Glucose Patents (Class 600/316)
  • Publication number: 20150080685
    Abstract: Embodiments of the present invention relates to analyte sensors. In particular, the preferred embodiments of the present invention relate to non-consuming intravascular glucose sensors based on fluorescence chemistry.
    Type: Application
    Filed: April 17, 2014
    Publication date: March 19, 2015
    Applicant: Medtronic MiniMed, Inc.
    Inventors: David R. Markle, William Markle
  • Patent number: 8983565
    Abstract: Embodiments of the present invention are directed to an optical sensor capable of measuring two analytes simultaneously with a single indicator system. In preferred embodiments, the sensor comprises a fluorescent dye having acid and base forms that facilitate ratiometric pH sensing, wherein the dye is further associated with a glucose binding moiety and configured to generate a signal that varies in intensity with the concentration of glucose.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: March 17, 2015
    Assignee: Medtronic Minimed, Inc.
    Inventors: David R. Markle, Jeff T. Suri, Ritchie A. Wessling, Matthew A. Romey
  • Patent number: 8974387
    Abstract: Various embodiments are described and illustrated to calculate an insulin bolus, recommend such bolus, and provide reminder messages for performing an additional glucose test.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 10, 2015
    Assignee: LifeScan Scotland Limited
    Inventors: Ian Shadforth, David Price, Gretchen Anderson, Lorraine Comstock, Mary McEvoy, Douglas Graham, Alexander Strachan, Alistair Longmuir, Robert Cavaye, Gillian Teft
  • Publication number: 20150065823
    Abstract: A noninvasive mid-infrared in vivo glucose sensor for use in connection with the skin of a test subject is disclosed. The sensor includes a mid-infrared light source configured to deliver a light beam to the skin of the test subject, a collector element configured to collect backscattered light from the skin and direct it to the detector, and a detector element configured to measure the collected backscattered light from the skin. The mid-infrared light source may be a quantum cascade laser. The sensor may include optical fibers configured to deliver the light beam to the skin of the test subject. The collector element may be an integrating sphere or a bundle of two or more optical fibers. The sensor may also include a probe containing or connecting to optical fibers coupled to the mid-infrared light source and configured to be placed on the skin to take glucose level readings.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Sabbir Liakat, Claire F. Gmachl, Anna P. M. Michel, Kevin Bors
  • Publication number: 20150051459
    Abstract: The present invention provides systems and methods employing a surface enhanced Raman biosensor and sensing devices for collecting spatially offset Raman spectra from the biosensor. In certain embodiments, the present invention provides systems and methods for quantifying the concentration of an analyte in a subject, and/or identifying the presence or absence of an analyte in a subject, from a plurality of spatially offset Raman spectra generated from a surface enhanced Raman biosensor implanted in a subject.
    Type: Application
    Filed: November 23, 2011
    Publication date: February 19, 2015
    Inventors: Richard P. Van Duyne, Matthew R. Glucksberg, Joseph T. Walsh, JR., Jonathan M. Yuen, Nilam C. Shah
  • Patent number: 8956321
    Abstract: An apparatus and computerized method of intravenously monitoring a patient's blood chemistry transmits real time measurements to an electronically controlled closed loop system that auto-regulates blood osmolality and glucose level with medications infused through a catheter designed for such purpose. The closed loop system utilizes a glucose algorithm and an osmolality algorithm implemented in hardware and software to control the flow of dextrose, insulin and hypertonic saline to a patient in an effort to achieve better patient outcomes in instances of trauma, surgery and medical illnesses.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: February 17, 2015
    Assignee: Ideal Medical Technologies Inc.
    Inventor: Leon DeJournett
  • Patent number: 8958858
    Abstract: A living-body component measuring apparatus measures a component of an inner tissue of a living body serving as an object to be measured by emitting laser light having two or more wavelengths from a light source and measuring reflected light of the laser light from the inner tissue of the living body. The living-body component measuring apparatus includes a beam splitter that changes optical paths of a part of the laser light and the reflected light, a reference-light measuring unit that measures, as reference light, the part of the laser light having the optical path changed by the beam splitter, a reflected-light measuring unit that measures the reflected light having the optical path changed by the beam splitter, and an analysis unit that analyzes the inner tissue by measuring a spectrum of the reflected light or the reference light.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: February 17, 2015
    Assignee: Yokogawa Electric Corporation
    Inventors: Shin-ichiro Tezuka, Hitoshi Hara
  • Publication number: 20150045641
    Abstract: Systems for rapid and accurate analyte measurement are described. For example, periodic glucose measurements can be achieved with high accuracy in a critical care environment by drawing blood into a device more than once per hour, analyzing blood (for example using infrared radiation through plasma). Safety and accuracy can be achieved by improved fluid control and avoidance of clotting. Data can be conveyed (e.g., displayed) to a user. A user can be allowed to annotate the data. For example, a touchscreen or other interface can allow addition of notes on a running graph of data, indicating events or other items of interest that may correspond to data readings or to particular times.
