from the hemiketal defined by the formula (I) or the formula (II), wherein the total concentration of the hemiketal and the enol-ether, expressed in terms of weight percentage on the basis of the total weight of the feed to the distilling step (a), is at least 0.01%.
    Type: Application
    Filed: April 9, 2013
    Publication date: March 5, 2015
    Inventors: Keith H. Kuechler, Francisco M. Benitez, Krystle J. Chavez, Christopher L. Becker, John L. Heidman, JR.
  • Publication number: 20140318003
    Abstract: A fuel additive for a hydrocarbon based fuel that has one or more of the following Components: Component A; a non-ionic surfactant having the formula wherein R is an alkyl radical having from 4 to 20 carbon atoms, preferably 6 to 10 carbon atoms, and n is an integer of from 2 to 8; Component B; a compound selected from the group consisting of partially sulfonated naphthalene formaldehyde condensates, polymer condensates of linear alkyl benzene sulfonic acids, and naphthalene sulfonic acids with formaldehyde and mixtures thereof; Component C; a polycarboxylate-type material comprising at least one of a ammonium polyacrylate, a polyacrylate derivative, a hydrophobic copolymer, or a hydrophobically modified acrylic polymer having a pH of from about 6.0 to about 7.0; Component D; a finely divided poly alpha olefin; or Component E; any combination of A, B, C, or D.
    Type: Application
    Filed: August 16, 2012
    Publication date: October 30, 2014
    Inventors: Brad A. Bucher, Tom M. Weatherford
  • Patent number: 8857527
    Abstract: Embodiments of the present disclosure include compositions for use in enhanced oil recovery, and methods of using the compositions for recovering oil. Compositions of the present disclosure include a nonionic, non-emulsifying surfactant having a CO2-philicity in a range of about 1.5 to about 5.0, carbon dioxide in a liquid phase or supercritical phase, and water, where the nonionic, non-emulsifying surfactant promotes a formation of a stable foam formed of carbon dioxide and water.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: October 14, 2014
    Assignee: Dow Global Technologies LLC
    Inventors: Aaron W. Sanders, Ed G. Rightor, Keith P. Johnston, Quoc Nguyen, Stephanie Adkins, Xi Chen
  • Patent number: 8816099
    Abstract: A polyfunctional polyoxyalkylene compound represented by the following formula (1): wherein Z represents a hydroxyl group-removed residue of pentaerythritol or dipentaerythritol, R represents a hydrocarbon group having 1 to 24 carbon atoms, OA1 and OA2 represent an oxyalkylene group having 2 to 4 carbon atoms, L1 and L2 represent an alkylene group which may have an ester bond or the like in the alkylene chain or at the terminal end, and X represents a functional group capable of reacting chemically; R, OA1, OA2, L1, and L2 are the same or different from one another in one molecule, m and n are an average number of moles of the oxyalkylene group added, m represents 5 to 1,000, and n represents 0 to 1,000; p and q represent 0 or 1; r1+r2=4 or 6; and r1 and r2 are an integer of 2 or more.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: August 26, 2014
    Assignee: NOF Corporation
    Inventors: Ken-ichiro Nakamoto, Masaki Kamiya, Tsuyoshi Takehana
  • Patent number: 8618337
    Abstract: The invention relates to a process for preparing polyether alcohols by reacting a) aromatic amines with b) alkylene oxides in the presence of c) a catalyst, wherein the alkylene oxide b) comprises at least 90% by weight, based on the weight of the component b), of propylene oxide and an amine is used as catalyst c).
