By Dehydrogenation Patents (Class 585/654)
  • Publication number: 20070299278
    Abstract: A process for continuous heterogeneously catalyzed partial dehydrogenation of at least one hydrocarbon to be dehydrogenated in a reactor which is manufactured from a composite material which consists, on its side in contact with the reaction chamber, of a steel B with specific elemental composition which, on its side facing away from the reaction chamber, either directly or via an intermediate layer of copper, or of nickel, or of copper and nickel, is plated onto a steel A with specific elemental composition, and also partial oxidations of the dehydrogenated hydrocarbon and the reactor itself.
    Type: Application
    Filed: June 25, 2007
    Publication date: December 27, 2007
    Applicant: BASF Aktiengesellschaft
    Inventors: Claus HECHLER, Wilhelm Ruppel, Gotz-Peter Schindler, Catharina Klanner, Hans-Jurgen Bassler, Martin Dieterle, Karl-Heinrich Klappert, Klaus Joachim Muller-Engel
  • Patent number: 7271307
    Abstract: The present development relates to a modification of the Houdry process for the dehydrogenation of aliphatic hydrocarbons, whereby the dehydrogenation cycle is extended, or lengthened, and hydrogen gas is added into the reaction. The combination of the extended cycle with the hydrogen introduction results in a surprising stabilization of the production rate in the dehydrogenation process. The hydrogen gas may be introduced through a recycle step. The process of the present development is demonstrated for the dehydrogenation of propane to propylene.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: September 18, 2007
    Assignee: Sud-Chemie Inc.
    Inventors: Michael A. Urbancic, Michael W. Balakos, Robert J. Gartside, Robert J. Brummer
  • Patent number: 7241376
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: July 10, 2007
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Patent number: 7235706
    Abstract: A process for preparing light olefins from corresponding paraffins consists of reacting said paraffins in a reactor, operating at a temperature of between 450 and 800° C., a pressure of between 0.1 and 3 atm absolute and a GHSV of between 100 and 10000 h?1, with a catalytic system containing gallium, platinum, possibly one or more alkaline or alkaline-earth metals, and a support consisting of alumina in delta or theta phase or in delta+theta or theta+alpha or delta+theta+alpha mixed phase, modified with silica, the gallium, expressed as Ga2O3, being in a quantity of between 0.1 and 33.6 wt %, the platinum being in a quantity of between 1 and 99 ppm, the alkaline or alkaline-earth metals, expressed as oxide, being in a quantity of between 0 and 5 wt %, and the silica being in a quantity of between 0.08 and 3 wt %, the rest to 100% being alumina, and regenerating said catalytic system in a regenerator by burning off the coke which has deposited on its surface, without subsequently reducing it.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: June 26, 2007
    Assignees: Snamprogetti S.p.A., Enitecnologie S.p.A.
    Inventors: Rodolfo Iezzi, Andrea Bartolini, Franco Buonomo
  • Patent number: 7227049
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250° C. to about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: June 5, 2007
    Assignee: Celanese International Corporation
    Inventor: Yumin Liu
  • Patent number: 7223897
    Abstract: A process for the production of an olefin from a hydrocarbon by autothermal cracking, which process comprises: partially combusting the hydrocarbon and an oxygen-containing gas in the presence of a catalyst, wherein the stoichiometric ratio of hydrocarbon to oxygen is 5 to 16 times the stoichiometric ratio of hydrocarbon to oxygen required for complete combustion of the hydrocarbon to carbon dioxide and water, characterised in that the catalyst comprises palladium and at least one further metal being a Group IIIA, Group IVA, VA, a transition metal or a lanthanide.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: May 29, 2007
    Assignee: Ineos Europe Limited
    Inventors: John William Couves, David Charles Griffiths, Brian Edward Messenger, Ian Allan Beattie Reid
  • Patent number: 7151199
    Abstract: Hydrocarbon or oxygenate conversion process in which a feedstock is contacted with a non zeolitic molecular sieve which has been treated to remove most, if not all, of the halogen contained in the catalyst. The halogen may be removed by one of several methods. One method includes heating the catalyst in a low moisture environment, followed by contacting the heated catalyst with air and/or steam. Another method includes steam-treating the catalyst at a temperature from 400° C. to 1000° C. The hydrocarbon or oxygenate conversion processes include the conversion of oxygenates to olefins, the conversion of oxygenates and ammonia to alkylamines, the conversion of oxygenates and aromatic compounds to alkylated aromatic compounds, cracking and dewaxing.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: December 19, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc Roger Marc Martens, Stephen N. Vaughn, Albert Edward Schweizer, John K. Pierce, Shun Chong Fung