    Type: Application
    Filed: March 13, 2014
    Publication date: February 12, 2015
    Inventor: Peter Rule
  • Publication number: 20150045636
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using a plurality of time resolved sample illumination zones coupled to at least one two-dimensional detector array monitoring a plurality of detection zones. Control of illumination times and/or patterns along with selected detection zones yields pathlength resolved groups of spectra. Sectioned pixels and/or zones of the detector are optionally filtered for different light throughput as a function of wavelength. The pathlength resolved groups of spectra are subsequently analyzed to determine an analyte property. Optionally, in the mapping and/or collection phase, incident light is controllably varied in time in terms of any of: sample probe position, incident light solid angle, incident light angle, depth of focus, energy, intensity, and/or detection angle. Optionally, one or more physiological property and/or model property related to a physiological property is used in the analyte property determination.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Inventors: Vlad Novotny, Sandeep Gulati, Thomas George, Timothy Ruchti, Alan Abul-Haj, Kevin H. Hazen
  • Publication number: 20150043001
    Abstract: The present invention causes measurement light, emitted from an object and to be measured, to enter a fixed mirror and a movable mirror forming interfering light between the measurement light reflected by the fixed mirror and measurement light reflected by the movable mirror. Change to the intensity of the interference light of measurement light is obtained by moving the movable mirror unit, acquiring the interferogram of measurement light. Reference light of a narrow wavelength band included in a wavelength band of the measurement light enters the fixed mirror and the movable mirror, forming interference light of the reference light. The movable mirror is moved to correct the interferogram of measurement light, which is at the same wavelength as the reference light in the measurement light, and the reference light, and a spectrum of the measurement light is acquired based on the corrected interferogram.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Inventor: Ichiro Ishimaru
  • Patent number: 8948833
    Abstract: In a combination invasive and non-invasive bioparameter monitoring device an invasive component measures the bioparameter and transmits the reading to the non-invasive component. The non-invasive component generates a bioparametric reading upon insertion by the patient of a body part. A digital processor processes a series over time of digital color images of the body part and represents the digital images as a signal over time that is converted to a learning vector using mathematical functions. A learning matrix is created. A coefficient of learning vector is deduced. From a new vector from non-invasive measurements, a new matrix of same size and structure is created. Using the coefficient of learning vector, a recognition matrix may be tested to measure the bioparameter non-invasively. The learning matrix may be expanded and kept regular. After a device is calibrated to the individual patient, universal calibration can be generated from sending data over the Internet.
    Type: Grant
    Filed: January 23, 2011
    Date of Patent: February 3, 2015
    Assignee: Cnoga Ltd.
    Inventor: Yosef Segman
  • Publication number: 20150031969
    Abstract: A system for measuring of arterial and venous blood constituent concentration based first on measuring cardiac blood flow balance parameter between the right chamber of the heart and the left chamber of the heart, which includes a sensor device for measuring one of blood pressure and blood flow rate and blood constituent concentration of a patient so as to generate an arterial pulse signal. A processing unit is responsive to the arterial pulse signal for generating full arterial pulse plethysmography waveforms, arterio-venous pulse plethysmography waveforms, and balance parameters. A computational device that is responsive to plethysmography waveforms generating a plurality of state space linear transfer functions by applying system identification between plethysmography waveforms at various wavelengths representing a plurality of models of the blood constituent concentration, including oxygen, carbon dioxide, hemoglobin, and glucose, and displaying related useful information.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Inventor: Mohammad Khair
  • Publication number: 20150025340
    Abstract: A calibration curve creating method includes: (a) acquiring observation data of a plurality of samples of a living body, when near infrared light is emitted to the living body and an absorbance spectrum obtained from transmitted light or diffusely-reflected light thereof is set as the observation data; (b) acquiring content of a target component of each sample; (c) estimating a plurality of independent components when the observation data of each sample is separated into the plurality of independent components, and acquiring a mixing coefficient corresponding to the target component for each sample; and (d) acquiring a regression equation of a calibration curve. (c) includes acquiring an independent component matrix by performing processes of normalization, whitening, and independent component analysis of the observation data, and the normalization is performed after a process performed by project on null space.