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 31, 2013
    Assignee: BASF SE
    Inventors: Sirus Zarbakhsh, Markus Schuette, Marc Fricke
  • Patent number: 8431639
    Abstract: A composition, such as a pigment dispersion or coating composition, includes a pigment and a wetting additive. The wetting additive includes a first agent and a second agent. The first agent has the following formula: X(AO)mH wherein X is a C6 to C16 branched chain, A is an alkylene group selected from the group of ethylene groups, propylene groups, butylene groups, and combinations thereof, and m is from about 3 to about 20. The second agent is different from the first agent and has the following formula: Y(A?O)nH wherein Y is a C6 to C16 linear chain, A? is an alkylene group selected from the group of ethylene groups, propylene groups, butylene groups, and combinations thereof, and n is at least about 3. The second agent has a triblock (A?O)p(EO)q(A?O)r configuration in the portion represented by (A?O)n, wherein A? is selected from the group of propylene groups, butylene groups, and combinations thereof and wherein p, q, and r are each independently at least 1.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: April 30, 2013
    Assignee: BASF Corporation
    Inventor: Michael J. Anchor
  • Patent number: 8293202
    Abstract: This idea relates to the use of polyalkylene glycols and non-salt polyether amines to improve the effectiveness of silica removal by coagulation and agglomeration of colloidal silica particles in aqueous mineral process streams.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: October 23, 2012
    Assignee: Huntsman Corporation Australia Pty Limited
    Inventor: Salvatore Lazzaro
  • Patent number: 8236869
    Abstract: Highly-functionalized, low-viscosity polyether polyols are obtained by dehydration condensation reaction of alcohols. The polyether polyols are obtained by dehydration condensation of glycerin and monohydric and/or dihydric alcohol with the glycerin percentage being more than 50 mol % relative to 100 mol % of the total of the glycerin and alcohol. The glycerin may be crude glycerin obtained by hydrolysis or alcoholysis of natural fat and oils.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 7, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Atsushi Miyata, Tomoki Tsutsui, Nobuhito Koga, Shinsuke Matsumoto, Kazuhiko Ohkubo
  • Publication number: 20120088867
    Abstract: The invention relates to antistatic polymer compositions comprising a polymer substrate, a polyalkyleneethoxylate with a specific molecular weight and a salt. Further aspects are a process for preparing an antistatic polymer and the use of such a polyalkyleneethoxylate as antistatic agent in polymers, preferably together with a salt.
    Type: Application
    Filed: June 11, 2010
    Publication date: April 12, 2012
    Applicant: BASF SE
    Inventor: Fabien Jean Brand
  • Publication number: 20120016049
    Abstract: An object of the present invention is to provide a polyoxyalkylene polyol and a polyoxyalkylene monool, capable of producing a urethane elastomer and a urethane foam which are sufficiently excellent in mechanical properties and moisture resistance. The present invention is directed to a polyoxyalkylene polyol or monool (S), which is an alkylene oxide adduct of an active hydrogen-containing compound (H), wherein 40% or more of hydroxyl groups located at the terminal are primary hydroxyl group-containing groups represented by the general formula (1) shown below, and a hydroxyl value x, the total degree of unsaturation y and the content of ethylene oxide z satisfy a relationship of the mathematical expression (1). [In the general formula (1), R1 represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, a cycloalkyl group or a phenyl group, each of which may be substituted with a halogen atom or an aryl group.] y?28.
    Type: Application
    Filed: March 24, 2010
    Publication date: January 19, 2012
    Applicant: SANYO CHEMICAL INDUSTRIES, LTD.
    Inventors: Hiromichi Nakaminami, Shogo Sugahara, Shu Yasuhara, Kouichi Murata
  • Publication number: 20110263742
    Abstract: The invention relates to a process for preparing polyether alcohols by reacting a) aromatic amines with b) alkylene oxides in the presence of c) a catalyst, wherein the alkylene oxide b) comprises at least 90% by weight, based on the weight of the component b), of propylene oxide and an amine is used as catalyst c).
    Type: Application
    Filed: April 22, 2011
    Publication date: October 27, 2011
    Applicant: BASF SE
    Inventors: Sirus ZARBAKHSH, Markus Schütte, Marc Fricke
  • Patent number: 8034980
    Abstract: A process for preparing polyether polyols by reaction of the following starting materials: a) one or more alkylene oxides and, if appropriate, carbon dioxide and also b) one or more H-functional starter substances, in the presence of a catalyst, in a reaction unit having a plurality of parallel layers A, B which are microstructured so that each layer has a multiplicity of channels which are arranged parallel to one another and form a continuous flow path from one side of the plate to the opposite side of this, wherein a distribution device for introduction of the starting materials and the catalyst is provided at one end of the channels of the layers A and a collection device for the reaction mixture is provided at the other end of these is proposed.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: October 11, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Achim Loeffler, Wolfgang Loth, Ralf Boehling, Thomas Ostrowski, Michael Stoesser, Hartwig Voss, Axel Schimpf
  • Publication number: 20110224397