  • Patent number: 7145051
    Abstract: A catalyst is provided comprising (1) at least one solid acid component, and (2) at least one metal-based component comprised of one or more element from Groups 1–3, one or more element from Groups 4–15 and one or more element from Groups 16 and 17 of the Periodic Table of the Elements. The catalyst is particularly useful in producing light olefins, preferably from paraffins. When used to convert paraffins to light olefins, the catalyst is capable of high paraffin conversion, high olefin yield, and low aromatic yield. Optionally, the catalyst can further comprise at least one of a support and a binder.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: December 5, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John Di-Yi Ou, Michael A. Risch, Blake J. Aronson
  • Patent number: 7087802
    Abstract: In a process for the heterogeneously catalyzed dehydrogenation in one or more reaction zones of one or more dehydrogenatable C2-C30-hydrocarbons in a reaction gas mixture comprising them, with at least part of the heat of dehydrogenation required being generated directly in the reaction gas mixture in at least one reaction zone by combustion of hydrogen, the hydrocarbon or hydrocarbons and/or carbon in the presence of an oxygen-containing gas, the reaction gas mixture comprising the dehydrogenatable hydrocarbon or hydrocarbons is brought into contact with a Lewis-acid dehydrogenation catalyst which has essentially no Brönsted acidity.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: August 8, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Goetz-Peter Schindler, Otto Machhammer, Klaus Harth, Klaus Joachim Müller-Engel, Peter Zehner
  • Patent number: 7045671
    Abstract: A process for catalytic dehydrogenation of a dehydrogenatable hydrocarbon process stream to the corresponding olefin or olefins, the process comprising contacting the dehydrogenatable hydrocarbon process stream under dehydrogenation conditions with a mesoporous zeotype catalyst having an intra-crystalline, non-crystallographic mesopore system and a mesopore volume of the zeotype crystals above 0.25 ml/g and comprising at least one element belonging to Groups 5–14 in the Periodic Table of the Elements (new notation). The invention also comprises a catalyst for use in the above process.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: May 16, 2006
    Assignee: Haldor Topsoe A/S
    Inventors: Iver Schmidt, Anne Krogh, Claus Hviid Christensen
  • Patent number: 7041271
    Abstract: A method is disclosed a method for recovering olefins and for producing hydrogen from a refinery off-gas stream in which such stream is conventionally pretreated and separated to obtain a light ends stream that contains nitrogen, hydrogen and carbon monoxide and a heavy ends stream that contains the olefins. The light ends stream is subjected to reforming and a water gas shift reactions after addition of a natural gas stream. The addition of the natural gas increases the hydrogen recovery from the light ends and also stabilizes the hydrocarbon content in the stream to be subjected to the reforming and water gas shift reactions. The heavy ends can be further treated to recover olefins such as ethylene and propylene. The rate of natural gas addition is controlled so that the concentration of the nitrogen in a stream exiting the water gas shift reactor is less than about 5 percent by volume so that hydrogen separation from such stream becomes practical.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 9, 2006
    Assignee: Praxair Technology, Inc.
    Inventors: Raymond Francis Drnevich, Jeffrey O. Herzog
  • Patent number: 7038098
    Abstract: C2–C30-alkanes are dehydrogenated in a process in which (i) ethylbenzene is dehydrogenated to styrene in a first part process to give a hydrogen-containing offgas stream, and (ii) one or more C2–C30-alkanes are dehydrogenated in the presence of a heterogeneous catalyst in one or more reaction zones in a second part process to give the corresponding olefins, with a hydrogen-containing gas stream being mixed into the reaction gas mixture of the dehydrogenation in at least one reaction zone, wherein at least part of the hydrogen-containing offgas stream obtained in the dehydrogenation of ethylbenzene is mixed into the reaction gas mixture of the alkane dehydrogenation.