    Type: Application
    Filed: July 17, 2014
    Publication date: January 22, 2015
    Inventors: Masashi KANAI, Yoshifumi ARAI, Hikaru KURASAWA
  • Publication number: 20150018643
    Abstract: Systems, devices, and methods are provided for changing the power state of a sensor control device in an in vivo analyte monitoring system in various manners, such as through the use of external stimuli (light, magnetics) and RF transmissions.
    Type: Application
    Filed: April 29, 2014
    Publication date: January 15, 2015
    Applicant: ABBOTT DIABETES CARE INC.
    Inventors: Jean-Pierre Cole, Hung Dinh, Gary Hayter, Lei He, Michael R. Love, Jeffrey Sicurello, Mark Sloan
  • Publication number: 20150018644
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described comprising a near-infrared source, a non-uniform detector array, and a photon transport system configured to direct photons from the source to the detector via an analyzer-sample optical interface. The non-uniform detector array provides a multitude of distinguishable optical pathlengths, couples to a plurality of optical transmission filters, couples to a plurality of light directing micro-optics, and/or couples to an array of light-emitting diodes.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 15, 2015
    Inventors: Sandeep Gulati, Timothy Ruchti, Alan Abul-Haj, Thomas George, Kevin Hazen
  • Publication number: 20150018642
    Abstract: An analyzer apparatus and method of use thereof is configured to dynamically interrogate a sample. For example, an analyzer using light interrogates a tissue sample using a temporal resolution system on a time scale of less than about one hundred nanoseconds. Optionally, near-infrared photons are introduced to a sample with a known illumination zone to detection zone distance allowing calculation of parameters related to photon pathlength in tissue and/or molar absorptivity of an individual or group through the use of the speed of light and/or one or more indices of refraction. Optionally, more accurate estimation of tissue properties are achieved through use of: knowledge of incident photon angle relative to skin, angularly resolved detector positions, anisotropy, skin temperature, environmental information, information related to contact pressure, blood glucose concentration history, and/or a skin layer thickness, such as that of the epidermis and dermis.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Sandeep Gulati, Thomas George, Timothy Ruchti, Alan Abul-Haj, Kevin H. Hazen
  • Publication number: 20150018641
    Abstract: A device for sensing analyte concentration, and in particular glucose concentration, in vivo or in vitro is disclosed. A sensing element is attached to the distal end of an optical conduit, and comprises at least one binding protein adapted to bind with at least one target analyte. The sensing element further comprises at least one reporter group that undergoes a luminescence change with changing analyte concentrations. Optionally, the optical conduit and sensing element may be housed within a cannulated bevel.