    Abstract: The present invention relates to a process for preparing polyetherols in the presence of basic catalysts, wherein propylene oxide (PO) and/or ethylene oxide (EO) whose summated contents of aldehydes, expressed by the contents determined by gas chromatography or titrimetrically using the bisulfite method and calculated for propionaldehyde, do not exceed the value of 300 ppm and of allyl alcohol determined by gas chromatography do not exceed the value of 2500 ppm and of water determined by Karl-Fischer titration do not exceed the value of 1700 ppm and of acid, expressed by the contents determined by acid-base titration and calculated for acetic acid, do not exceed the value of 100 ppm and of carbon dioxide determined by KOH titration do not exceed the value of 500 ppm are used.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 15, 2011
    Applicant: BASF SE
    Inventors: Thomas OSTROWSKI, Anne-Kathrin Merten, Achim Löffler, Hermann Graf
  • Patent number: 7906577
    Abstract: Disclosed are latex polymers and an aqueous coating compositions having excellent freeze-thaw stability, open time, stain resistance, low temperature film formation, foam resistance, block resistance, adhesion, water sensitivity and a low-VOC content. The latex polymers and aqueous coating compositions include at least one latex polymer derived from at least one monomer copolymerized or blended with an alkoxylated compound, for example an alkoxylated tristyrylphenol or an alkoxylated tributylphenol. Also provided is an aqueous coating composition including at least one latex polymer, at least one pigment, water and at least one freeze-thaw additive. Typically, the freeze-thaw additive in an amount greater than about 1.3% by weight of the polymer, typically in an amount greater than about 2% by weight of the polymer, in an amount greater than about 4% by weight of the polymer, in an amount greater than about 7.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: March 15, 2011
    Assignee: Rhodia Operations
    Inventors: Zhengang Zong, Yi-Zhong Li, Jose Ruiz
  • Publication number: 20100298460
    Abstract: The invention relates to a process for preparing polyether alcohols, which comprises the steps a) reaction of an unsaturated natural oil or fat with a mixture of carbon monoxide and hydrogen, b) reaction of the mixture from step a) with hydrogen, c) reaction of the product from step b) with an alkylene oxide in the presence of a catalyst.
    Type: Application
    Filed: January 26, 2009
    Publication date: November 25, 2010
    Applicant: BASF SE
    Inventors: Darijo Mijolovic, Andrea Haunert, Andreas Kunst, Stephan Bauer, Qiang Miao, Berend Eling
  • Patent number: 7781563
    Abstract: The present invention relates to a preparing method of methoxypolyethyleneglycol (mPEG) with high purity and derivatives thereof. More precisely, the method of the present invention to prepare high purity mPEG with at least 99% of purity, up to 1.05 of molecular weight distribution and 350˜100,000 of molecular weight includes the process of reacting commercial mPEG having low purity to give highly purified intermediates, mPEG-acetic acid of formula 1 and mPEG-phthalate of formula 2.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: August 24, 2010
    Assignee: ID Biochem, Inc.
    Inventors: Pyeong-Uk Park, Seong-Neon Kim, Chong-Gu Lee, Ju-Sung Lee
  • Patent number: 7750191
    Abstract: The invention provides a process for continuously preparing polyether alcohols by adding alkylene oxides to H-functional starter substances using a DMC catalyst, comprising the steps of a) preparing a precursor by continuously metering an H-functional starter substance, an alkylene oxide or a mixture of at least two alkylene oxides and the required amount of DMC catalyst into a continuous reactor, b) continuously withdrawing the precursor from step a) from the reactor, c) continuously metering the product from step a), an alkylene oxide different from that in step a) or a mixture of at least two alkylene oxides different from that in step a) and, if appropriate, the required amount of DMC catalyst into a further continuous reactor.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: July 6, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Ostrowski, Stephan Bauer, Achim Loeffler, Juergen Winkler
  • Patent number: 7629487
    Abstract: Provided herein are catalysts useful in enabling and promoting the insertion of alkylene oxides into ester linkages. The esters employed as a substrate to be alkoxylated include esters of fatty acids, such as methyl esters of C14 to C22 fatty acids, and mono-, di-, and tri-esters of glycerine, including vegetable oils, animal fats, and plant oils. A catalyst according to the invention includes at least two alkaline earth compounds, which may include any known stable compounds of the alkaline earths, and optionally contains one or more additional materials such as a carboxylic acid or a polyalkylene glycol having a molecular weight between about 100 and 1500 or a C1-C10 alkyl-capped polyalkylene glycol having molecular weight between about 100 and 1500, which has been acidified with a strong mineral acid. The preferred alkaline earths employed are salts and compounds of magnesium and calcium.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: December 8, 2009
    Assignee: Huntsman Petrochemical LLC
    Inventors: George A. Smith, James O'Neill, Lindy R. Coker, legal representative, George Sneed, Christopher J. Whewell
  • Patent number: 7435857
    Abstract: The invention relates to a method for producing pure alpha-alkoxy-?-hydroxy-polyalkylene glycols, creating small impurities of the product on high-molecular a-?-di-hydroxy-polyalkylene glycols. The method is based on the use of high-boiling initiator alcohols of the following general structure R2—(OCH2CHR)k—OH wherein R2 represents an alkyl radical comprising between 1 and 4 C atoms, preferably R2?CH3, k represents a number between 1 and 10, preferably between 1 and 4, and R represents H, CH3 or an alkyl radical comprising between 2 and 4 C atoms, preferably R?H, CH3. The use of the cited initiator alcohols enables the mixture of a basic catalyst and an initiator alcohol to be dried in such a way that it has a very low water content, and thus to produce very low concentrations of unwanted a-?-di-hydroxy-polyalkylene glycol impurities.
