Glucose Patents (Class 600/316)
  • Patent number: 11971351
    Abstract: A system for non-invasively measuring an analyte in a vehicle driver and controlling a vehicle based on a measurement of the analyte. At least one solid-state light source is configured to emit different wavelengths of light. A sample device is configured to introduce the light emitted by the at least one solid-state light source into tissue of the vehicle driver. One or more optical detectors are configured to detect a portion of the light that is not absorbed by the tissue of the vehicle driver. A controller is configured to calculate a measurement of the analyte in the tissue of the vehicle driver based on the light detected by the one or more optical detectors, determine whether the measurement of the analyte in the tissue of the vehicle driver exceeds a pre-determined value, and provide a signal to a device configured to control the vehicle.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: April 30, 2024
    Assignee: Automotive Coalition for Traffic Safety, Inc.
    Inventors: Johannes Koeth, Nicolas Koslowski
  • Patent number: 11950903
    Abstract: In one aspect, a method of estimating an HbA1c level is provided. The method may include obtaining a first and second glucose measurement, adding the first and the second glucose measurements to a glucose measurement data set, and calculating an estimated HbA1c level using at least the glucose measurement data set. In another aspect, a method of calculating a range of an estimated HbA1c level is provided. The method may comprise at least calculating an estimated HbA1c level and a standard deviation of the estimated HbA1c level using a glucose measurement data set, and combining the estimated HbA1c level with the standard deviation of the estimated HbA1c level to acquire the range of the estimated HbA1c level. In another aspect, a glucose monitoring device may display glycemic variability of an individual.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: April 9, 2024
    Assignee: Senseonics, Incorporated
    Inventors: James Masciotti, Barbara Montgomery
  • Patent number: 11937923
    Abstract: A non-invasive method to determine a current functional blood oxygen saturation level: acquiring, at a sampling frequency, a photoplethysmography light response for each wavelength of a plurality of at least three wavelengths, resulting respectively in a first, second and third raw data series, applying a low -pass filter to each of the first, second and third raw data series, resulting respectively in a first, second and third DC data series representing an unmodulated amplitude response determining respectively in a first, second and third AC data series representing an unmodulated amplitude response, applying a. computation engine to the first, second and third AC and DC data series, and determining therefrom a user current blood oxygen saturation level.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: March 26, 2024
    Assignee: WITHINGS
    Inventors: Paul Edouard, Romain Kirszenblat
  • Patent number: 11918349
    Abstract: Disclosed herein are techniques related to model predictive control. The techniques may involve generating a desired glucose trajectory that approaches a desired steady state setpoint from a current glucose value over a prediction horizon. The techniques may involve generating a plurality of insulin delivery patterns. Each insulin delivery pattern may correspond to an amount of insulin to be delivered over a control horizon. The techniques may involve generating a plurality of predicted glucose trajectories over the control horizon. Each predicted glucose may be generated based on the current glucose value and a respective insulin delivery pattern. The techniques may involve comparing the desired glucose trajectory against each predicted glucose trajectory and selecting a predicted glucose trajectory that is more similar to the desired glucose trajectory than any other predicted glucose trajectory.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: March 5, 2024
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Garry M. Steil, Sami S. Kanderian, Jr., Martin T. Cantwell, Udo Hoss
  • Patent number: 11890094
    Abstract: A sensor system includes an array of optical sensors on an integrated circuit and a plurality of sets of optical filters atop at least a portion of the array. Each set of optical filters is associated with a set of optical sensors of the array, with a set of optical filters including a plurality of optical filters, with each optical filter being configured to pass light in a different wavelength range. A first interface is configured to interface with the optical sensors and first processing circuitry that is configured to execute operational instructions for receiving an output signal representative of received light from the optical sensors and determining a spectral response for each set of optical sensors.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: February 6, 2024
    Assignee: Spectricity
    Inventors: Jonathan Borremans, Maarten De Bock, Jakub Raczkowski
  • Patent number: 11883129
    Abstract: An optical physiological finger sensor system including an ergonomic interface shaped into a natural curve of a user's hand and finger.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: January 30, 2024
    Assignee: Cercacor Laboratories, Inc.