    Type: Application
    Filed: July 1, 2013
    Publication date: January 15, 2015
    Applicant: Becton, Dickinson and Company
    Inventors: Javier Alarcon, Kristin Weidemaier, Terry J. Amiss, John D. DeNuzzio, Christopher C. Herdman, Ross W. Jacobson, J. Bruce Pitner, Douglas B. Sherman
  • Publication number: 20150011850
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described comprising a near-infrared source, a detector, and a photon transport system configured to direct photons from the source to the detector via an analyzer-sample optical interface. The photon transport system includes a dynamically position light directing unit used to, within a measurement time period for a single analyte concentration determination, change any of: radius, energy, intensity, position, incident angle, solid angle, and/or depth of penetration of a beam of photons entering skin of a subject.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen, Vlad Novotny
  • Publication number: 20150011849
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using a plurality of sample illumination zones optically coupled to at least two optically stacked two-dimensional optical filter arrays. Sectioned pixels and/or zones of a detector array are optionally filtered for different light throughput and/or are passed through various pathlengths using the stacked two-dimensional optical filter arrays. Resulting pathlength resolved/wavelength controlled groups of spectra are subsequently analyzed to determine an analyte property.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen
  • Publication number: 20150011848
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using one or a plurality of sample illumination zones coupled to at least one two-dimensional detector array monitoring a plurality of detection zones. Control of illumination times and/or patterns along with selected detection zones yields pathlength resolved groups of spectra. Sectioned pixels and/or zones of the detector are optionally filtered for different light throughput as a function of wavelength. The pathlength resolved groups of spectra are subsequently analyzed to determine an analyte property. Optionally, in the mapping and/or collection phase, incident light is controllably varied in time in terms of any of: sample probe position, incident light solid angle, incident light angle, depth of focus, energy, intensity, and/or detection angle. Optionally, one or more physiological property and/or model property related to a physiological property is used in the analyte property determination.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen
  • Publication number: 20140378793
    Abstract: Systems and methods of use for continuous analyte measurement of a host's vascular system are provided. In some embodiments, a continuous glucose measurement system includes a vascular access device, a sensor and sensor electronics, the system being configured for insertion into communication with a host's circulatory system.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Inventors: Apurv Ullas Kamath, Peter C. Simpson, Mark Brister
  • Publication number: 20140371553
    Abstract: The systems, methods, and devices described herein generally involve monitoring and/or quantification of various analyte levels in a biological fluid using one or more implantable sensors. In various aspects, systems, methods, and devices described herein can provide for the in situ calibration and/or cleaning of such sensors when implanted in the patient. The systems and devices disclosed herein can, for example, continuously or serially measure analytes within a biological fluid in vivo (e.g., without extracting the biological fluid from the patient) and periodically calibrate and/or clean the sensor without using finger sticks or additional, invasive calibration techniques. By way of non-limiting example, systems and devices disclosed herein can enable continuous monitoring of analyte concentrations (e.g., glucose) in subcutaneous interstitial fluid for several hours to a few days.
    Type: Application
    Filed: December 17, 2012
    Publication date: December 18, 2014
    Inventor: James WINKELMAN
  • Patent number: 8912909
    Abstract: Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor displays a line associated with a patient wellness level.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: December 16, 2014
    Assignee: Cercacor Laboratories, Inc.
    Inventors: Ammar Al-Ali, Joe E Kiani
  • Publication number: 20140364708
    Abstract: Disclosed is an apparatus for measuring the indicators of a specific ingredient in a solution. According to one embodiment of the present invention, said apparatus comprises: a signal collector for collecting a plurality of signals from a target in a selected volume of the solution. Beam splitters for splitting said signals and several designs for generating and transmitting the signals to the detectors. After the signal's detection, a mold-in algorithm is used to remove the noise. The filtered signals are used to get several indicators, which are correlated to the concentration of ingredients in the solution. This apparatus is designed to enhance the power of the mold-in algorithm. The present invention provides an apparatus for effectively measuring in-situ without the need of extracting the solution out of its original container.
    Type: Application
    Filed: August 27, 2014
    Publication date: December 11, 2014
    Inventor: Wei-Kung Wang
  • Patent number: 8903350
    Abstract: The present invention relates to a method for wireless transmission of data between components of a blood glucose system (1, I1) including a master controller (2, 2?) having a receiver (10) and a transmitter (9), and at least one slave device (3) having a receiver (19) and a transmitter (18). The slave device (3) is normally operated in a power saving mode and its receiver (19) is only activated intermittently at a receiver activation frequency for a predetermined listening period. The controller (2, 21) transmits a communication initiation data frame to the slave device (3) via a preamble signal transmitted for a preamble period. Upon receipt of the communication initiation data frame, the slave device (3) is switched to a communication mode in which it transmits a response to the controller (2, 21), and the slave device (3) is switched from the communication mode to the power saving mode.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: December 2, 2014
    Assignee: LifeScan Scotland Limited
    Inventors: Manfred Ebner, Ulrich Kraft
  • Patent number: 8903466
    Abstract: A system for non-invasive measurement of a substance, such as glucose, includes a detector configured to sense radiation and an optical subsystem configured to focus the radiation on a sensitive area of the detector. The system includes one or more temperature sensors attached to one or more of a plurality of elements of the optical subsystem and to the detector and two or more temperature sensors configured to measure two or more respective ambient temperatures. The one or more temperature sensors are configured to measure the temperature of the one or more elements of the optical subsystem and the temperature of the detector. A method of measuring a concentration includes detecting an infrared radiation value, measuring the temperature of the detector, one or more components of the optical system, and two or more ambient temperatures, and correlating the temperatures with calibration parameters to correct the detected infrared radiation value.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 2, 2014
    Assignee: GlucoVista Inc.