    Type: Grant
    Filed: November 25, 2005
    Date of Patent: October 14, 2008
    Assignee: Clariant Produkte (Deutschland) GmbH
    Inventors: Klaus Poellmann, Anton Strasser, Reinhard Vybiral, Rainer Wagner
  • Publication number: 20080167501
    Abstract: The present invention provides a continuous process for the preparation of a polyoxyalkylene polyether product of number average molecular weight N employing continuous addition of starter, involving a) establishing in a continuous reactor a first portion of a catalyst/initial starter mixture effective initiate polyoxyalkylation of the initial starter after introduction of alkylene oxide into the continuous reactor, b) continuously introducing into the continuous reactor one or more alkylene oxides, c) continuously introducing into the continuous reactor one or more continuously added starters which may be the same or different than said initial starter, d) continuously introducing into the reactor fresh catalyst and/or further catalyst/further starter mixture such that the catalytic activity is maintained, wherein the catalyst is selected from the group consisting of modified oxides and hydroxides of calcium, strontium and barium, lanthanum phosphates or lanthanide series (rare earth) phosphates and hydrotal
    Type: Application
    Filed: August 16, 2007
    Publication date: July 10, 2008
    Inventor: Kenneth G. McDaniel
  • Patent number: 7223803
    Abstract: An activated, substantially water soluble poly(ethylene glycol) is provided having of a linear or branched poly(ethylene glycol) backbone and at least one terminus linked to the backbone through a hydrolytically stable linkage, wherein the terminus is branched and has proximal reactive groups. The free reactive groups are capable of reacting with active moieties in a biologically active agent such as a protein or peptide thus forming conjugates between the activated poly(ethylene glycol) and the biologically active agent.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: May 29, 2007
    Assignee: Nektar Therapeutics AL, Corporation
    Inventors: J. Milton Harris, Antoni Kozlowski
  • Patent number: 7119236
    Abstract: A process for preparing an alkoxylation catalyst suitable for alkoxylating compounds that includes mixing a calcium-containing compound in a dispersing medium having a boiling point less that 160° C. with a carboxylic acid and an inorganic acid or anhydride.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: October 10, 2006
    Assignee: Harcros Chemicals Inc.
    Inventors: Upali Peter Weerasooriya, James Lyle Bennett, Peter Paul Radford
  • Patent number: 7030278
    Abstract: An activated, substantially water soluble poly(ethylene glycol) is provided having of a linear or branched poly(ethylene glycol) backbone and at least one terminus linked to the backbone through a hydrolytically stable linkage, wherein the terminus is branched and has proximal reactive groups. The free reactive groups are capable of reacting with active moieties in a biologically active agent such as a protein or peptide thus forming conjugates between the activated poly(ethylene glycol) and the biologically active agent.
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: April 18, 2006
    Inventors: J. Milton Harris, Antoni Kozlowski
  • Patent number: 6933415
    Abstract: The present invention is an aqueous coating composition having excellent freeze-thaw stability and a low-VOC content. The aqueous coating composition of the invention includes at least one latex polymer derived from at least one monomer and at least one polymerizable alkoxylated surfactant, at least one pigment, and water. In accordance with the invention, less than 3.0% by weight of anti-freeze agents based on the total weight of the aqueous coating composition are used in the composition. The present invention also includes a method of preparing an aqueous coating composition such as a latex paint including the above components.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: August 23, 2005
    Assignee: BASF AG
    Inventors: Cheng-Le Zhao, Terri A. Cunningham, Li Zhuo
  • Patent number: 6878682
    Abstract: The invention relates to a series low foaming capped non-ionic surfactants. These compounds by virtue of reacting the terminal hydroxyl group with methallyl chloride, have increased stability in alkali, lower high cloud points and can be reacted via free radical technology into polymer backbones, resulting in non-water blush surfactants.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: April 12, 2005
    Assignee: Colonial Chemical Inc.
