By Dehydrogenation Patents (Class 585/654)
  • Patent number: 6425998
    Abstract: A process for using a hydrogen sensor in a liquid metal heat exchange loop in a hydrocarbon conversion process with high hydrogen permeation. The hydrogen sensor of the present invention consists essentially of a hollow nickel membrane probe in intimate contact with liquid metal. A vacuum chamber in fluid communication with the hollow nickel membrane probe through which hydrogen permeates, wherein the vacuum chamber is initially evacuated to a vacuum pressure and is in equilibrium with the vacuum chamber. The hydrogen sensor is useful for measuring the partial pressure of the hydrogen in the liquid metal to provide advisory control for the removal of hydrogen from the liquid metal exchange loop to avoid the problem of metal hydride formation and associated plugging problems.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: July 30, 2002
    Assignee: UOP LLC
    Inventor: Donald Cholewa
  • Patent number: 6417422
    Abstract: Catalysts and method for alkane dehydrogenation are disclosed. The catalysts of the invention generally comprise (i) nickel or a nickel-containing compound and (ii) at least one or more of titanium (Ti), tantalum (Ta), niobium (Nb), hafnium (Hf), tungsten (W), yttrium (Y), zinc (Zn), zirconium (Zr), or aluminum (Al), or a compound containing one or more such element(s). In preferred embodiments, the catalyst is a supported catalyst, the alkane or substituted alkane is selected from the group consisting of ethane, propane, isobutane, butane and ethyl chloride, molecular oxygen is co-fed with the alkane or substituted alkane to a reaction maintained at a temperature ranging from about 250° C. and about 350° C., and the ethane is oxidatively dehydrogenated to form the corresponding alkene with an alkene conversion of at least about 10% and an alkene selectivity of at least about 70%.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: July 9, 2002
    Assignee: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Publication number: 20020087042
    Abstract: A process and catalyst for the partial oxidation of paraffinic hydrocarbons, such as ethane, propane, naphtha, and natural gas condensates, to olefins, such as ethylene and propylene. The process involves contacting a paraffinic hydrocarbon with oxygen in the presence of a catalyst under autothermal process conditions. The catalyst comprises a Group 8B metal and, optionally, a promoter metal, such as tin or copper, supported on a fiber monolith support, preferably a ceramic fiber mat monolith. In another aspect, the invention is a process of oxidizing a paraffinic hydrocarbon to an olefin under autothermal conditions in the presence of a catalyst comprising a Group 8B metal and, optionally, a promoter metal, the metals being loaded onto the front face of a monolith support. An on-line method of synthesizing and regenerating catalysts for autothermal oxidation processes is also disclosed. This divisional case covers the catalyst composition and the method of preparing an olefin using the catalyst.
    Type: Application
    Filed: December 5, 2001
    Publication date: July 4, 2002
    Inventors: Lanny D. Schmidt, Ashish Bodke
  • Patent number: 6414209
    Abstract: The invention relates to a calcinated catalyst for converting paraffinic hydrocarbon into corresponding olefin through dehydrogenation. The catalyst is an oxidic, heat-stable carrier material and contains a catalytic active constituent, which is applied on the carrier material and has the following composition (in wt. % in relation to the entire weight of the catalyst): a) 0.2 to 2.0% of at least one element of the groups Pt and Ir and, acting as a promoter, a combination of elements from the six following groups of substances: b) 0.2 to 5.0% of at least one of the following elements Ge, Sn, Pb, Ga, In, Tl; c) 0.1 to 5.0% of at least one of the following elements Li, Na, K, Rb, Cs, Fr; d) 0.2 to 5.0% of at least one of the following elements Fe, Co, Ni, Pd; e) 1.0 to 5.0% P; f) 0.2 to 5.0% of at least one of the following elements Be, Mg, Ca, Sr, Ba, Ra and lanthanides and g) 0.1 to 2.0% Cl.
    Type: Grant
    Filed: September 25, 2000
    Date of Patent: July 2, 2002
    Assignees: Mannesman AG, K.T.I. Group B.V.
    Inventors: Mordechay Herskowitz, Shimson Kogan
  • Patent number: 6392113
    Abstract: The performance of an endothermic catalytic dehydrogenation process is increased without requiring additional catalyst regeneration and reheat air flow and compression by partially prereacting the preheated hydrocarbon feed and then reheating the partially dehydrogenated effluent from the prereactor to the same hydrocarbon preheat temperature prior to the main catalytic reactor. The preferable source of the heat for reheating is the effluent air from the reheat and regeneration of the catalyst in the main reactor. This same effluent air is used to regenerate the catalyst in the prereactor as needed.