    Inventor: Yonatan Gerlitz
  • Publication number: 20140350365
    Abstract: There is provided a measurement device including a measurement unit configured to have a light source unit configured to emit measurement light having at least one kind of wavelength for measuring a biological component included inside a living body, a detection unit configured to detect the measurement light emitted from the inside of the living body, and a polarization control unit configured to be provided in at least one position between the light source unit and the living body or between the living body and the detection unit and to control a polarization direction of the measurement light, and an analysis unit configured to compute an optical rotation degree based on a change in a polarization state of the measurement light using a measurement result obtained by the measurement unit and to analyze a concentration of the biological component based on the computed optical rotation degree.
    Type: Application
    Filed: November 22, 2012
    Publication date: November 27, 2014
    Inventor: Hideo Sato
  • Publication number: 20140350364
    Abstract: Novel optical devices, methods and systems relating to the detection of glucose, and more particularly to real-time glucose monitoring, are disclosed herein. More particularly, various hardware and methodological means are disclosed for ratiometric correction of optical glucose measurements for artifacts of optical systems.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: David R. Markle, Ritchie A. Wessling, Donald J. Kolehmainen
  • Publication number: 20140343381
    Abstract: A sensor (e.g., an optical sensor) that may be placed within a living animal (e.g., a human) and may be used to measure an analyte (e.g., glucose or oxygen) in a medium (e.g., interstitial fluid) within the animal. The sensor may include a sensor housing and a polymer graft including indicator molecules and covering at least a portion of the sensor housing. The opacity of the polymer graft may remain substantially the same (i.e., may have little or no variation) over time. The sensor may include a photodetector, and variation in the opacity of the polymer graft does not cause a significant change in a measurement signal output by the photodetector. The polymer hydrogel may be made of polymers including acrylic acid and/or polyethylene glycol.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 20, 2014
    Applicant: Senseonics, Incorporated
    Inventors: Todd Whitehurst, Philip Huffstetler
  • Patent number: 8892481
    Abstract: A health and fitness management system is provided that has a health and fitness application operating, e.g., on a smart phone, that can wirelessly communicate with an activity module worn on the user which has a motion sensor, e.g., an accelerometer. The application accepts food and weight inputs (e.g., from the smart phone) and user activity units (e.g., from the activity unit) and develops a user intrinsic metabolism. The application includes fitness arc and health quotient graphical indicators that guide the user on health and fitness activities.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: November 18, 2014
    Assignee: Kinetic Stone, LLC
    Inventor: David B. Landers
  • Publication number: 20140336478
    Abstract: Optical sensor devices, image processing devices, methods and computer readable code computer-readable storage media for detecting biophysical parameters, chemical concentrations, chemical saturations, vital signs and physiological information such as a malignant condition are provided. In some embodiments, the optical sensor includes an array of photodetectors, where each photodetector is configured to detect a spectrum of light. In some embodiments, the image processing device receives a live still or video electronic image, or alternatively, the electronic image is provided from an electronic storage media. Exemplary physiological parameters include but are not limited to a pulse rate, a biophysical or physiological property of skin, a cardiovascular property, a property related to an organ such as the liver or the kidneys, and a temperature fluctuation.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventor: Yosef SEGMAN
  • Publication number: 20140336481
    Abstract: Optical coherence tomography (herein “OCT”) based analyte monitoring systems are disclosed. In one aspect, techniques are disclosed that can identify fluid flow in vivo (e.g., blood flow), which can act as a metric for gauging the extent of blood perfusion in tissue. For instance, if OCT is to be used to estimate the level of an analyte (e.g., glucose) in tissue, a measure of the extent of blood flow can potentially indicate the presence of an analyte correlating region, which would be suitable for analyte level estimation with OCT. Another aspect is related to systems and methods for scanning multiple regions. An optical beam is moved across the surface of the tissue in two distinct manners. The first can be a coarse scan, moving the beam to provide distinct scanning positions on the skin. The second can be a fine scan where the beam is applied for more detailed analysis.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 13, 2014
    Applicant: GLT ACQUISITION CORP.