    Inventor: Anthony J. O'Lenick, Jr.
  • Patent number: 6869543
    Abstract: Clear, amine-initiated polyether polyols are made by epoxidizing an amine in the presence of an alkali metal hydroxide catalyst. By reducing the amount of catalyst used during the polyol synthesis and by adding the catalyst after between 5 and 30% of the total amount of at least one alkylene oxide has been added, after lactic acid neutralization, gives a short chain polyol that has foam processing characteristics similar to the conventional sulfuric acid neutralized polyol. The polyols produced in this manner are particularly useful for the production of polyurethane and polyisocyanurate foams.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: March 22, 2005
    Assignee: Bayer Polymers LLC
    Inventors: Nathan L. Anderson, Karl W. Haider, Keith J. Headley, Kerry A. Ingold, Herman P. Doerge
  • Patent number: 6864395
    Abstract: This invention provides water-based compositions, particularly coating, ink, fountain solution and agricultural compositions, manifesting reduced equilibrium and dynamic surface tension by the incorporation of a surface tension reducing amount of an acetylenic diol ethylene oxide/propylene oxide adduct of the structure: where r and t are 1 or 2, (n+m) is 1 to 30 and (p+q) is 1 to 30. Also disclosed is a method for making random and block EO/PO adducts of acetylenic diols by reacting an acetylenic diol with EO and/or PO in the presence of a trialkylamine or Lewis acid.
    Type: Grant
    Filed: October 11, 2001
    Date of Patent: March 8, 2005
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Kevin Rodney Lassila, Paula Ann Uhrin, Joel Schwartz
  • Patent number: 6858761
    Abstract: The present invention provides a process and its utilization in a process comprising the step of carrying out an addition reaction of an alkylene oxide to an addition-receiving substance in the presence of a resin catalyst, thereby producing the addition reaction product, when the resin catalyst as used for the reaction is persevered so as to recycle it after it is recovered, the unreacted alkylene oxide remaining in the resin catalyst can be prevented from polymerizing and solidifying during the preservation, and the resin catalyst accordingly can be preserved stably for a long time. The resin catalyst as recovered after it is used for the reaction may be preserved under any of the following conditions: 1) at a low temperature of not higher than 40° C.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: February 22, 2005
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Yukihiro Yoneda, Tokumasa Ishida, Masahiro Uemura
  • Patent number: 6835325
    Abstract: A crosslinking agent containing a polyallyl ether compound having at least one hydroxyl group derived from a glycidyl group and at least two allyl groups can be used for the production of a highly water-absorbing polymer comprising a polymerizable compound having a carbon-carbon double bond or a salt thereof, has a high solubility in aqueous solution of the monomer and gives a highly water-absorbing polymer having water absorptivity required at practical levels.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: December 28, 2004
    Assignee: Daiso Co., Ltd.
    Inventors: Shin-ichiro Nakamura, Yasumi Shimizu, Tohru Matsutomi
  • Patent number: 6821308
    Abstract: Oleophilic polyoxyalkylene monoethers having reduced water affinity are disclosed. The monoethers have a hydrocarbyl residue, a polyoxyalkylene moiety, and a hydroxyl end group. The monoethers contain less than about 6 mole percent of alkoxylated unsaturates, and preferably less than about 5 mole percent of polyoxyalkylene diols. The monoethers offer substantial advantages for fuel compositions, particularly reduced water affinity. By using deposit-control additives based on the monoethers, formulators can offer better fuels for cleaner engines.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: November 23, 2004
    Assignee: Bayer Antwerp N.V.
    Inventors: George Combs, Kenneth G. McDaniel
  • Patent number: 6790890
    Abstract: Aqueous compositions of (per)fluoropolyether phosphates of formula: T—O—[Rf—CFY—L—O]P(O)(O−Z+)(OH); and/or  (A) (OH)m(O−Z+)2-mP(O)[O—L—YFC—O—Rf—CFY—L—O—P(O)(O−Z+)]m′— —[O—L—YFC—O—Rf—CFY—L—O]P(O)(O−Z+)2-m(OH)m  (B) and use thereof to confer oleo-repellence to the paper in bulk by means of the wet-end method.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: September 14, 2004
    Assignee: Solvay Solexis, S.p.A.