    Type: Grant
    Filed: October 14, 2002
    Date of Patent: May 2, 2006
    Assignee: BASF Aktiengesellschaft
    Inventors: Christian Walsdorff, Götz-Peter Schindler, Otto Machhammer, Klaus Harth
  • Patent number: 6963018
    Abstract: Novel processes for the production of polyolefins, other polymers, and oxygenated compounds, such as polypropylene, polyethylene, polybutene-1, poly(isobutylene), polystyrene, poly(1,3-butadiene), ethylene oxide, propylene oxide, acrylonitrile, acrolein and others, within gas phase and slurry phase type reactors, from olefins produced via the catalytic dehydrogenation of corresponding paraffins and other monomers inside permeable catalytic membrane reactors or non-permeable conventional reactors. The developed processes can produce both homopolymers and copolymers depending on the operating conditions of the preceding dehydrogenation permreactor. The invented processes utilize integrated separation, recycling and re-reaction operations of the unconverted olefins, paraffins and other utilized monomers and hydrocarbon molecules.
    Type: Grant
    Filed: October 10, 2001
    Date of Patent: November 8, 2005
    Inventors: Savvas Vasileiadis, Zoe Ziaka-Vasileiadou
  • Patent number: 6891075
    Abstract: Processes for oxidative dehydrogenation of alkane to one or more olefins, exemplified by ethane to ethylene, are disclosed using novel catalysts. The catalysts comprise a mixture of metal oxides having as an important component nickel oxide (NiO), which give high conversion and selectivity in the process. For example, the catalyst can be used to make ethylene by contacting it with a gas mixture containing ethane and oxygen. The gas mixture may optionally contain ethylene, an inert diluent such as nitrogen, or both ethylene and an inert diluent.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: May 10, 2005
    Assignee: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Patent number: 6858769
    Abstract: A catalyst for the selective oxidation of hydrogen has been developed. It comprises an inert core such as cordierite and an outer layer comprising a lithium aluminate support. The support has dispersed thereon a platinum group metal and a promoter metal, e.g. platinum and tin respectively. This catalyst is particularly effective in the selective oxidation of hydrogen in a dehydrogenation process.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: February 22, 2005
    Assignee: UOP LLC
    Inventors: Guy B. Woodle, Andrew S. Zarchy, Jeffery C. Bricker, Andrzej Z. Ringwelski
  • Patent number: 6849664
    Abstract: The present invention relates to the use of deactivatable biocides in cooling water systems of industrial processes that require dissipation of heat. The present invention relates to methods of inhibiting growth and reproduction of microorganisms in the cooling water comprising adding the deactivatable biocides to the cooling water and irreversibly deactivating the deactivatable biocides before or upon disposal of the cooling water.
    Type: Grant
    Filed: October 18, 2001
    Date of Patent: February 1, 2005
    Assignee: Chevron U.S.A. Inc.
    Inventors: Kirk T. O'Reilly, Michael E. Moir, Dennis J. O'Rear, Richard O. Moore, Jr.
  • Patent number: 6824672
    Abstract: An austenitic stainless steel with a composition comprising: at most 0.15% of C; 2% to 10% of Mn; at most 2% of Ni; at most 4% of Cu; 0.1% to 0.4% of N; 10% to 20% of Cr; at most 1% of Si; at most 3% of Mo; and at most 0.7% of Ti; is used to manufacture equipment, for example furnaces, reactors or ducts, or elements of this equipment, or to coat the internal walls of this equipment, said equipment being used to implement petrochemical processes conducted at temperatures of 350° C. to 1100° C. and in which coke can be formed.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: November 30, 2004
    Assignees: Institute Francais du Petrole, USINOR
    Inventors: Philippe Lecour, Xavier Longaygue, François Ropital, Laurent Antoni
  • Patent number: 6814857
    Abstract: A process for contacting a bed of particulate material, usually catalyst, with a transverse flow of fluid is disclosed. The particulate material moves or is prevented from not moving, while the fluid passes through the bed at a rate greater than the stagnant bed pinning flow rate. This invention is applicable to hydrocarbon conversion processes and allows for higher fluid throughput rates compared to prior art processes.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: November 9, 2004
    Assignee: UOP LLC
    Inventors: Weikai Gu, Paul A. Sechrist
  • Publication number: 20040182744
    Abstract: A family of crystalline aluminosilicate zeolites designated UZM-8HS and derived from UZM-8 have been synthesized. The aluminum content of the UZM-8HS is lower than that of the starting UZM-8 thus changing its ion exchange capacity and acidity.