    Inventors: Walter J. Shakespeare, William Henry Bennett, Jason T. Iceman, Howard P. Apple, Phillip William Wallace, Matthew J. Schurman
  • Patent number: 8882670
    Abstract: Apparatus for minimally invasively measuring concentrations of constituents contained within a biological tissue structure includes a microwave energy source arranged generate a range of microwave frequencies, a first antenna coupled to the microwave energy source and arranged to transmit at least a portion of the microwave energy into the tissue structure, a second antenna arranged to receive at least a portion of the microwave energy transmitted through the tissue structure, a signal processor arranged to determine the resonant frequency of the received microwave energy, and a data processor arranged to provide an output of the concentration of constituents within the biological tissue structure according to the determined resonant frequency.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: November 11, 2014
    Assignee: Credent Medical Limited
    Inventor: Christopher Paul Hancock
  • Publication number: 20140330097
    Abstract: It is disclosed a device for measuring a concentration of glucose, for example, in a translucent piece of a body, like an earlobe, a tissue connecting two fingers, a nasal ala, or a cheek. The piece is illuminated by a linearly polarized laser beam at a certain polarization direction. Consequently, a diffused radiated light is emitted from the piece, including a directed beam. The device includes a polarizing beam splitter which receives the directed beam, a lens, a sensor array, and means for connecting to a processor. The splitter splits components of the directed beam at two mutually orthogonal linear polarization directions into two polarized beams propagating at two respective different directions. The lens images the distribution of the directed beam on the translucent piece on two spatially separated groups within the sensor arrays.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 6, 2014
    Inventors: Aryeh Uri Weiss, Nataly Oren, Eitan Koren
  • Publication number: 20140330098
    Abstract: A noninvasive or minimally invasive procedure and system for measuring blood glucose levels is disclosed. A set of photodiodes detects the fluorescence and reflectance of light energy emitted from one or more emitters, such as LEDs, into a patient's skin. In an embodiment, small molecule metabolite reporters (SMMRs) that bind to glucose are introduced to the measurement area to provide more easily detected fluorescence.
    Type: Application
    Filed: July 14, 2014
    Publication date: November 6, 2014
    Inventors: SEAN MERRITT, MARCELO LAMEGO
  • Patent number: 8880136
    Abstract: A simple calibration method for calibrating an instrument for measuring a biogenic substance, using near-infrared spectral spectroscopy is realized. The calibration method comprises (1) the step of measuring a specific substance of a biological object with the use of an instrument for measuring a biogenic substance, using a confocal optical system, (2) the step of using an instrument for measuring a biogenic substance, using near-infrared spectral spectroscopy, thereby measuring a specific substance in the same region of the biological object, (3) the step of comparing a measured value of the specific substance, measured in the step (1) with a measured value of the specific substance, measured in the step, and (4) the step of executing an operation in the step at least once after the elapse of predetermined time.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: November 4, 2014
    Assignee: Yokogawa Electric Corporation
    Inventors: Shin-ichiro Tezuka, Hitoshi Hara
  • Publication number: 20140316226
    Abstract: An exemplary system comprises an energy transmitter, an energy receiver, and an analyzer. The energy transmitter may project energy at a first wavelength and a second wavelength into tissue of a user, the first wavelength and the second wavelength being associated with at least one nutrient of a set of nutrients in blood of the user. The energy receiver may generate a composite signal based on a fraction of the energy at the first wavelength and the second wavelength, the fraction of the energy being received through the tissue of the user. The analyzer may separate the composite signal into a first signal corresponding to the first wavelength and a second signal corresponding to the second wavelength, and detect, in the blood of the user, a concentration of the at least one nutrient of the set of nutrients based on the first signal and the second signal.
    Type: Application
    Filed: March 14, 2014
    Publication date: October 23, 2014
    Applicant: ECHO LABS, INC.