    Inventors: Patrizia MacCone, Fiorenza D'Aprile, Mario Visca
  • Patent number: 6747164
    Abstract: The present invention relates to the use of an amino compound, which is an esteramine or an amidoamine surfactant with improved biodegradability, as an adjuvant for agrochemically active compounds such as pesticides or fertilizers. The adjuvant has Formula (I) where R1 is an aliphatic group containing 7-22 carbon atoms; EO is an ethyleneoxy group; Y is 0 or NH; R2 and R3 is independently CH2CH2OH or an alkyl group with 1-5 carbon atoms, preferably 1-3 carbon atoms; n is a number between 0-10; x is a number 0-1 provided that when Y is O, then x is 1, and when Y is NH, then x is O; and m is a number 2-6, preferably 2-3, provided that when Y is NH, then m is 3-6, preferably 3; or an adduct obtained by reacting one mole of the compound with 1-5 moles of an alkylene oxide having 2-3 carbon atoms.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: June 8, 2004
    Assignee: Akzo Nobel N.V.
    Inventors: Bodil Gustavsson, Burkhard Weuste
  • Patent number: 6740358
    Abstract: Compounds useful as reactive coalescents and methods of improving the stability of reactive coalescents are disclosed. A process for the preparation of low molecular weight polymers which are also useful as reactive coalescents is also disclosed.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: May 25, 2004
    Assignee: Rohm and Haas Company
    Inventors: David Gerald Speece, Jr., Michael Damian Bowe
  • Patent number: 6740686
    Abstract: The invention concerns a method for making a polyurethane foam by reacting at least a polyester polyol with at least a polyisocyanate in the presence of a foaming agent and a catalytic agent, such a polyester polyol having been previously obtained by reacting a reactive acid A comprising at least an aliphatic or aromatic polyacid with functionality not less than 2 with at least a polyol P2 with functionality equal to 2 and at least an aliphatic or aromatic polyacid with functionality not less than 2 with at least a polyol P2 with functionality equal to 2 and at least a polyol P3 with functionality not less than 3, being thereafter called AP2P3, wherein the catalytic agent at least partly consists of at least one amine polyester polyol AP2P3, wherein at least part of polyol P3 consists of at least a polyoxyalkylene polyalkanolamine having at least a tertiary amine function, the alkanol radicals of said polyalkanolamine being C1-C6, the alkylene oxide units being C2-C4 and the statistical mean of the number N o
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 25, 2004
    Assignee: Crompton Corporation
    Inventors: Denis Ghesquiere, Remy Dumont
  • Patent number: 6709645
    Abstract: The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1′,2,2′-13C4]ethane, 1,1′-sulfonylbis[2-(methylthio); [1,1′,2,2′-13C4]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1′,2,2′-13C4]ethane, 1,1′-sulfonylbis[2-(methylsulfinyl)]; and, 2,2′-sulfinylbis([1,2-13C2]ethanol of the general formula where Q1 is selected from the group consisting of sulfide (—S—), sulfone (—S(O)—), sulfoxide (—S(O2)—) and oxide (—O—), at least one C* is 13C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (—OH), and —Q2—R where Q2 is selected from the group consisting of sulfide (—S—), sulfone(—S(O)—), sulfoxide (—S(O2)—) an
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: March 23, 2004
    Assignee: The Regents of the University of California
    Inventors: Rodolfo A. Martinez, Louis A. Silks, III, Clifford J. Unkefer, Robert Atcher
  • Patent number: 6699961
    Abstract: A process for the preparation of a DMC catalyst useful in the polymerization of alkylene oxides into polyether polyols, which process having the steps of (a combining an aqueous solution of a metal salt with an aqueous solution of a metal salt with an aqueous solution of a metal cyanide salt and reacting these solutions, wherein at least part of this reaction takes place in the presence of an organic complexing agent, thereby forming a dispersion of a solid DMC complex in an aqueous medium; (b) combining the dispersion obtained in step (a) with a liquid, which is essentially insoluble in water and which is capable of extracting the solid DMC complex formed in step (a) from the aqueous medium, and allowing a two-phase system to be formed consisting of a first aqueous layer and a layer containing the DMC complex and the liquid added; (c) removing the first aqueous layer; and (d) recovering the DMC catalyst from the layer containing the DMC catalyst.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: March 2, 2004
    Assignee: Shell Oil Company
    Inventors: Michiel Barend Eleveld, Riemer Alberts De Groot, Ronald Van Kempen, Johan Paul Smit
  • Patent number: 6683222
    Abstract: A polyether-polyol compound represented by the compositional formula C3nH6n+2O2n+1, wherein n is an integer of 4 or more, wherein the polyether-polyol compound has a total number of 1,2-diol unit and 1,3-diol unit of [(n/2)+1] in a case where n is an even number of 4 or more, or a total number of 1,2-diol unit and 1,3-diol unit of [((n−1)/2)+1] and one hydroxyl group which is not involved in the units in a case where n is an odd number of 5 or more; a polyglycerol alkyl ether, a part of hydroxyl groups in a polyglycerol being substituted by an alkyl group, wherein the polyglycerol is the polyether polyol compound mentioned above; and an ester prepared by the process comprising reacting the polyether-polyol compound mentioned above or the polyglycerol alkyl ether mentioned above with a fatty acid.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: January 27, 2004
    Assignee: Taiyo Kagaku Co., Ltd.