    Inventor: Gregory A. Olsen
  • Patent number: 11877866
    Abstract: An implantable apparatus for physiological measurement in a host organism has an implantable sample chamber having a measurement port and live cells that are treated to fluoresce in response to light having an excitation wavelength. An optical sensor housing implanted within the host organism has a window to convey excitation light output and receive fluorescent light; a coupling that couples the measurement port of the sample chamber to the window; an optical chamber partitioned into an excitation sub-chamber and a detection sub-chamber, wherein both sub-chambers are in optical communication with the window; an excitation source energizable to direct excitation light through the excitation sub-chamber and to the window; and a detector in the path of fluorescent light received from the live cells. A signal processing apparatus is energizable to acquire and process a detector signal and to transmit a processed signal that is indicative of fluorescent light energy.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: January 23, 2024
    Assignee: EFFERENT LABS, INC.
    Inventors: Marek Kowarz, Spencer Rosero
  • Patent number: 11839468
    Abstract: A component concentration measuring apparatus includes: a dielectric spectroscopy portion that irradiates a measurement subject with electromagnetic waves and measures a complex permittivity, thereby acquiring a dielectric spectroscopy spectrum; a temperature measurement portion that measures a temperature of the measurement subject; a signal processing portion that corrects the dielectric spectroscopy spectrum according to the temperature measured by the temperature measurement portion; and a calculating portion that applies a calibration model generated in advance from a dielectric spectroscopy spectrum of a sample whose component concentration is known, to the dielectric spectroscopy spectrum corrected by the signal processing portion, thereby calculating a component concentration of the measurement subject.
    Type: Grant
    Filed: April 11, 2019
    Date of Patent: December 12, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Masahito Nakamura, Takuro Tajima, Michiko Seyama
  • Patent number: 11826144
    Abstract: An apparatus for estimating a biological substance in a user using a unit spectrum for the biological substance acquired using a biological tissue simulation solution is provided. The apparatus may include a spectrometer configured to emit a light to a skin of a user, detect the light returned from the skin, and measure a skin spectrum of the user from the detected light and a processor configured to estimate a biological substance in the user based on the measured skin spectrum and a unit spectrum acquired using a biological tissue simulation solution.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 28, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: So Young Lee, Jin Young Park
  • Patent number: 11811456
    Abstract: Systems and embodiments for a multi-pixel waveguide optical receiver are described herein. In certain embodiments, a system includes an emitter that emits laser light towards a surface. The system also includes a receiver that passively receives reflected laser light that is a portion of the laser light reflected from the surface, wherein the receiver has multiple pixels having a size that is smaller than an expected optical speckle size, wherein the expected optical speckle size corresponds to a region on the receiver where the reflected laser light has a substantially uniform spatial phase. Additionally, the system includes a combiner configured to combine optical fields from each pixel in the multiple pixels into an output that supports a number of modes that is equal to a number of pixels in the multiple pixels. Moreover, the system includes a photodetector configured to receive light from the output.
    Type: Grant
    Filed: March 30, 2021
    Date of Patent: November 7, 2023
    Assignee: Honeywell International Inc.
    Inventors: Chad Fertig, Matthew Wade Puckett
  • Patent number: 11779231
    Abstract: Systems, devices, and methods for tracking one or more physiological metrics (e.g., heart rate, blood oxygen saturation, and the like) of a user are described. For example, one or more light sources and one or more light detectors may be positioned on a wearable device such that light can be emitted towards the user's skin and further such that light reflected back to the wearable device can be measured and used to generate values for the one or more physiological metrics.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: October 10, 2023
    Assignee: FITBIT, INC.