    Type: Grant
    Filed: October 3, 2000
    Date of Patent: May 21, 2002
    Assignee: ABB Lummus Global Inc.
    Inventor: Robert J. Gartside
  • Patent number: 6388152
    Abstract: A process for producing polymers from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is introduced into a process unit comprised of a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone. The naphtha feedstream is contacted in the reaction zone with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500° to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia. Vapor products are collected overhead and the catalyst particles are passed through the stripping zone on the way to the catalyst regeneration zone. Volatiles are stripped with steam in the stripping zone and the catalyst particles are sent to the catalyst regeneration zone where coke is burned from the catalyst, which is then recycled to the reaction zone.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: May 14, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, Tan-Jen Chen
  • Patent number: 6362385
    Abstract: A process for obtaining light olefins by the dehydrogenation of corresponding paraffins, by reacting the paraffins with a catalytic system containing chromium oxide, tin oxide, at least one alkali metal oxide, and an alumina-silica carrier, and then regenerating the catalytic system in a regenerator by burning coke deposited on its surface at a temperature higher than the average temperature of the reactor.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: March 26, 2002
    Assignees: Siamprogetti S.p.A., Oao Nil Yarsintez
    Inventors: Rodolfo Iezzi, Andrea Bartolini, Franco Buonomo, Gueorgui Kotelnikov, Vladimir Bespalov
  • Patent number: 6355854
    Abstract: Processes for oxidative dehydrogenation of alkane to one or more olefins, exemplified by ethane to ethylene, are disclosed using novel catalysts. The catalysts comprise a mixture of metal oxides having as an important component nickel oxide (NiO), which give high conversion and selectivity in the process. The catalyst can be used to make ethylene by contacting it with a gas mixture containing ethane and oxygen. The gas mixture may optionally contain ethylene, an inert diluent such as nitrogen, or both ethylene and an inert diluent.
    Type: Grant
    Filed: February 22, 1999
    Date of Patent: March 12, 2002
    Assignee: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Patent number: 6339180
    Abstract: A process for producing polypropylene from olefins selectively produced from a catalytically cracked or thermally cracked naphtha stream is disclosed herein. The naphtha stream is contacted with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures from about 500° C. to 650° C. and a hydrocarbon partial pressure from about 10 to 40 psia.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: January 15, 2002
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Paul K. Ladwig, John E. Asplin, Gordon F. Stuntz, William A. Wachter, B. Erik Henry
  • Publication number: 20010049460
    Abstract: A method comprising:
    Type: Application
    Filed: February 9, 2001
    Publication date: December 6, 2001
    Inventor: Charles Herzog
  • Patent number: 6326523
    Abstract: Process for the dehydrogenation of a hydrocarbon feed comprising a step of dehydrogenating the hydrocarbon feed and a step of removing hydrogen being formed by dehydrogenation reactions, wherein the dehydrogenation and hydrogen removal steps are performed simultaneously in presence of a dehydrogenation catalyst being combined with a metal compound being reduced in presence of hydrogen.
    Type: Grant
    Filed: March 28, 2000
    Date of Patent: December 4, 2001
    Assignee: Haldor Topsoe A/S
    Inventors: Anni Stahl, Niels Jørgen Blom, Jens Perregaard, Poul Erik Højlund Nielsen
  • Publication number: 20010047119
    Abstract: A solid acid-base catalyst contains vanadium pentoxide hydrate.
    Type: Application
    Filed: March 15, 1999
    Publication date: November 29, 2001
    Inventors: NOBUJI KISHIMOTO, ETSUSHIGE MATSUNAMI
  • Patent number: 6300537
    Abstract: Disclosed are silicoaluminates (SAPOs) having unique silicon distributions, a method for their preparation and their use as naphtha cracking catalysts. More particularly, the new SAPOs have a high silica:alumina ratio and favorable Si atom distribution.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: October 9, 2001
    Assignee: Exxon Research and Engineering Company
    Inventors: Karl G. Strohmaier, David E. W. Vaughan, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Publication number: 20010025129
    Abstract: Processes for oxidative dehydrogenation of alkane to one or more olefins, exemplified by ethane to ethylene, are disclosed using novel catalysts. The catalysts comprise a mixture of metal oxides having as an important component nickel oxide (NiO), which give high conversion and selectivity in the process. For example, the catalyst can be used to make ethylene by contacting it with a gas mixture containing ethane and oxygen. The gas mixture may optionally contain ethylene, an inert diluent such as nitrogen, or both ethylene and an inert diluent.