    Inventors: Takeshi Nakamura, Masatsugu Yamashita
  • Patent number: 6664365
    Abstract: The present invention provides a novel salt useful as an active species in an organic reaction and represented by the following chemical formula (1): wherein n stands for an integer of from 1 to 8, Zn− represents an n-valent anion of an active hydrogen compound, a, b, c and d each stands for a positive integer, and Rs represent the same or different hydrocarbon groups. Also disclosed is a simple and efficient process for producing a poly(alkylene oxide) by polymerizing an alkylene oxide compound in the presence of the salt represented by the chemical formula (1).
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: December 16, 2003
    Inventors: Tadahito Nobori, Masahiro Kouno, Toshiaki Suzuki, Kazumi Mizutani, Shinji Kiyono, Yoshiho Sonobe, Usaji Takaki
  • Patent number: 6653487
    Abstract: A process for preparing trioxane by converting methanol to formaldehyde by dehydrogenation at a temperature of 300 to 1000° C., in the presence of a catalyst, wherein the catalyst is generated physically separately from the reactor and at a temperature above the dehydrogenation temperature, and trimerizing the formaldehyde prepared in this way to give trioxane. Also described is a process for preparing polyoxymethylene and polyoxymethylene copolymers from the formaldehyde.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: November 25, 2003
    Assignee: Ticona GmbH
    Inventors: Elke Schweers, Rolf Schulz, Thomas Kaiser, Uwe Dingerdissen
  • Patent number: 6599952
    Abstract: This invention relates to a process for the preparation an epoxide-reactive compound having a functionality of at least 3, a molecular weight of from about 250 to about 1,900, and an OH number of from about 85 to about 1,400. This process comprises reacting (a) an organic compound which is free of ether groups, having a molecular weight of from about 60 to about 600, and containing from about 2 to about 8 reactive sites; with (b) cyanuric chloride; optionally, in the presence of (c) one or more catalysts; wherein the functionality of the resultant epoxide-reactive compound equals three times the functionality of (a) said organic compound minus three. This invention also relates to further reacting the epoxide-reactive compound produced by the above process with an alkylene oxide, optionally in the presence of a catalyst to form a polyether polyol having a functionality of at least about 3, a molecular weight of from about 300 to about 18,000, and an OH number of from about 10 to about 565.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: July 29, 2003
    Assignee: Bayer Corporation
    Inventors: Rick L. Adkins, Harold R. Parsons
  • Publication number: 20030134952
    Abstract: Aqueous compositions of (per)fluoropolyether phosphates of formula:
    Type: Application
    Filed: January 13, 2003
    Publication date: July 17, 2003
    Applicant: Solvay Solexis S.p.A.