    Inventors: Kyle P. Nadeau, Chris H. Sarantos, Kevin Pu Weekly, Javier L. Prieto, Peter W. Richards, Paul Francis Stetson, Aniket Sanjay Deshpande
  • Patent number: 11761953
    Abstract: A sensor (e.g., an optical sensor) that may be implanted within a living animal (e.g., a human) and may be used to measure an analyte (e.g., glucose or oxygen) in a medium (e.g., interstitial fluid, blood, or intraperitoneal fluid) within the animal. The sensor may include a sensor substrate, electrode or housing, an analyte indicator covering at least a portion of the sensor, and one or more compounds that reduce degradation of the analyte indicator.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: September 19, 2023
    Assignee: Senseonics, Incorporated
    Inventors: Venkata Velvadapu, Tina HyunJung Kim, Chad Brouwer
  • Patent number: 11744487
    Abstract: A glucose biosensor includes a plurality of optical fibers configured for placement within the ear canal. A first optical fiber emits light into the ear canal. A plurality of other optical fibers capture and transmit the reflected light back to the glucose biosensor. A plurality of photodetectors are configured in the glucose biosensor to detect the reflected light from the plurality of optical fibers. The glucose biosensor processes the detected light from each photodetector to determine a glucose level measurement. In an embodiment, the glucose biosensor also obtains a second glucose level measurement using another method and determines a calibration for the first glucose level measurement using the second glucose level measurement.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: September 5, 2023
    Assignee: TRILINEAR BIOVENTURES, LLC
    Inventor: Robert Steven Newberry
  • Patent number: 11678818
    Abstract: The present disclosure generally relates to the field of blood glucose monitoring. A device for determining a blood glucose level includes a first light emitting unit configured to emit a first light; a second light emitting unit configured to emit a second light, wherein one of the first light and the second light is configured to be insensitive to glucose content in blood; a first light receiving unit configured to generate a first signal based on the first light; and a second light receiving unit configured to generate a second signal based on the second light.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: June 20, 2023
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Litong Han
  • Patent number: 11672860
    Abstract: A sensor that may be implanted within a living animal (e.g., a human) and may be used to measure an analyte (e.g., glucose or oxygen) in a medium (e.g., interstitial fluid, blood, or intraperitoneal fluid) within the animal. The sensor may include a sensor housing and an analyte indicator covering at least a portion of the sensor housing. The sensor may include a drug-eluting matrix that covers at least a portion of the analyte indicator. The drug-eluting matrix may include one or more openings configured to allow the medium to pass through the drug-eluting matrix and come into contact with the analyte indicator. The sensor may include one or more therapeutic agents. The one or more therapeutic agents may reduce deterioration of the analyte indicator. The one or more therapeutic agents may be incorporated within the drug-eluting matrix.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: June 13, 2023
    Assignee: Senseonics, Incorporated
    Inventors: Philip Huffstetler, Sanat Mohanty, Robert Attwood
  • Patent number: 11674903
    Abstract: A system and method for monitoring the health of dialysis patients with Raman spectroscopy measurements of one or more target analytes is described. The methods include irradiating one or more fluids of interest with light to produce one or more spectrum and detecting the spectrum with a detector. The fluids of interest are preferably those related to dialysis, including hemodialysis and peritoneal dialysis. In a preferred embodiment, the fluids are irradiated with monochromatic light, and one or more Raman spectra are detected as a result of the irradiation. The fluids may be irradiated within the dialysis tubing itself, or removed from the dialysis tubing and irradiated in a separate chamber. The Raman spectra of one or more target analytes of a dialysis patient may be followed over time or compared to one or more reference spectra, thereby providing information on the health of dialysis patients.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: June 13, 2023
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: John L. Robertson, Ryan Senger, Pang Du
  • Patent number: 11638541
    Abstract: Systems and methods for dynamically and intelligently estimating analyte data from a continuous analyte sensor, including receiving a data stream, selecting one of a plurality of algorithms, and employing the selected algorithm to estimate analyte values. Additional data processing includes evaluating the selected estimative algorithms, analyzing a variation of the estimated analyte values based on statistical, clinical, or physiological parameters, comparing the estimated analyte values with corresponding measure analyte values, and providing output to a user. Estimation can be used to compensate for time lag, match sensor data with corresponding reference data, warn of upcoming clinical risk, replace erroneous sensor data signals, and provide more timely analyte information encourage proactive behavior and preempt clinical risk.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: May 2, 2023
    Assignee: Dexconi, Inc.
    Inventors: James H. Brauker, Victoria E. Carr-Brendel, Paul V. Goode, Jr., Apurv Ullas Kamath, James Patrick Thrower, Ben Xavier
  • Patent number: 11622722
    Abstract: A system for wirelessly obtaining physiological data from a subject includes a sensor patch and a separate electronics package. The sensor patch is disposed on and adheres to the subject, and includes a first part of a releasable electrical connector. An electronics package includes a second part of the first releasable electrical connector, which is used to physically and electrically connect the electronics package to the sensor patch. The electronics package includes a flexible substrate, with shells set on this substrate. The shells enclose the electronics. The shells are connected by a flexible circuit board. Analog front end circuitry is placed in one shell, while the wireless transceiver is placed in the other shell.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: April 11, 2023
    Assignee: Peerbridge Health, Inc.