    Type: Application
    Filed: March 22, 2001
    Publication date: September 27, 2001
    Applicant: Symyx Technologies, Inc.
    Inventor: Yumin Liu
  • Patent number: 6291686
    Abstract: An exothermic oxidation process wherein a rotating bed containing a variable oxidation state material is cycled through a succession of stages including an oxidative regeneration stage including a step wherein an oxidising fluid is passed through the bed, and a reaction stage wherein feedstock is passed through the bed, whereby said feedstock is oxidised to give products stream with the concurrent reduction of the convertible material to its lower oxidation state. The process can further include a stage wherein cooling fluid is passed through the bed.
    Type: Grant
    Filed: March 22, 2000
    Date of Patent: September 18, 2001
    Assignee: Imperial Chemical Industries PLC
    Inventors: Samuel David Jackson, Frank King, David Graham Shipley, Edmund Hugh Stitt
  • Patent number: 6288295
    Abstract: A novel catalyst comprises at least one support and at least one metal from group VIII or the periodic table e.g. palladium and is characterized in that the metal particles deposited on the support are not isolated from each other, e.g. at least 50% of the particles have a point of contact with one other particle.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: September 11, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillon, Denis Uzio, Elisabeth Merlen, Thierry Pages
  • Patent number: 6288298
    Abstract: Disclosed are silicoaluminophosphates (SAPOs) having unique silicon distributions, a method for their preparation and their use as catalysts for the catalytic cracking of hydrocarbon feedstocks. More particularly, the new SAPOs have a high silica:alumina ratio, and are prepared from microemulsions containing surfactants.
    Type: Grant
    Filed: May 20, 1999
    Date of Patent: September 11, 2001
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Javier Agundez Rodriguez, Joaquin Perez Pariente, Antonio Chica Lara, Avelino Corma Canos, Tan Jen Chen, Philip A. Ruziska, Brian Erik Henry, Gordon F. Stuntz, Stephen M. Davis
  • Patent number: 6218589
    Abstract: A method for improving the operation of a propane-propylene splitter in a process for the dehydrogenation of propane wherein the propane is dehydrogenated to produce a stream containing propylene and trace quantities of methyl acetylene and propadiene compounds and which stream is selectively hydrogenated to selectively saturate at least a majority of the trace quantities of methyl acetylene and propadiene compounds. The resulting effluent from the selective hydrogenation zone is fractionated in a propane-propylene splitter to produce a high-purity propylene product stream, an unconverted propane stream which is introduced to the dehydrogenation zone and a small slip stream or side-cut containing methyl acetylene and propadiene compounds which is introduced into the selective hydrogenation zone.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: April 17, 2001
    Assignee: UOP LLC
    Inventor: Paul R. Cottrell
  • Patent number: 6198012
    Abstract: A catalyst composition suitable for the conversion of n-butane to butenes. The same catalyst composition that with chlorination is further suitable, when used in the conversion of n-butane, for the production of an increased amount of BTX (benzene-toluene-xylene) and greater selectivity to the production of isobutylenes than attained with the unchlorinated catalyst. A process for the preparation of catalyst compositions suitable for the conversion of n-butane. Use of the catalyst compositions in processes for the conversion of n-butane.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: March 6, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6191332
    Abstract: The specification describes a method and a fixed bed apparatus for producing olefinic hydrocarbons from a charge of saturated aliphatic hydrocarbons with 2 to 20 carbon atoms and hydrogen in a chamber 1 comprising a plurality of parallel tubes 3 filled with a catalyst and arranged in rows. A so-called reaction phase and a catalyst-regenerating phase are carried out in the tubes of the chamber. The tubes are heated by appropriate radiant heating means 6, arranged in layers substantially perpendicular to the tubes. These layers heat a first part of the tubes (at the feed side) with a heat flux greater than the mean heat flux of the chamber and a second, subsequent part with a mean flux no more than equal to the mean heat flux, so that the isothermicity of the catalyst is substantially maintained, using appropriate control means.
    Type: Grant
    Filed: February 23, 1998
    Date of Patent: February 20, 2001
    Assignee: Institut Francais du Petrole
    Inventors: Didier Duee, Larry Mank, Pierre Renard, Jean-Piere Burzynski, Gerard Leger, Philippe Vacher, Ari Minkkinen
  • Patent number: 6187984
    Abstract: A catalyst composition suitable for the conversion of n-butane to butenes. The same catalyst composition that with chlorination is further suitable, when used in the conversion of n-butane, for the production of an increased amount of BTX (benzene-toluene-xylene) and greater selectivity to the production of isobutylenes than attained with the unchlorinated catalyst. A process for the preparation of catalyst compositions suitable for the conversion of n-butane. Use of the catalyst compositions in processes for the conversion of n-butane.