    Type: Application
    Filed: March 21, 2003
    Publication date: September 23, 2004
    Inventors: Deng Yang Jan, Jaime G. Moscoso, Susan G. Koster, Lisa M. Rohde, Gregory J. Lewis, Mark A. Miller, R. Lyle Patton, Stephen T. Wilson
  • Publication number: 20040140245
    Abstract: A process and catalyst are disclosed for reducing coking in hydrocarbon processing reactions. The preferred embodiments employ a sulfur-containing material such as hydrogen sulfide to reduce catalyst susceptibility to deactivation from carbon deposits formed during processing.
    Type: Application
    Filed: January 17, 2003
    Publication date: July 22, 2004
    Applicant: ConocoPhillips Company
    Inventors: Sriram Ramani, Alfred E. Keller, Joe D. Allison, Zhen Chen
  • Patent number: 6703149
    Abstract: A reformed hydrocarbon and hydrogen are produced by: subjecting a raw hydrocarbon material to thermal catalytic cracking under hydrogen for dehydrogenation to produce a reformed hydrocarbon having a degree of unsaturation higher than that of the raw hydrocarbon material and hydrogen; introducing the reformed hydrocarbon, hydrogen and an unreacted hydrocarbon into a pressure-reducing-rising device; and reducing and then raising a pressure to facilitate further cracking of the unreacted hydrocarbon and promote liquid-gas separation in a post-step. Hydrogen can be efficiently produced, and a reformed hydrocarbon of good quality (e.g., high octane number) can be produced with suppressing generation of carbon.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: March 9, 2004
    Assignees: Ohkawara Kakohki Co., Ltd.
    Inventor: Masaya Kuno
  • Patent number: 6700030
    Abstract: A process for converting hydrocarbons in the presence of a catalyst is described that is carried out in a three-phase reactor in which the liquid Peclet number is in the range 0 (excluded) to about 10, with a superficial gas velocity Ug that is preferably less than 35 cm.s−1, to encourage gas transfer into the liquid phase and avoid too much attrition of the catalyst grains.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: March 2, 2004
    Assignee: Institut Francais du Petrole
    Inventors: Jean-Marc Schweitzer, Pierre Galtier, Francois Hugues, Cristina Maretto
  • Publication number: 20040034266
    Abstract: The invention provides methods of oxidative dehydrogenation (ODH). Conducting ODH in microchannels has unexpectedly been found to yield superior performance when compared to the same reactions at the same conditions in larger reactors. ODH methods employing a Mo—V—Mg—O catalyst is also described. Microchannel apparatus for conducting ODH is also disclosed.
    Type: Application
    Filed: May 19, 2003
    Publication date: February 19, 2004
    Inventors: John H. Brophy, Kai Jarosch, Terry J. Mazanec, Matthew B. Schmidt, Laura J. Silva, Anna Lee Tonkovich, Fred Pesa, David J. Hesse
  • Publication number: 20040014826
    Abstract: Embodiments include methods and apparatus for arranging multiple reaction zones such that at least one hot spot in one of the reaction zones is moderated by a cooler spot in an adjacent reaction zone.
    Type: Application
    Filed: July 16, 2002
    Publication date: January 22, 2004
    Applicant: Conoco Inc.
    Inventors: Daxiang Wang, Bang Cheng Xu, Yi Jiang
  • Patent number: 6677497
    Abstract: Processes for oxidative dehydrogenation of alkane to one or more olefins, exemplified by ethane to ethylene, are disclosed using novel catalysts. The catalysts comprise a mixture of metal oxides having as an important component nickel oxide (NiO), which give high conversion and selectivity in the process. For example, the catalyst can be used to make ethylene by contacting it with a gas mixture containing ethane and oxygen. The gas mixture may optionally contain ethylene, an inert diluent such as nitrogen, or both ethylene and an inert diluent.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: January 13, 2004
    Assignee: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Patent number: 6646159
    Abstract: Long chain alcohols and acids or other similar oxygenates such as esters are produced from paraffins of similar carbon number by a process comprising paraffin dehydrogenation, carbonylation, and separation. Preferably a mixture of paraffins extending over several carbon numbers and recovered from a kerosene fraction is processed, and unconverted paraffins are recycled to a dehydrogenation zone. Alternative reaction zone configurations, catalyst systems and product recovery methods are disclosed.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: November 11, 2003
    Assignee: UOP LLC
    Inventors: Lance A. Baird, Leonid B. Galperin, R. Joe Lawson, Robert H. Jensen, Oleg L. Eliseev, Albert L. Lapidus, Aduard G. Ostapenco
  • Patent number: 6635793
    Abstract: A process is provided for use in the conversion of alkanes into alkylene oxides, having particular utility in the conversion of propane to form propylene oxide, using a lanthanide-promoted, supported, silver catalyst prepared via precipitation. A preferred embodiment uses silver nitrate and lanthanum nitrate to form the catalyst on a BaCO3 support.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: October 21, 2003
    Assignee: SRI International
    Inventors: Guido Mul, Marianna F. Asaro, Albert S. Hirschon, Robert B. Wilson, Jr.