    Inventors: Angelo Joseph Acquista, Arthur Bertolero, Leung-Hang Ma, John Shambroom, Benjamin Mughal, Robert Joseph Bouthillier, Michael Peter Fusaro, Elizabeth Goodrich, Keith Sproat, Steven Geyster
  • Patent number: 11611534
    Abstract: An agent device transmits certain data, which is used for generating display data, of data relating to a plurality of pieces of operation data collected from an instrument to a computation server device. A service broker device relays certain data transmitted from the agent device to the server device. The server device generates display data on the basis of certain data relayed by the service broker device.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: March 21, 2023
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Koji Sato, Akihisa Endo, Hiroyasu Ishigaki
  • Patent number: 11602292
    Abstract: A process for calibrating a glucose sensor under sterile conditions includes providing separate, sterile, glucose-containing calibration fluids, each having a different glucose concentration, and in turn providing these fluids to a sensing zone containing a sensing probe of a glucose sensor. Each solution is typically, in turn, propelled into the sensing zone, thus flushing out used fluid already present in the sensing zone. The process provides rapid calibration of a glucose sensor in a sterile fashion and is therefore appropriate for point-of-use calibration.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: March 14, 2023
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Barry Colin Crane, Nicholas Paul Barwell, William Paterson, Robert Perkins
  • Patent number: 11571514
    Abstract: The subject matter disclosed herein relates to systems, methods and/or devices for calibrating sensor data to be used in estimating a blood glucose concentration. A relationship between sensor measurements and reference readings may be used to estimate a relationship between sensor measurements and blood glucose concentration. Such sensor measurements may be weighted according to a decreasing function of uncertainty associated with sensor values.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: February 7, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Desmond Barry Keenan, John J. Mastrototaro
  • Patent number: 11575434
    Abstract: In an example embodiment, an optical communication system includes an implantable optical transmitter and an external optical receiver. The transmitter includes a housing having one or more drivers, plural light emitting sources, and an optical element arranged therein. Each driver converts a digital data signal into modulation signals to drive the sources. Each source generates a light beam in response to a corresponding modulation signal, each light beam contributing to form a single optical signal. The optical element directs the light beams to exit the housing such that a peak position of light intensity of each light beam is separated from a corresponding peak position of light intensity of an adjacent light beam by at least a first distance and less than a second distance. The optical receiver includes at least one photodiode that detects light generated by the sources and generates a reconstructed data signal.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: February 7, 2023
    Assignee: WYSS CENTER FOR BIO AND NEURO ENGINEERING
    Inventors: Florent Burdin, Tiago Bertolote, Olivier Coquoz
  • Patent number: 11553883
    Abstract: Method, device and system for providing consistent and reliable glucose response information to physiological changes and/or activities is provided to improve glycemic control and health management.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: January 17, 2023
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Gary Alan Hayter, Nathan Christopher Crouther, Michael Love, Erwin Satrya Budiman, Daniel Milfred Bernstein
  • Patent number: 11540773
    Abstract: A method for monitoring a health parameter in a person involves engaging an alignment feature of a health monitoring device with an alignment feature of an alignment element that is worn on the skin, transmitting radio waves from at least one transmit antenna of the health monitoring device below the skin surface of the person while the alignment feature of the health monitoring device is engaged with the alignment feature of the alignment element that is worn by the person, receiving radio waves on a two-dimensional array of receive antennas of the health monitoring device while the alignment feature of the health monitoring device is engaged with the alignment feature of the alignment element that is worn by the person, generating digital data that corresponds to the received radio waves, and determining a value that is indicative of a health parameter of the person in response to the digital data.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: January 3, 2023
    Assignee: Movano Inc.
    Inventor: Michael A. Leabman
  • Patent number: 11517267
    Abstract: An apparatus with a first photodetector and a second photodetector is provided. The apparatus is configured to receive light, and the first photodetector is configured to detect a first portion of the light. The first photodetector and the second photodetector are in a stacked arrangement and the apparatus is configured to pass a second portion of the light through the first photodetector to the second photodetector. The apparatus further includes an optical blocking filter configured to filter the second portion of the light prior to the second portion of the light arriving at the second photodetector.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: December 6, 2022
    Assignee: Nokia Technologies Oy
    Inventors: Kim Blomqvist, Leo Karkkainen, David Bitauld
  • Patent number: 11513070
    Abstract: A system for non-invasively measuring an analyte in a vehicle driver and controlling a vehicle based on a measurement of the analyte. At least one solid-state light source is configured to emit different wavelengths of light. A sample device is configured to introduce the light emitted by the at least one solid-state light source into tissue of the vehicle driver. One or more optical detectors are configured to detect a portion of the light that is not absorbed by the tissue of the vehicle driver. A controller is configured to calculate a measurement of the analyte in the tissue of the vehicle driver based on the light detected by the one or more optical detectors, determine whether the measurement of the analyte in the tissue of the vehicle driver exceeds a pre-determined value, and provide a signal to a device configured to control the vehicle.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: November 29, 2022
    Assignee: Automotive Coalition for Traffic Safety, Inc.