    Type: Grant
    Filed: June 22, 2000
    Date of Patent: February 13, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6175048
    Abstract: A catalyst composition and a process for using of the catalyst composition in a hydrocarbon conversion process are disclosed. The composition comprises an inorganic support, a Group VA metal or metal oxide, and optionally a Group IVA metal or metal oxide and a Group VIII metal or metal oxide. The process comprises contacting a fluid which comprises at least one saturated hydrocarbon with the catalyst composition under a condition sufficient to effect the conversion of the hydrocarbon to an olefin. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: January 16, 2001
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 6165352
    Abstract: A continuous process for the dehydrogenation of a hydrocarbon and/or oxygenated hydrocarbon feed, comprising contacting the hydrocarbon and/or oxygenated hydrocarbon feed with a dehydrogenation catalyst at elevated temperature in a reaction zone characterised in that the catalyst is capable of retaining hydrogen and (a) is contacted with a feed to form a dehydrogenated product and hydrogen, at least some of the hydrogen formed being adsorbed by the catalyst and/or reacting therewith to reduce at least part of the catalyst; (b) the dehydrogenated product and any unadsorbed/unreacted hydrogen is removed from the reaction zone; (c) at least some of the adsorbed hydrogen is removed from the catalyst and/or at least some of the reduced catalyst is oxidised; and (d) reusing the catalyst from step (c) in step (a).
    Type: Grant
    Filed: March 12, 1998
    Date of Patent: December 26, 2000
    Assignee: BP Chemicals Limited
    Inventors: Jeremy Bernard Cooper, Jonathon Charles Frost, Stephen Roy Partington
  • Patent number: 6159358
    Abstract: A process and apparatus produces reaction products by indirectly preheating and heating reactants by indirect heat exchange. The use of the preheating step simplifies the reaction zone design by eliminating the need for external exchangers and is particularly suited for an arrangement of plates that defines narrow channels for indirect heat exchange. The narrow channels are preferably defined by corrugated plates. The primary reaction channels will contain a catalyst for the promotion of the desired reaction product from the principal reactants. The heating fluid passes through adjacent heating channels defined by shared partition plates to provide indirect heating. At least a portion of the heating channels exchange heat with a non-catalytic portion of the reaction channels to preheat the reactants ahead of a catalytic section of the reaction channels. Catalytic combustion within the heating channels may provide in-situ heat input for the heating medium.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: December 12, 2000
    Assignee: UOP LLC
    Inventors: Robert C. Mulvaney, III, Hemant W. Dandekar
  • Patent number: 6143943
    Abstract: A channel reactor arrangement and a process uses a heat exchange fluid with a high thermal density to indirectly heat or cool the reactants by indirect heat exchange. The system brings the efficiency of plate reactor arrangements to the effectiveness of high heat capacity heat exchange fluids such as molten salts and liquid metals. The channel reactor arrangement maintains a limited temperature gradient through the channels at all points to improve process selectivity. This type of arrangement is of a particular advantage where the reaction zone uses a heterogeneous catalyst system within a heat exchanging reaction section. The plate and channel heat transfer arrangement is particularly beneficial because of its high surface area provided per unit volume of channels.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: November 7, 2000
    Assignee: UOP LLC
    Inventors: Anil R. Oroskar, Robert C. Mulvaney, III
  • Patent number: 6118038
    Abstract: A channel reactor arrangement and a process that uses a high heat capacity heat exchange liquid to indirectly heat or cool by indirect heat exchange. The channel reactor arrangement maintains a pressure gradient through the channels and a pressure differential between the reaction channels and the heat exchange channels at all points to preserve the integrity of the plates defining the channels and to prevent any leakage of high heat capacity liquids into the reaction channels. The system brings the efficiency of plate reactor arrangements to the effectiveness of high heat capacity heat exchange fluids such as molten salts and liquid metals. The process overcomes the problem of low heat exchange pressure drop in combination with high reactant pressure drop by creating a negative pressure differential from reactant channels to the heat exchange channels.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: September 12, 2000
    Assignee: UOP LLC
    Inventors: Steven P. Lankton, Joseph E. Zimmermann, Robert C. Mulvaney, III
  • Patent number: 6110325
    Abstract: An apparatus and method are provided in which a vaporizer vaporizes a liquid feed for introduction to a feed conversion unit such as a steam active reformer. A condenser condenses vaporized feed from the vaporizer when introduction of feed to the feed conversion unit is stopped. Condensed, liquid feed is passed back into the vaporizer and is conserved rather than going to flare.