  • Publication number: 20030188991
    Abstract: A process for treating organic compounds includes providing a composition which includes a substantially mesoporous structure of silica containing at least 97% by volume of pores having a pore size ranging from about 15 Å to about 30 Å and having a micropore volume of at least about 0.01 cc/g, wherein the mesoporous structure has incorporated therewith at least about 0.02% by weight of at least one catalytically and/or chemically active heteroatom selected from the group consisting of Al, Ti, V, Cr, Zn, Fe, Sn, Mo, Ga, Ni, Co, In, Zr, Mn, Cu, Mg, Pd, Pt and W, and the catalyst has an X-ray diffraction pattern with one peak at 0.3° to about 3.5° at 2&thgr;.
    Type: Application
    Filed: December 6, 2002
    Publication date: October 9, 2003
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Publication number: 20030153800
    Abstract: Materials that consist at least in part of aluminum quasi-crystals whose composition is represented by the general formula:
    Type: Application
    Filed: December 2, 2002
    Publication date: August 14, 2003
    Applicant: Institut Francais du Petrole
    Inventors: Philippe Lecour, Xavier Longaygue, Francois Ropital
  • Publication number: 20030139637
    Abstract: A method for autothermal or substantially autothermal catalytic dehydrogenation of hydrocarbons is described. A hydrocarbon containing feed gas is optionally mixed with steam and/or hydrogen, is pre-heated and is introduced into a catalytic bed of a reactor, where an oxygen containing gas is fed directly into the catalytic bed from one or more oxygen supply tube(s) (3) each tube (3) having one or more opening(s) distributed in the catalytic bed.
    Type: Application
    Filed: October 8, 2002
    Publication date: July 24, 2003
    Inventors: Erling Rytter, Unni Olsbye, Pal Soraker, Rolf Torvik
  • Patent number: 6582589
    Abstract: The present invention relates to a new catalyst support material comprising a mixed oxide consisting essentially of a divalent metal and a trivalent metal in a substantially homogeneous phase, the mixed oxide being a calcination product of a hydrotalcite-like phase calcinated at a temperature of about 700-1200° C., wherein the divalent metal/trivalent metal molar ratio is greater than or equal to 2. The invention also relates to a process of preparing the support. The invention further provides a catalyst for dehydrogenation which includes a transition metal selected from the first row of transition metals of the periodic table and/or a Group VIII metal impregnated on the new catalyst support material. The invention also provides a process for dehydrogenation of light alkanes using the catalyst.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: June 24, 2003
    Assignee: Oen Norske Stats Oljeselskap A.S.
    Inventors: Erling Rytter, Duncan Akporiaye, Unni Olsbye
  • Publication number: 20030109749
    Abstract: Improved processes for the preparation of olefins, unsaturated carboxylic acids and unsaturated nitrites involve the use of dehydrogenation catalysts suitable for the conversion of alkanes to alkenes and catalysts suitable for the conversion of alkanes and/or alkenes to unsaturated carboxylic acids or unsaturated nitrites.