    Inventors: Johannes Koeth, Nicolas Koslowski
  • Patent number: 11497421
    Abstract: A device and method for spectrum analysis in which differences among skin spectra are quantitatively analyzed, and a blood glucose measurement device are provided. The device for spectrum analysis includes an obtainer configured to acquire a plurality of skin spectra; and a processor configured to generate a plot of difference degree of spectra which represents differences among the acquired plurality of skin spectra, and determine whether the plurality of skin spectra are appropriate for blood glucose measurement based on the plot of difference degree of spectra.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: November 15, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yun S Park, Sang Kon Bae, So Young Lee
  • Patent number: 11445910
    Abstract: Methods and systems for providing therapy related data management are provided. The subject systems include one or more device components, and at least one memory storage unit and at least one data storage unit associated with such one or more device components. The device components may include one or more of an analyte monitoring system, a fluid delivery device and a remote terminal. The subject methods include use of the subject systems to optimize treatment of a patient.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: September 20, 2022
    Assignee: Abbott Diabetes Care Inc.
    Inventor: R. Curtis Jennewine
  • Patent number: 11432748
    Abstract: The invention comprises a method and apparatus for sampling optical pathways having a common tissue depth, such as a maximum mean depth of penetration in the dermis, with a common detector of a person for analysis in a noninvasive analyte property determination system, comprising the steps of: probing skin with a range of illumination zone-to-detection zone distances with at least two wavelength ranges, which optionally overlap, and detecting, using a common detector, illumination zone-to-detection zone distances having mean optical pathways probing the common tissue layer, such as without the mean optical pathways entering the subcutaneous fat layer of the person. Optionally, the skin tissue layers are modulated and/or treated via tissue displacement before and/or during data collection.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: September 6, 2022
    Inventors: Roxanne Abul-Haj, Kevin Hazen, Christopher Slawinski, Benjamin Mbouombouo, Alodeep Sanyal, Alan Abul-Haj
  • Patent number: 11435269
    Abstract: A testing system for evaluating the performance of an electrical/electronic UUT under dynamic operating conditions. The testing system includes a dynamic testing component (e.g., a centrifuge) for applying a stimulus to the UUT, and an iDAQ system configured to perform in situ data acquisition and real-time data analysis. The iDAQ system may also be subject to the stimulus. The iDAQ system includes a processor (e.g., an SoC) component, a power supply, a CR/I component, an IR component, and a single enclosure. The processor component may control the dynamic testing component, including varying in real-time the stimulus applied to the UUT. The processor component may include multiple input channels, and a high current/voltage subcomponent of the power supply may be configured to supply up to five hundred volts.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: September 6, 2022
    Assignee: HONEYWELL FEDERAL MANUFACTURINGS TECHNOLOGIES, LLC
    Inventors: Mohammad K. Benyhesan, Richard W. Spengemann, II
  • Patent number: 11432772
    Abstract: Systems and methods for detecting noise episodes and processing analyte sensor data responsive thereto. In some embodiments, processing analyte sensor data includes filtering the sensor data to reduce or eliminate the effects of the noise episode on the signal.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: September 6, 2022
    Assignee: Dexcom, Inc.
    Inventors: Apurv Ullas Kamath, Aarthi Mahalingam, Ying Li, Mohammad Ali Shariati, James H. Brauker, Mark C. Brister, Robert Boock
  • Patent number: 11406331
    Abstract: Methods of determining when to activate an analyte, e.g. glucose, related alarm, such as a hypoglycemia alarm, of a continuous analyte monitor is provided. Also provided are systems, devices and kits.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: August 9, 2022
    Assignee: Abbott Diabetes Care Inc.