    Type: Grant
    Filed: July 8, 1997
    Date of Patent: August 29, 2000
    Assignee: Krupp UHDE GmbH
    Inventor: Martin K. Lyons
  • Patent number: 6107534
    Abstract: An improved zeolite catalyst containing an acid-treated zeolite, a boron component and a zinc component manufactured by a novel method having certain process steps necessary for providing the improved zeolite catalyst. The process steps include a first steam treatment of an acid-treated zeolite, followed by incorporation of such zeolite with a boron component and a zinc component, followed by a second steam treatment. Processes are also disclosed for using the improved zeolite catalyst in the conversion of hydrocarbons, preferably non-aromatic hydrocarbons, to lower olefins (such as ethylene and propylene) and aromatic hydrocarbons (such as benzene, toluene, and xylene).
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: August 22, 2000
    Assignee: Phillips Petroleum Company
    Inventors: Charles A. Drake, An-hsiang Wu
  • Patent number: 6103103
    Abstract: A process and catalyst are provided for dehydrogenating a hydrocarbon feedstock and producing an olefinic product. The process comprises contacting the feedstock at dehydrogenation conditions with a dehydrogenation catalyst comprising from about 0.01 weight percent to about 5.0 weight percent of a platinum group metal, from about 0.02 weight percent to about 10.0 weight percent of zinc, and a support component comprising borosilicate and an alkali metal.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: August 15, 2000
    Assignee: BP Amoco Corporation
    Inventors: Bruce D. Alexander, George A. Huff, Jr., Mark P. Kaminsky
  • Patent number: 6100436
    Abstract: A process and apparatus for contacting reactants with a particulate catalyst while indirectly heating the reactants with a heat exchange medium improves temperature control by using an intermediate heat exchange fluid and system to prevent overheating of reactants and maintain parallel heating characteristics through multiple reaction-heat exchange zones. The internal flow path minimizes the circulation of the reaction zone heat exchange fluid by incorporating interstage reheating of the reaction zone heat exchange fluid as it passes in series flow. A particularly useful application of the process and apparatus is in the dehydrogenation of ethyl benzene to produce styrene. The process and apparatus can also be used with simultaneous exchange of catalyst particles by an operation that restricts reactant flow while moving catalyst through reaction stacks in which the reactant flow has been restricted.
    Type: Grant
    Filed: September 8, 1998
    Date of Patent: August 8, 2000
    Assignee: UOP LLC
    Inventors: William Wiede, Jr., Kevin J. Brandner, Bruce Allen Briggs, Donald Eelch, Constante P. Tagamolila
  • Patent number: 6093867
    Abstract: A process for selectively producing C.sub.3 olefins from a catalytically cracked or thermally cracked naphtha stream. The naphtha stream is introduced into a process unit comprised of a reaction zone, a stripping zone, a catalyst regeneration zone, and a fractionation zone. The naphtha feedstream is contacted in the reaction zone with a catalyst containing from about 10 to 50 wt. % of a crystalline zeolite having an average pore diameter less than about 0.7 nanometers at reaction conditions which include temperatures ranging from about 500.degree. to 650.degree. C. and a hydrocarbon partial pressure from about 10 to 40 psia. Vapor products are collected overhead and the catalyst particles are passed through the stripping zone on the way to the catalyst regeneration zone. Volatiles are stripped with steam in the stripping zone and the catalyst particles are sent to the catalyst regeneration zone where coke is burned from the catalyst, which is then recycled to the reaction zone.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: July 25, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: Paul K. Ladwig, John Ernest Asplin, Gordon F. Stuntz, Tan-Jen Chen
  • Patent number: 6087545
    Abstract: An improved supported catalyst containing mixed strontium and other alkaline earth oxides deposited on a sintered low surface area porous catalyst carrier (or support) precoated with mixed lanthanum and other rare earth oxides, represented by the formula:A.sub.a SrO.sub.b (x) /R.sub.c LaO.sub.d (y) /S,wherein, A is alkaline earth element selected from Be, Mg, Ca, Ba or a mixture thereof; Sr is strontium, O is oxygen; R is rare earth element selected from Ce, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or a mixture thereof; La is lanthanum; S is catalyst support selected from sintered low surface area porous refractory inert solids comprising of alumina, silica, silica-alumina, silicon carbide, zirconia, hafnia or a mixture thereof; a is A/Sr mole ratio in the range of about 0.01 to about 10; b is number of oxygen atoms needed to fulfill the valence requirement of alkaline earth elements (A.sub.a Sr); c is R/La mole ratio in the range of about 0.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: July 11, 2000