    Inventors: Patrizia MacCone, Fiorenza D'Aprile, Mario Visca
  • Patent number: 6573412
    Abstract: The invention provides chain-coupled polymeric alkoxide compounds for use as the elastomeric component in vulcanizable elastomeric compositions comprising silica, carbon black or mixtures thereof. In particular, the invention provides anionically polymerized polymers having polymer chain living ends that are functionalized with alkoxide groups and coupled together by a metal or nonmetal atom. The polymeric alkoxide compounds have an initial high viscosity for ease of handling prior to compounding, a stable viscosity during storage, and a decreased compound viscosity for better filler dispersion and improved mixing efficiency. The invention further provides a pneumatic tire having at least one component produced from the vulcanizable elastomeric composition of the invention.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: June 3, 2003
    Assignee: Bridgestone Corporation
    Inventors: Terrence E. Hogan, William L. Hergenrother, James E. Hall
  • Patent number: 6548564
    Abstract: This invention relates to a process for the preparation of a polyether polyol having a functionality of at least about 3, a molecular weight of from about 560 to about 35,000 and an OH number of from about 10 to about 1,100. This process comprises reacting (a) a polyether polyol containing one or more ether groups, having a functionality of about 2 to about 8, a molecular weight of about 106 to about 12,000, and an OH number of about 28 to about 1,400, with (b) cyanuric chloride, optionally, in the presence of (c) one or more catalysts; wherein the functionality of the resultant polyether polyols equals three times the functionality of (a) said polyether polyol, minus three.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: April 15, 2003
    Assignee: Bayer Corporation
    Inventors: Rick L. Adkins, Harold R. Parsons
  • Patent number: 6533830
    Abstract: Polyalkene alcohol polyalkoxylates R—(CH2)n—(O—A)m—OH, where R is a polyalkene radical derived from C2- to C30-alkenes and having a number average molecular weight from 300 to 5000, A is an alkylene group of 2 to 8 carbon atoms, m is a number up to 200, with the proviso that the oxygen in the oxyalkylate radical accounts for at least 16.5% by weight of the number average molecular weight of the total molecule I, and n is 0 or 1, are suitable as carrier oils in fuel and lubricant compositions.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: March 18, 2003
    Assignee: BASF Aktiengesellschaft
    Inventors: Knut Oppenländer, Wolfgang Günther, Hans Peter Rath, Irene Trötsch-Schaller
  • Patent number: 6534685
    Abstract: A liquid mixture is described having a cetane number higher than 40, characterized in that it consists of: a typical diesel gas oil cut having a boiling point ranging from 150 to 380° C. and a density ranging from 0.76 to 0.935 g/ml at 15° C.; one or more compounds selected from dialkyl-polyformals represented by the formula: RO(CH2O)mR wherein R is a CnH2n+1 alkyl chain m is an integer equal to or greater than 2 and less than or equal to 6, n is an integer ranging from 1 to 10, wherein the concentration of said dialkyl-polyformals in the gas oil ranges from 1 to 20% by volume. A process is also described for the production of dialkyl-polyformals, starting from alcohols and/or dialkylformals and formaldehyde in the presence of sulfonic acids optionally substituted.
    Type: Grant
    Filed: January 6, 2000
    Date of Patent: March 18, 2003
    Assignee: Snamprogetti S.p.A.
    Inventors: Renata Patrini, Mario Marchionna
  • Publication number: 20030027736
    Abstract: The invention relates to highly ethoxylated hydroxy mixed ethers, alone or in conjunction with customary detergent and cleaning product ingredients, together if desired with further nonionic surfactants and anionic surfactants, and to the use of such hydroxy mixed ethers for improving wetting behavior and plastics compatibility.
    Type: Application
    Filed: January 24, 2002
    Publication date: February 6, 2003
    Inventors: Hans-Christian Raths, Manfred Weuthen, Michael Elsner, Detlev Stanislowski, Karl-Heinz Schmid
  • Patent number: 6509509
    Abstract: A process for preparing perfluoropolyoxyalkylenes with hydroxyl end groups having structure: T1—CFW1—O—Rf—CFW2—T2  (I) wherein: T1, T2, are selected from —CH2OH, —F, —CF3, —CF2CF3 with the proviso that at least one of T1 and T2 is —CH2OH; W1 and W2 are selected from F, CF3; Rf is a perfluoropolyoxyalkylene chain having a number average molecular weight 500-10,000 comprising one or more units of the type —CF2CF2O—, —CF2O—, —C3F6O—, —CF2(CF2)zCF2O— (z=1,2); —CR4R5CF2CF2O— with R4 and R5 selected from H, Cl, perfluoroalkyl group; said process comprising the following steps: a) adding an ester precursor having structure (I) and T1, T2 end groups selected from —F, —CF3, —CF2CF3, —COOR (R=linear or branched alkyl group having a number of C atoms from 1 to 5), with the proviso that at least one of T1 and T2 is —COOR, in a reaction mixture f
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: January 21, 2003
    Assignee: Ausimont S.p.A.
    Inventors: Claudio Tonelli, Antonio Russo, Ezio Strepparola