    Type: Application
    Filed: December 2, 2002
    Publication date: June 12, 2003
    Inventors: Leonard Edward Bogan, Anne Mae Gaffney, Scott Han, Michele Doreen Heffner, Ruozhi Song, Donald Lee Zolotorofe
  • Patent number: 6576803
    Abstract: The present invention provides a catalyst for the oxidative dehydrogenation of a lower hydrocarbon to form at least one higher hydrocarbon and/or lower olefin. In one embodiment, the catalyst includes a nonstoichiometric rare earth oxycarbonate of the formula MXCYOZ having a disordered and/or defect structure, wherein M is at least one rare earth element selected from the group consisting of La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, and Tm; X=2; Z=3+AY; A is less than about 1.8, and Y is the number of carbon atoms in the oxycarbonate. When used for the oxidative dehydrogenation of a lower hydrocarbon at a pressure above about 100 psig, the catalyst has a selectivity of at least about 40% to at least one higher hydrocarbon and/or lower olefin. Methods for preparing catalysts taught by the invention and processes for using the catalysts for the oxidative dehydrogenation of lower hydrocarbons are also provided.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: June 10, 2003
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Rick David Cantrell, Anca Ghenciu, Kenneth Dwight Campbell, David Michael Anthony Minahan, Madan Mohan Bhasin, Alistair Duncan Westwood, Kenneth Andrew Nielsen
  • Patent number: 6576804
    Abstract: Olefinically unsaturated hydrocarbons are prepared from corresponding paraffinic hydrocarbons, in particular propylene is prepared from propane, by dehydrogenation over a catalyst comprising an oxide of a transition metal of group IV B of the Periodic Table, eg. TiO2 or ZrO2, and possibly at least one element selected from among elements of transition group VIII, eg. palladium, platinum or rhodium, and/or an element of transition group VI, eg. chromium, molybdenum or tungsten, and/or rhenium and/or tin and possibly a compound of an alkali metal or alkaline earth metal, a compound of main group III or transition group III or zinc.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: June 10, 2003
    Assignee: BASF Aktiengesellshaft
    Inventors: Daniel Heineke, Michael Baier, Dirk Demuth, Klaus Harth
  • Publication number: 20030097034
    Abstract: Catalysts and methods for alkane oxydehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafiium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more of such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane is selected from the group consisting of ethane, propane, isobutane, n-butane and ethyl chloride, molecular oxygen is co-fed with the alkane to a reaction zone maintained at a temperature ranging from about 250 ° C. to about 350 ° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkane conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Application
    Filed: October 25, 2001
    Publication date: May 22, 2003
    Applicant: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Patent number: 6541676
    Abstract: The present invention relates to gas separation membranes including a metal-based layer having sub-micron scale thicknesses. The metal-based layer can be a palladium alloy supported by ceramic layers such as a silicon oxide layer and a silicon nitride layer. By using MEMS, a series of perforations (holes) can be patterned to allow chemical components to access both sides of the metal-based layer. Heaters and temperature sensing devices can also be patterned on the membrane. The present invention also relates to a portable power generation system at a chemical microreactor comprising the gas separation membrane. The invention is also directed to a method for fabricating a gas separation membrane. Due to the ability to make chemical microreactors of very small sizes, a series of reactors can be used in combination on a silicon surface to produce an integrated gas membrane device.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: April 1, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Aleksander J. Franz, Klavs F. Jensen, Martin A. Schmidt, Samara Firebaugh
  • Publication number: 20030055306
    Abstract: A process for the production of an olefin from a hydrocarbon, which process comprises: partially combusting the hydrocarbon and an oxygen-containing gas in the presence of a catalyst, characterised in that the catalyst comprises platinum and at least one further metal, said further metal being a Group IIIA, Group IVA, VA or a transition metal; wherein said catalyst is: a) not a platinum catalyst consisting essentially of platinum modified with Sn, Cu or mixtures thereof, and b) not a platinum catalyst consisting essentially of platinum modified with Sb or a mixture of Sb and Sn.
    Type: Application
    Filed: September 4, 2002
    Publication date: March 20, 2003
    Inventors: John Wiliiam Couves, David Charles Griffiths, Brian Edward Messenger
  • Patent number: 6525232
    Abstract: The invention provides process and apparatus for conducting an endothermic reaction of an organic compound in the presence of molecular hydrogen and of multicomponent solids. The process comprises contacting the compound with a solid catalyst for the endothermic reaction and a hydrogen oxidizing solid reagent intermixed with the solid catalyst. Organic products of the endothermic reaction are produced, with evolution of molecular hydrogen. The solid catalyst becomes gradually deactivated by formation of carbonaceous deposits thereon. The evolved hydrogen undergoes an exothermic reaction with the hydrogen oxidizing solid reagent to form a reduction product which comprises deactivated hydrogen oxidizing solid reagent.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: February 25, 2003
    Assignee: Sunoco, Inc. (R&M)
    Inventors: Thomas W. Bierl, Vincent A. Durante, Lawrence H. Finkel, Daniel E. Resasco
  • Publication number: 20030032849
    Abstract: A chromium catalyst is disclosed for use in dehydrogenation and dehydrocyclization processes.