    Assignee: Council of Scientific & Industrial Research
    Inventors: Vasant Ramchandra Choudhary, Balu Shivaji Uphade, Shafeek Abdul Rashid Mulla
  • Patent number: 6072097
    Abstract: A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting said hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consists essentially of platinum modified with Sn or Cu and supported on a ceramic monolith.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: June 6, 2000
    Assignee: Regents of the University of Minnesota
    Inventors: Chikafumi Yokoyama, Sameer S. Bharadwaj, Lanny D. Schmidt
  • Patent number: 6045688
    Abstract: The invention relates ro a method of converting hydrocarbons. According to the method, a gaseous or liquid hydrocarbon feed is passed into a circulating fluidized-bed reactor, wherein the feed is converted at a high temperatue under the influence of particulate matter kept in a fluidized state, and the converted hydrocarbon products are removed from the reactor in a gaseous phase. According to the invention, a circulating fluidized-bed reactor (1-3; 41-43) is used having an axially annular cross section and being equipped with a multiport cyclone (14,17; 52,63) for the separation of the particulate matter from the gas-phase reaction products. The reaction space comprises an intershell riser space (13; 50) formed between two concentrically located cylindrical and/or conical envelope surfaces. The separation of particulate matter from the gas-phase reaction products is performed by means of a multiport cyclone equipped with louvered vanes (14; 63).
    Type: Grant
    Filed: August 29, 1997
    Date of Patent: April 4, 2000
    Assignee: Neste OY
    Inventors: Seppo Ruottu, Kari Kaariainen, Jyrki Hiltunen
  • Patent number: 6028027
    Abstract: Catalysts comprising iron and potassium and, if desired, further elements, which catalysts are suitable for dehydrogenating hydrocarbons to give the corresponding olefinically unsaturated hydrocarbons, are prepared by calcining a finely divided dry or aqueous mixture of an iron compound with a potassium compound and, if desired, compounds of further elements in a first step that agglomerates having a diameter of from 5 to 50 .mu.m and formed from smaller individual particles are obtained and, in a second step, preferably after shaping, calcining it at from 300 to 1000.degree. C., with the maximum calcination temperature in the second step preferably being at least 30.degree. below the calcination temperature in the first step. The catalysts thus prepared are useful, in particular, for dehydrogenating ethylbenzene to give styrene.
    Type: Grant
    Filed: March 17, 1998
    Date of Patent: February 22, 2000
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Baier, Christopher William Rieker, Otto Hofstadt, Wolfgang Buchele, Wolfgang Jurgen Popel, Hermann Petersen, Norbert Neth
  • Patent number: 6020533
    Abstract: Hydrocarbon conversion processes using a new family of crystalline manganese phosphate compositions is disclosed. These compositions have an extended network; which network can be a one-, two-, or three-dimensional network. The composition has an empirical formula of:(A.sup.a+).sub.v (Mn.sup.b+)(M.sup.c+).sub.x P.sub.y O.sub.zwhere A is a templating agent such as an alkali metal, M is a metal such as Al, Fe.sup.3+ and "b" is the average manganese oxidation state and varies from greater than 3.0 to about 4.0.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: February 1, 2000
    Assignee: UOP LLC
    Inventors: Gregory J. Lewis, Paula L. Bogdan
  • Patent number: 5997724
    Abstract: A shale oil modifier is made of a crude shale oil dehydrogenated sufficiently to attain a viscosity of between about 1200-1800 poise at 60.degree. C. The crude shale oil has sufficient basic nitrogen content so that the dehydrogenated crude shale oil exhibits non-Newtonian properties when mixed with asphalt cements. Preferably, the basic nitrogen content is about 2%-2.5% by weight. The shale oil modifier is made by a process which includes providing a crude shale oil and subjecting the crude shale oil to a two stage distillation followed by a vacuum distillation and collecting the residual fraction. The residual fraction is dehydrogenated with air until a select viscosity, preferably between about 1200-1800 poise at 60.degree. C. is obtained.