    Inventor: Erwin Satrya Budiman
  • Patent number: 11406266
    Abstract: A system is provided for advanced health monitoring and diagnosis based on wearable nano-biosensing networks. Nanophotonic and wireless communication technologies are synergistically leveraged to bridge the gap between nano-biosensing technologies and commercial wearable devices. Embodiments of the presently-disclosed system may include: (1) a nanoplasmonic biochip, implanted subcutaneously and built on a flexible substrate; (2) a nanophotonic smart band or wearable device that is able to collect in-vivo signals on-demand and relay them wirelessly to the user's smartphone by means of a secure data transfer; and (3) advanced signal processing techniques implemented on a remote processor to extract relevant data from the received signals and provide a diagnosis in real-time.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: August 9, 2022
    Assignee: The Research Foundation for The State University of New York
    Inventors: Josep Jornet, Liang Feng, Edward P. Furlani, Qiaoqiang Gan, Zhi Sun, Yun Wu
  • Patent number: 11373748
    Abstract: An integrated circuit includes circuitry to control a process. The process includes adjusting fuzzy-logic control parameters based on received and retrieved blood glucose-related data, predicting blood glucose levels based on the received blood-glucose-related data, and generating control signals to control dispensing of insulin based on the received blood glucose-related data and the fuzzy-logic control parameters. The process may include predicting blood glucose levels based on the retrieved blood glucose-related data. The process may include transitioning between a post-meal correction protocol and a fasting protocol. The process may include transitioning from a post-meal correction protocol to a fasting protocol when a fasting criteria is satisfied.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: June 28, 2022
    Assignee: DEXCOM, INC.
    Inventors: Robert C. Kircher, Jr., Richard S. Mauseth, Jason N. Bishop, Donald P. Matheson, Suray Bhatia, Jeff A. Bilmes
  • Patent number: 11350856
    Abstract: This electronic device includes a sensor that acquires a pulse wave of a subject, and a controller that estimates the blood glucose level of the subject on the basis of an estimation expression that is created on the basis of a blood glucose level and a pulse wave corresponding to the blood glucose level, and the pulse wave of the subject acquired by the sensor.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: June 7, 2022
    Assignee: KYOCERA Corporation
    Inventor: Hiromi Ajima
  • Patent number: 11355238
    Abstract: A system, computer program product, method and algorithm for evaluation of blood glucose variability—one of the most important parameters of diabetes management. An embodiment of the method may use routine self-monitoring blood glucose (SMBG) data collected over a period of 2-6 weeks, for example, based on a theory of risk analysis of blood glucose data. One aspect may include a method, system and computer program product for computing the Average Daily Risk Range (ADRR)—a measure of overall glucose variability. Another aspect may include a method, system, and computer program product for estimating separately the glucose variability in the hypoglycemic range via a Low BG Index (LBGI) and the glucose variability in the high BG range via High BG Index (HBGI) followed by a combination of the two indices into a single variability display.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: June 7, 2022
    Assignee: University of Virginia Patent Foundation
    Inventor: Boris P. Kovatchev
  • Patent number: 11344234
    Abstract: A circuit arrangement for an optical monitoring system comprises a driver circuit which is configured to generate at least one driving signal for driving the light source. A detector terminal is arranged for receiving a detector current from an optical detector. A gain stage is connected at its input side to the driver circuit for receiving the driving signal and generates a noise signal depending on the driving signal. A processing unit is configured to generate an output signal depending on the detector current and the noise signal.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: May 31, 2022
    Assignee: AMS AG
    Inventors: Peter Trattler, Karl Georg Waser, Herbert Lenhard
  • Patent number: 11337625
    Abstract: Various embodiments of a sealed package and a method of forming such package are disclosed. The package includes a housing, a substrate hermetically sealed to the housing, and a light source disposed on a first major surface of the substrate. The package further includes a detector disposed on the first major surface of the substrate and having a detecting surface. The package also includes a masking layer disposed on at least one of the first major surface and a second major surface of the substrate, where the masking layer includes a first aperture aligned with an emission axis of the light source in a direction orthogonal to the first major surface of the substrate. The masking layer further includes a second aperture aligned with a detection axis of the detector in a direction orthogonal to the first major surface of the substrate.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: May 24, 2022
    Assignee: Medtronic, Inc.
    Inventors: Mark R. Boone, Jonathan L. Kuhn
  • Patent number: 11313788
    Abstract: A body fluid analysis device includes a light source, a detector, a normalization part, and a calculation part. The light source is configured to emit light at a first wavelength and light at a second wavelength different from each other to a body fluid. The detector is configured to receive light emitted from the light source and transmitted through the body fluid or light reflected by the body fluid, and is configured to detect intensity of the light. The normalization part is configured to calculate a ratio of an intensity of light emitted at the second wavelength to an intensity of light emitted at the first wavelength, both of which are detected by the detector. The calculation part is configured to calculate a concentration of a predetermined component included in the body fluid on the basis of the ratio calculated by the normalization part.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: April 26, 2022
    Assignee: GENIAL LIGHT CO., LTD.