    Inventors: Elad Ferber, Pierre-Jean Cobut
  • Patent number: 8868147
    Abstract: The invention relates generally to a probe interface method and apparatus for use in conjunction with an optical based noninvasive analyzer. More particularly, an algorithm controls a sample probe position and attitude relative to a skin sample site before and/or during sampling. For example, a sample probe head of a sample module is controlled by an algorithm along the normal-to-skin-axis. Preferably, the sample probe head is positioned in terms of 3-D location in the x-, y-, and z-axes and is attitude orientated in terms of pitch, yaw, and roll. Further, attitude of the probe head is preferably orientated prior to contact of the sample probe head with the tissue sample using indicators, such as non-contact distance feedback from capacitance sensor, contacting or non-contacting optical sensors, and/or contact electrical sensors.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: October 21, 2014
    Assignee: GLT Acquisition Corp.
    Inventors: Timothy W. Stippick, Thomas B. Blank, Timothy L. Ruchti, Christopher Slawinski
  • Patent number: 8864663
    Abstract: A system is provided to evaluate physical condition of a user based on the health data collected from one or more SMDs. The system may comprise a user data component, a routines component and a health status engine. The user data component may be configured to receive health data for the user. A routines component may be configured to identify a current routine associated with the health data. The health status engine may be configured to determine health status information based on the received health data and the identified current routine.
    Type: Grant
    Filed: March 1, 2006
    Date of Patent: October 21, 2014
    Assignee: DP Technologies, Inc.
    Inventors: Philippe Kahn, Arthur Kinsolving
  • Publication number: 20140303463
    Abstract: The present invention provides methods and apparatuses for accurate noninvasive determination of tissue properties. Some embodiments of the present invention comprise an optical sampler having an illumination subsystem, adapted to communicate light having a first polarization to a tissue surface; a collection subsystem, adapted to collect light having a second polarization communicated from the tissue after interaction with the tissue; wherein the first polarization is different from the second polarization. The difference in the polarizations can discourage collection of light specularly reflected from the tissue surface, and can encourage preferential collection of light that has interacted with a desired depth of penetration or path length distribution in the tissue. The different polarizations can, as examples, be linear polarizations with an angle between, or elliptical polarizations of different handedness.
    Type: Application
    Filed: April 10, 2014
    Publication date: October 9, 2014
    Inventors: M. Ries Robinson, Russell E. Abbink, Robert D. Johnson
  • Patent number: 8843186
    Abstract: Non-invasive apparatus and method for determining and monitoring glucose concentrations in human subjects. Glucose level is estimated through the effect of glucose on biological cells with glucose dependencies, e.g., red blood cells. The invention is based on the interaction of such cells with oscillating electric field gradients. The response of biological cells depends on factors including shape, size, and electrical charge distribution. The field gradient causes the cells to undergo characteristic motion which is detected by light beam scattering. The autocorrelation of the scattered light is computed, and the Fourier transform (FT) is performed to produce a characteristic velocity spectrum in which the peaks are characteristic of the cell “bio-electrical” states. The glucose level is estimated through measurements of changes of FT with changes in glucose levels after calibration with standard glucose methods.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: September 23, 2014
    Inventor: Folim G. Halaka
  • Publication number: 20140275871
    Abstract: Embodiments of the disclosure include a noninvasive physiological patient sensor and a patient monitor capable of wireless communication with one another. An optical communication path can be used to provide the communication path between the noninvasive physiological patient sensor and the patient monitor. The path can be maintained by one or more light sources and detectors traditionally associated with noninvasive optical sensors or by one or more additional dedicated light sources and detectors.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: CERCACOR LABORATORIES, INC.
    Inventors: Marcelo M. Lamego, Massi Joe E. Kiani
  • Publication number: 20140268103
    Abstract: A glucose sensor comprising an optical energy source having an emitter with an emission pattern; a first polarizer intersecting the emission pattern; a second polarizer spaced a distance from the first polarizer and intersecting the emission pattern, the second polarizer rotated relative to the first polarizer by a first rotational amount ?; a first optical detector intersecting the emission pattern; a second optical detector positioned proximal to the second polarizer, the first polarizer and the second polarizer being positioned between the optical energy source and the second optical detector, the second optical detector intersecting the emission pattern; a compensating circuit coupled to the second optical detector; and a subtractor circuit coupled to the compensating circuit and the first optical detector.