    Type: Grant
    Filed: June 16, 1997
    Date of Patent: December 7, 1999
    Assignee: The New Paraho Corporation
    Inventor: Larry A Lukens
  • Patent number: 5994606
    Abstract: A method for dehydrogenation of a hydrocarbon, which comprises selectively oxidizing hydrogen in a gas mixture which is obtained by subjecting a feed hydrocarbon to a dehydrogenation reaction in the presence of a dehydrogenation catalyst and which comprises a dehydrogenated hydrocarbon, an unreacted feed hydrocarbon and hydrogen, by contacting the gas mixture with an oxygen-containing gas in the presence of an oxidation catalyst, and further subjecting a hydrocarbon-containing gas obtained by the oxidation reaction to a dehydrogenation reaction, wherein a catalyst comprising a component having platinum and/or palladium supported on a carrier obtained by calcining at least one member selected from the group consisting of tin oxide, titanium oxide, tantalum oxide and niobium oxide, at a temperature of from 800.degree. C. to 1,500.degree. C., is used as the oxidation catalyst.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: November 30, 1999
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Tomoatsu Iwakura, Makoto Takiguchi
  • Patent number: 5959170
    Abstract: A method for converting methane to higher hydrocarbon products and coproduct water wherein a gas comprising methane and a gaseous oxidant are contacted with a nonacidic catalyst at temperatures within the range of about 700 to 1200.degree. C. A preferred catalyst comprises an alkali component associated with a support material. Results obtained over alkali-promoted solids are enhanced when the contacting is conducted in the presence of halogen promoters.
    Type: Grant
    Filed: May 24, 1985
    Date of Patent: September 28, 1999
    Assignee: Atlantic Richfield Company
    Inventor: Howard P. Withers, Jr.
  • Patent number: 5922925
    Abstract: A process for dehydrogenating dehydrogenatable C.sub.2-30 hydrocarbons includes contacting the hydrocarbons under dehydrogenating conditions in one or more reaction zones with a solid catalyst. The solid catalyst includes at least a Group VIII noble metal, a Group IVA metal, and a carrier of a mixed oxide of magnesium and aluminum.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: July 13, 1999
    Assignee: Den norske stats oljeselskap a.s.
    Inventors: Duncan Akporiaye, Morten Ronnekleiv, Preben Hasselgard, Age Solbakken, deceased
  • Patent number: 5912394
    Abstract: A catalyst for the dehydrogenation of C.sub.6 -C.sub.15 paraffins is disclosed. The catalyst contains, on support, at least one platinum group component, at least one promoter component from the group tin, germanium and lead, and at least one additional modifier. The additional modifier contains at least one alkaline earth metal. The stability of the catalyst is essentially higher than that achieved by conventional use of an alkali metal.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: June 15, 1999
    Assignee: Degussa-Huels Aktiengesellschaft
    Inventors: Hans Lansink Rotgerink, Thomas Tacke, Reinhold Brand, Peter Panster
  • Patent number: 5905180
    Abstract: A process for the production of a mono-olefin from a gaseous paraffinic hydrocarbon having at least two carbon atoms or mixtures thereof comprising reacting said hydrocarbons and molecular oxygen in the presence of a platinum catalyst. The catalyst consists essentially of platinum modified with Sn or Cu and supported on a ceramic monolith.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: May 18, 1999
    Assignee: Regents of the University of Minnesota
    Inventors: Chikafumi Yokoyama, Sameer S. Bharadwaj, Lanny D. Schmidt
  • Patent number: 5895829
    Abstract: In a process for preparing olefinically unsaturated compounds such as styrene by oxidative dehydrogenation of corresponding hydrocarbons using a previously oxidized oxygen transferer acting as catalyst in the absence of molecular oxygen and reoxidation of the oxygen transferer in at least two reactors, the dehydrogenation and regeneration takes place alternately in time in the two reactors and the reactors are connected to one another in terms of heat via heat exchangers and a common circuit for heat transfer medium.