    Inventors: Ryo Shimokita, Takashi Sawada, Tatsuyuki Fujita
  • Patent number: 11307064
    Abstract: An apparatus for processing multi-type sensor signals on the basis of multi-modal deep learning, the apparatus including: an individual sensor failure diagnosis unit configured to measure a normality of a sensor output of a single modal sensor at each sampling period, and sense an abnormal operation of the sensor on the basis of the measured normality; an inter-sensor mutual failure diagnosis unit including a multi-modal deep auto encoder, and configured to learn a correlation existing between multi-modalities, extract shared representation between modalities from multi-modal inputs on the basis of the learned correlation, and perform an inter-sensor mutual failure diagnosis; and a reconstruction target sensor output value reconstructing unit configured to, when an output value of a specific sensor is missing, predict and reconstruct the output value of the sensor using other sensor information using the shared representation extracted from other modal sensors.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: April 19, 2022
    Assignee: Industry-Academic Cooperation Foundation, Dankook University
    Inventors: Sang-Il Choi, Haanju Yoo
  • Patent number: 11304634
    Abstract: A non-invasive blood sensor includes a body configured to mate with a tissue surface; a blue light source disposed on the sensor body; and a photodetector disposed on the sensor body at a suitable position for capturing light emanating from the tissue surface after emission from the blue light source, e.g., by one of: transmission, reflection, and transflection. The sensor bodies may further include a green, a red and/or an infrared light source. The light source(s) and photodetector(s) may be supported on a support structure configured to register with a corresponding portion of human anatomy in a predetermined fashion, and support the light sources and photodetectors in a defined spatial relationship. The sensor or an integrated meter may include a controller programmed to receive signals from the photodetector and calculate blood glucose value as function of the signals received from the photodetector after emission by the light source(s).
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: April 19, 2022
    Assignee: Basil Leaf Technologies, LLC
    Inventors: Basil M. Harris, George C. Harris, Edward L. Hepler
  • Patent number: 11298058
    Abstract: Devices and methods for positioning a portion of a sensor at a first predetermined location, displacing the portion of the sensor from the first predetermined location to a second predetermined location, and detecting one or signals associated with an analyte level of a patient at the second predetermined location are disclosed. Also provided are systems and kits for use in analyte monitoring.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: April 12, 2022
    Assignee: ABBOTT DIABETES CARE INC.
    Inventor: Gary Ashley Stafford
  • Patent number: 11275154
    Abstract: A method of correcting a measurement value of a laser scanner includes: in a laser scanner including a light emitting unit, a light receiving unit, a distance measuring unit, an optical axis deflecting unit having at least a pair of prisms deflecting a distance measuring light and a reflected distance measuring light, and an emitting direction detecting unit detecting a deflection angle and an emitting direction of the distance measuring light from the optical axis deflecting unit, (a) measuring a distance to a measurement point, (b) detecting rotation angles of the prisms, and (c) obtaining, based on rotation angles of the prisms, a true distance measurement value corrected for a length of an optical path length difference in light emission and/or light reception caused according to the rotation angles of the prisms by subtracting the optical path length difference from a distance measurement value of the distance measuring unit.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: March 15, 2022
    Assignee: TOPCON CORPORATION
    Inventors: Ikuo Ishinabe, Taichi Yuasa
  • Patent number: 11229383
    Abstract: A device is described for interrogating human skin using tight coupling between the transmitter and receiver of the millimeter waves (MMWs). Methods are provided to evaluate changes in the amplitude and/or phase of the transmitted MMWs in order to estimate the blood concentration of glucose. Using this device and the related methods, the blood glucose concentration or a change in the blood glucose concentration can be monitored for diagnosing diabetes mellitus and other metabolic disorders of carbohydrate metabolism characterized by either high blood glucose level (hyperglycemia) or low blood glucose level (hypoglycemia), as well as for monitoring (including self-monitoring) a metabolic disorder progression or an efficacy of treatment.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: January 25, 2022
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, HUNTINGTON MEDICAL RESEARCH INSTITUTES
    Inventors: Victor Pikov, Peter H. Siegel
  • Patent number: 11229363