    Type: Application
    Filed: June 2, 2014
    Publication date: September 18, 2014
    Applicant: K SCIENCES GP, LLC
    Inventor: Valentin Korman
  • Publication number: 20140275870
    Abstract: A method may include directing a radiation beam at a sample, the beam including two periods of radiation having different wavelengths, an analyte in a fluid within the sample having different absorption coefficients for the two different wavelengths, detecting the beam with a detector when the sample is in a first fluid state, the detector configured to generate an output signal proportional to an intensity of the beam at each of the two different wavelengths, detecting the beam with the detector when the sample is in a second fluid state, the sample transitioning from the first fluid state to the second fluid state by a pulsation of the sample, obtaining estimates of an amount of fluid at the first and second fluid states, and determining an analyte concentration estimate based on the output signal and the estimate of the amount of fluid at the first and second fluid states.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Grove Instruments Inc.
    Inventors: Hannu HARJUNMAA, Rebecca Burrell, Stevan Kun
  • Publication number: 20140275843
    Abstract: Presently described are systems and methods for the continuous, accurate, low cost measurement of the concentration of target molecule(s), e.g., analytes, such as metabolites and ions, using analyte-specific, light-emitting agents, e.g., fluorescent nanosensors.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: James S. Piccirillo, Justin Holmes
  • Patent number: 8838195
    Abstract: Novel optical devices, methods and systems relating to the detection of glucose, and more particularly to real-time glucose monitoring, are disclosed herein. More particularly, various hardware and methodological means are disclosed for ratiometric correction of optical glucose measurements for artifacts of optical systems.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: September 16, 2014
    Assignee: Medtronic Minimed, Inc.
    Inventors: David R. Markle, Ritchie A. Wessling, Donald J. Kolehmainen
  • Patent number: 8831700
    Abstract: A system and a method for creating a stable and reproducible interface of an optical sensor system for measuring blood glucose levels in biological tissue include a dual wedge prism sensor attached to a disposable optic that comprises a focusing lens and an optical window. The disposable optic adheres to the skin to allow a patient to take multiple readings or scans at the same location. The disposable optic includes a Petzval surface placed flush against the skin to maintain the focal point of the optical beam on the surface of the skin. Additionally, the integrity of the sensor signal is maximized by varying the rotation rates of the dual wedge prisms over time in relation to the depth scan rate of the sensor. Optimally, a medium may be injected between the disposable and the skin to match the respective refractive indices and optimize the signal collection of the sensor.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: September 9, 2014
    Assignee: GLT Acquisition Corp.
    Inventors: Matthew J. Schurman, Phillip William Wallace, Walter J. Shakespeare, Howard P. Apple, William Henry Bennett
  • Publication number: 20140249390
    Abstract: A process and apparatus for determining the arterial and venous oxygenation of blood in vivo with improved precision. The optical properties of tissue are measured by determination of differential and total attenuations of light at a set of wavelengths. By choosing distinct wavelengths and using the measured attenuations, the influence of variables such as light scattering, absorption and other optical tissue properties is canceled out or minimized.
    Type: Application
    Filed: March 4, 2014
    Publication date: September 4, 2014
    Inventor: Peter Bernreuter
  • Patent number: 8822722
    Abstract: To provide a fluorescent hydrogel having superior detectability of saccharides such as glucose and minimal invasiveness, a method for producing the same, and a sensor for measuring saccharides using the same. A florescent hydrogel having a structure represented by the following chemical formula 1, a method for producing the same, and a sensor for measuring saccharides using the same.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: September 2, 2014
    Assignees: Terumo Kabushiki Kaisha, The University of Tokyo
    Inventors: Yun-Jung Heo, Hideaki Shibata, Tetsuro Kawanishi, Shoji Takeuchi, Yukiko Matsunaga, Teru Okitsu
  • Publication number: 20140235972
    Abstract: Embodiments of the present invention provide an apparatus suitable for determining properties of in vivo tissue from spectral information collected from the tissue. An illumination system provides light at a plurality of broadband ranges, which are communicated to an optical probe. The optical probe receives light from the illumination system and transmits it to in vivo tissue, and receives light diffusely reflected in response to the broadband light, emitted from the in vivo tissue by fluorescence thereof in response to the broadband light, or a combination thereof. The optical probe communicates the light to a spectrograph which produces a signal representative of the spectral properties of the light. An analysis system determines a property of the in vivo tissue from the spectral properties. A calibration device mounts such that it is periodically in optical communication with the optical probe.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 21, 2014
    Inventors: Robert D. Johnson, Marwood Neal Ediger, John D. Maynard