    Type: Grant
    Filed: June 18, 1997
    Date of Patent: April 20, 1999
    Assignee: BASF Aktiengesellschaft
    Inventors: Wolfgang Jurgen Popel, Alfred Hagemeyer, Wolfgang Buchele, Axel Deimling, Wolfgang Hoffmann
  • Patent number: 5877369
    Abstract: A catalyst composition and a process for using of the catalyst composition in a hydrocarbon conversion process are disclosed. The composition comprises an inorganic support, a Group VA metal or metal oxide, and optionally a Group IVA metal or metal oxide and a Group VIII metal or metal oxide. The process comprises contacting a fluid which comprises at least one saturated hydrocarbon with the catalyst composition under a condition sufficient to effect the conversion of the hydrocarbon to an olefin. Also disclosed is a process for producing the catalyst composition.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: March 2, 1999
    Assignee: Phillips Petroleum Company
    Inventors: An-hsiang Wu, Charles A. Drake
  • Patent number: 5877387
    Abstract: A preparation of a Pb-substituted hydroxyapatite catalyst for oxidative coupling of methane represented by the formula Ca.sub.10-x pb.sub.x (PO.sub.4).sub.6 (OH).sub.2 wherein 0<X<10 or preferably 0<X<3, includes dissolving calcium nitrate tetrahydrate ?Ca(NO.sub.3).sub.2 4H.sub.2 O!, lead nitrate ?Pb(NO.sub.3).sub.2 ! and monobasic ammonium phosphate ?NH.sub.4 H.sub.2 PO.sub.4 ! in a distilled water at room temperature to have over 0.01M concentration and pH 9 and maintaining a resultant precipitate for 5 to 20 hours for aging and then calcining the resultant. A method for producing C.sub.2 compounds using the thusly produced catalyst includes reacting a mixed gas composed of methane, oxygen and helium in the presence of 5.about.20 g.multidot.min/L of the Pb-substituted hydroxyapatite catalyst according to the present invention, at a high temperature of at least 600.degree. C.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: March 2, 1999
    Assignee: Korea Institute of Science and Technology
    Inventors: Tae-Jin Park, Dong Jin Suh, Kwan-Young Lee
  • Patent number: 5877381
    Abstract: The present invention provides a fluidized bed catalyst for the synthetic reaction of organic compounds which has a reduced catalyst loss. A fluidized bed catalyst for organic compound synthetic reaction, characterized in that 90% or more of the catalyst particles is in the range of 5-500 .mu.m on the weight-based particle size distribution and 90% or more of the 20-75 .mu.m particles has a crushing strength which satisfies the following equation:CS>A.multidot.d.sub..alpha.wherein CS represents a crushing strength ?g-weight/particle!,A represents a constant 0.001,d represents a particle diameter ?.mu.m!, and.alpha. represents a constant 2.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: March 2, 1999
    Assignee: Nitto Kagaku Kogyo Kabushiki Kaisha
    Inventors: Yutaka Sasaki, Hiroshi Yamamoto, Kiyoshi Moriya, Yoshimi Nakamura
  • Patent number: 5866745
    Abstract: Light olefins are produced from a hydrocarbon feedstock by a steam pyrolysis reaction in the presence of small quantities of essentially pure oxygen and selected catalytic solids to enhance the steam pyrolysis reaction, to promote the combustion of hydrogen to water and to minimize the formation of carbon oxides. The catalysts are characterized by low surface area, by non-alumina supports and by the catalytic oxides of the group IVB, VB and VIB transition metals.
    Type: Grant
    Filed: January 26, 1998
    Date of Patent: February 2, 1999
    Assignee: ABB Lummus Global Inc.
    Inventors: Robert John Gartside, Atef M. Shaban
  • Patent number: 5866746
    Abstract: The present invention concerns, in the dehydroisomerization of at least one C.sub.4 -C.sub.5 n-paraffin, preferably n-butane, the use of a catalyst comprising a refractory oxide based support, preferably an alumina, at least one precious metal from group VIII, preferably platinum or palladium, optionally at least one element from group IVB such as titanium or zirconium, preferably titanium, optionally at least one element from the group formed by germanium, tin, lead, rhenium, tungsten and indium, and optionally at least one halogen such as chlorine. The present invention also concerns the regeneration of this catalyst.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: February 2, 1999
    Assignee: Institut Francais du Petrole
    Inventors: Blaise Didillion, Christine Travers, Jean-Pierre Burzynski
  • Patent number: 5849969
    Abstract: Carburization and metal-dusting while hydrodealkylating a hydrodealkylatable hydrocarbon are reduced even in the substantial absence of sulfur.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: December 15, 1998
    Assignee: Chevron Chemical Company
    Inventors: John V. Heyse, Bernard F. Mulaskey, Robert A. Innes, Daniel P. Hagewiesche, William J. Cannella, David C. Kramer
  • Patent number: 5817904
    Abstract: A method for converting methane by an oxidative coupling reaction to longer chain hydrocarbons comprising cofeeding methane and oxygen simultaneously and continuously into a reaction zone to form a mixture, contacting said methane and oxygen mixture under oxidative coupling reaction conditions with a solid catalyst consisting essentially of manganese oxide and silicon oxide, promoted with an alkaline metal and non metal, to form longer chain hydrocarbons wherein the manganese, silicon oxide, alkali metal and non metal are present in a molar ratio 0-0.5:93.2-93.7:4.2:2.1.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 6, 1998
    Assignee: Repsol Petroleo S.A.
    Inventors: Sebastian Vic, Miguel A. Pena, Pilar Terreros, Juan P. Gomez, Jose L. Garcia-Fierro, Juan M. Jimenez