    Abstract: Provided are apparatuses and methods for detecting biological information. An apparatus for detecting biological information may include a biological signal measurement unit having at least two light emission elements having different light emission angles. The at least two light emission elements may include different types of light sources. The at least two light emission elements may include multiple light sources of the same type, and in this case, an optical element configured to adjust a light emission angle of one of the light sources may be provided. The apparatus for detecting biological information may include a biological signal measurement unit including a light emitting unit having variable light emission angle. The apparatus for detecting biological information may further include a data processor configured to extract and analyze biological information of a subject from data measured by the biological signal measurement unit.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: January 25, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yongjoo Kwon, Jaemin Kang, Sunkwon Kim
  • Patent number: 11224365
    Abstract: Disclosed is a fully implantable sensor for detecting at least one analyte in a sample of body fluid. The sensor has a measurement chamber plate that receives the sample of bodily fluid and a quantum cascade laser illumination source that generates an illumination light beam in the spectral range and transmits it to the measurement chamber plate. The illumination light beam at least partially illuminates the measurement chamber plate and the measurement chamber plate generates a reflection light beam in response to the illumination by the illumination light beam. The reflection light beam at least partially illuminates the sample of body fluid within the measurement chamber plate. An optical detector detects at least one property of the reflection light beam and generates a sensor signal dependent on the presence of the analyte. A controlled evaluates the sensor signal. A method using an inventive fully implantable sensor is also disclosed.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: January 18, 2022
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Frank Deck, Hans List, Wolfgang Petrich, Niels Kroeger-Lui, Katharina Haase
  • Patent number: 11199451
    Abstract: A measurement apparatus includes: a light source configured to irradiate a measurement region of skin whose color is to be measured with light; a light receiving unit configured to receive reflected light from the measurement region or transmitted light that has passed through the measurement region; a calculation unit configured to repeatedly obtain determination information and color information relating to the color of the measurement region, based on a light-receiving result of the light receiving unit; and a selection unit configured to select a measurement result of a color of the skin from the repeatedly-obtained color information, based on a temporal change in the determination information.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: December 14, 2021
    Assignee: Canon Kabushiki Kaisha
    Inventor: Tomoyuki Saiki
  • Patent number: 11170199
    Abstract: Systems and methods for visualizing, and/or determining the amount of, collagen and elastin in tissue are provided. Training data can be generated using Mueller matrix polarimetry microscopy data, combined with second harmonic generation (SHG) and/or two photon excitation fluorescence (TPEF) microscopy data as ground truth. The SHG and/or TPEF data can be used to train a neural network for feature extraction, and classification can be performed. The components and decompositions of the Mueller matrix data can be arranged as individual channels of information, forming one voxel per sample.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: November 9, 2021
    Assignee: THE FLORIDA INTERNATIONAL UNIVERSITY BOARD OF TRUSTEES
    Inventors: Jessica Claudia Ramella-Roman, Camilo Roa, Vinh Du Le, Ilyas Saytashev
  • Patent number: 11147508
    Abstract: Utilizing a computing device to generate a personalized maternal nutrition plan for a pregnant mother. The computing device receives real-time maternal physiological data, fetal physiological data, and real-time environmental data associated with the pregnant mother. A real-time relationship is established. The real-time relationship is compared with historically established relationships between pregnant mothers and fetuses. The maternal physiological data is compared with pre-pregnancy data of the pregnant mother. The computing device detects one or more abnormalities in the real-time established relationship between the pregnant mother and the fetus based upon the comparison of the real-time established relationship with historically established relationships and the comparison of the maternal physiological data with pre-pregnancy data of the pregnant mother. The computing device generates a maternal nutrition plan.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 19, 2021
    Assignee: International Business Machines Corporation
    Inventors: Elezaveta Koumpan, Vandana Pandey, Pamela A. Nesbitt
  • Patent number: 11144576
    Abstract: A method may include sensing first data samples from a first set of different subjects having a membership in a target class and sensing second data samples from a second set of different subjects not having a membership in the target class, wherein each of the first data samples and the second data samples includes a composite of individual data features. The individual data features from each composite of the first data samples and the second data samples are extracted and quantified. Sets of features and associated weightings of a target class model are identified based upon quantified values of the individual features from each composite of the first samples and the second samples to create a model representing a fingerprint of the target class to determine membership status of a sample having an unknown membership status with respect to the target class.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: October 12, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Lei Liu, Anita Rogacs