    Type: Application
    Filed: August 23, 2002
    Publication date: February 13, 2003
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Publication number: 20030023126
    Abstract: A gel composition substantially contained within the pores of a solid material is disclosed for use as a catalyst or as a catalyst support in dehydrogenation and dehydrocyclization processes.
    Type: Application
    Filed: January 10, 2001
    Publication date: January 30, 2003
    Inventors: Kostantinos Kourtakis, Leo E. Manzer
  • Publication number: 20020198428
    Abstract: A process for preparing light olefins from corresponding paraffins consists of reacting said paraffins in a reactor, operating at a temperature of between 450 and 800° C., a pressure of between 0.1 and 3 atm absolute and a GHSV of between 100 and 10000 h−1, with a catalytic system containing gallium, platinum, possibly one or more alkaline or alkaline-earth metals, and a support consisting of alumina in delta or theta phase or in delta+theta or theta+alpha or delta+theta+alpha mixed phase, modified with silica, the gallium, expressed as Ga2O3, being in a quantity of between 0.1 and 33.6 wt %, the platinum being in a quantity of between 1 and 99 ppm, the alkaline or alkaline-earth metals, expressed as oxide, being in a quantity of between 0 and 5 wt %, and the silica being in a quantity of between 0.
    Type: Application
    Filed: July 1, 2002
    Publication date: December 26, 2002
    Applicant: SNAMPROGETTI S.p.A.
    Inventors: Rodolfo Iezzi, Andrea Bartolini, Franco Buonomo
  • Patent number: 6498280
    Abstract: A catalyst comprising at least one support, at least one element from groups 8, 9 or 10 of the periodic table, at least one element from group 14 of the periodic table, at least one element from group 13 of the periodic table, at least one alkali or alkaline-earth metal, and, optionally, at least one halogen in an amount in the range from 0 to 0.2% by weight with respect to the total catalyst weight, the catalyst being characterized in that the accessibility of the element from groups 8, 9 or 10 is more than 50%. The invention also concerns a process for preparing a catalyst and the use of the catalyst in a process for dehydrogenating paraffins containing 3 to 22 carbon atoms per molecule.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: December 24, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Denis Uzio, Blaise Didillon, Emmanuel Pellier
  • Publication number: 20020183571
    Abstract: A radial reactor for utilization for catalytic reactions of gaseous or liquid feed streams including an annular catalyst bed, wherein the material contained within the catalyst bed includes an active catalyst material, contained within an outer ring-shaped layer of the catalyst bed, and a generally inert material, contained within an inner ring-shaped layer of the catalyst bed, wherein the generally inert material includes a potassium-containing compound, such as potassium oxide, hydroxide, carbonate or bicarbonate.
    Type: Application
    Filed: January 8, 2002
    Publication date: December 5, 2002
    Applicant: Sud-Chemie Inc.
    Inventors: David L. Williams, Andrzej Rokicki, Dennis J. Smith, Kyle Mankin
  • Publication number: 20020183580
    Abstract: Provided herein are processes for the dehydrogenation of hydrocarbons using new supported catalysts. A process according to the invention employs new catalysts that possess a unique pore size distribution which provides a favorable balance of selectivity, activity, and thermal stability. A process according to the invention includes regeneration of the new catalysts. Detergent range paraffins may be converted to monoolefins using the new catalysts with fewer unwanted by-products being formed during the dehydrogenation.
    Type: Application
    Filed: May 7, 2002
    Publication date: December 5, 2002
    Applicant: Huntsman Petrochemical Corporation
    Inventor: David R. Dyroff
  • Patent number: 6488838
    Abstract: The present invention is a chemical reactor and method for catalytic chemical reactions having gas phase reactants. The chemical reactor has reactor microchannels for flow of at least one reactant and at least one product, and a catalyst material wherein the at least one reactant contacts the catalyst material and reacts to form the at least one product. The improvement, according to the present invention is: the catalyst material is on a porous material having a porosity that resists bulk flow therethrough and permits molecular diffusion therein. The porous material further has a length, a width and a thickness, the porous material defining at least a portion of one wall of a bulk flow path through which the at least one reactant passes.
    Type: Grant
    Filed: August 17, 1999
    Date of Patent: December 3, 2002
    Assignee: Battelle Memorial Institute
    Inventors: Anna Lee Y. Tonkovich, Yong Wang, Sean P. Fitzgerald, Jennifer L. Marco, Gary L. Roberts, David P. Vanderwiel, Robert S. Wegeng
  • Patent number: 6489515
    Abstract: Here is provided a process capable of efficiently carrying out a gas-phase dehydration reaction comprising contacting a raw material gas with a solid oxide catalyst containing an alkali metal element to allow reaction to progress by inhibiting decomposition of the raw material and the objective product. This process comprises using a sintered oxide comprising an alkali metal element and silica and/or alumina as a loading material for preheating of the raw material gas and/or as a supporting material for fixation of the position of the catalyst.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: December 3, 2002
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Hideyuki Kambe, Shukichi Ugamura, Yuuji Shimasaki, Shinji Takasaki
  • Patent number: 6489530
    Abstract: A process for producing polymers from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha feedstream is contacted in the reaction zone with a catalyst under catalytic conversion concditions. Vapor products are collected overhead and the catalyst particles are passed through the stripping zone on the way to the catalyst regeneration zone. Volatiles are stripped with steam in the stripping zone and the catalyst particles are sent to the catalyst regeneration zone where coke is burned from the catalyst, which is then recycled to the reaction zone. A stream rich in C4 and/or C5 olefins is recycled to the stripping zone.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: December 3, 2002
    Assignee: Exxon Mobile Chemical Patents Inc.
    Inventor: Gordon F. Stuntz
  • Patent number: 6476261
    Abstract: A process for the oxidation of a C2 to C4 alkane to produce the corresponding alkene and carboxylic acid which process comprises contacting in an oxidation reaction zone, said alkane, molecular oxygen-containing gas, and optionally, at least one of the corresponding alkene and water, in the presence of at least two catalysts each active, with different selectivities, for the oxidation of the alkane to the corresponding alkene and carboxylic acid, to produce a product stream comprising said alkene, carboxylic acid and water, and in which process the molar ratio of alkene to carboxylic acid produced in said oxidation reaction zone is adjusted or maintained at a pre-determined value by controlling the relative proportions of the at least two catalysts in said oxidation reaction zone. Such an oxidation process may be used in an integrated process, such as for the manufacture of ethyl acetate or vinyl acetate.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: November 5, 2002
    Assignee: BP Chemicals Limited
    Inventors: Brian Ellis, Mark Stephen Roberts
  • Patent number: 6475464
    Abstract: The present invention concerns a process for preparing a zeolite with structure type MTT comprising at least one element X selected from silicon and germanium and at least one element T selected from iron, aluminium, gallium, boron, titanium, vanadium, zirconium, molybdenum, arsenic, antimony, chromium and manganese, characterized in that seeds of at least one zeolitic material are used comprising at least one element X′ selected from silicon and germanium and at least one element T′ selected from iron, aluminium, gallium, boron, titanium, vanadium, zirconium, molybdenum, arsenic, antimony, chromium and manganese, said seeds being different from the zeolite with structure type MTT being synthesised. The present invention also concerns the use of the zeolite obtained as a catalyst in a process for converting hydrocarbon-containing feeds, as an adsorbent to control pollution and as a molecular sieve for separation.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: November 5, 2002
    Assignee: Institut Francais du Petrole
    Inventors: Loïc Rouleau, Frédéric Kolenda, Eric Benazzi
  • Patent number: 6472577
    Abstract: A method increases the feed throughput for a process of dehydrogenating light hydrocarbons without loss of conversion or selectivity by increasing the catalyst volume in only the final reactor of at least three reaction zones. The catalyst volume of the final reactor may be increased relative to the other reactors by extending the inner and outer screens that define a radial flow bed therein. Maintaining a low LHSV by increasing the catalyst volume in only the final reactor greatly reduces the expense of improving the capacity and yield of such a process. This method provides the most benefit to moving bed reactor systems since modifications are limited to the last reactor. A further benefit is derived from the simplified method of raising only a section of the last reactor to increase the catalyst volume.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: October 29, 2002
    Assignee: UOP LLC
    Inventors: Joseph E. Zimmermann, Paul R. Cottrell, Michael J. Vetter