Vibratory Mass Patents (Class 73/504.12)
  • Patent number: 8820136
    Abstract: A microelectromechanical gyroscope includes a body and a sensing mass, which is movable with a degree of freedom in response to rotations of the body about an axis. A self-test actuator is capacitively coupled to the sensing mass for supplying a self-test signal. The capacitive coupling causes, in response to the self-test signal, electrostatic forces that are able to move the sensing mass in accordance with the degree of freedom at an actuation frequency. A sensing device detects transduction signals indicating displacements of the sensing mass in accordance with the degree of freedom. The sensing device is configured for discriminating, in the transduction signals, spectral components that are correlated to the actuation frequency and indicate the movement of the sensing mass as a result of the self-test signal.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: September 2, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Andrea Donadel, Luciano Prandi, Carlo Caminada
  • Patent number: 8820160
    Abstract: A method for producing a sensor element, wherein at least parts of the sensor element are subjected to at least one plasma treatment process during production. The plasma treatment process may be either a plasma cleaning process and/or a plasma activation process. During the plasma treatment process, a base element and/or a carrier element of the sensor element is subjected to a plasma treatment process before a placement process and/or before a contact-connecting process with electrical connection means. The sensor element is equipped with at least one measurement probe element and/or at least one electronic circuit. This method is used to produce a sensor element, such as a speed sensor element, that may be used in a motor vehicle.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: September 2, 2014
    Assignee: Continental Teves AG Co. oHG
    Inventors: Andreas Doering, Edmond De Volder, Dietmar Huber, Jakob Schillinger, Martin Watzlawik
  • Publication number: 20140238129
    Abstract: A detection element for detecting an angular velocity around at least one of X-, Y- and Z-axes orthogonal to one another, has a support, first to fourth vibration arms connected to the support at each first end, first to fourth weights connected to each second end of the respective vibration arms, and weight adjusting parts. Each vibration arm extends in a X-Y plane. The first and second vibration arms are, and the first and second weights are line-symmetrical with respect to the X-axis passing through the support. The first and third vibration arms are, the first and third weights are, the second and fourth vibration arms are, and the second and fourth weights are line-symmetrical with respect to the Y-axis passing through the support. The weight adjusting parts are provided only on diagonally positioned two of the first to fourth weights or the first to fourth vibration arms.
    Type: Application
    Filed: October 22, 2012
    Publication date: August 28, 2014
    Applicant: Panasonic Corporation
    Inventor: Tsuyoshi Fujii
  • Patent number: 8813564
    Abstract: Various examples include microelectromechanical die for sensing motion that includes symmetrical proof-mass electrodes interdigitated with asymmetrical stator electrodes. Some of these examples include electrodes that are curved around an axis orthogonal to the plane in which the electrodes are disposed. An example provides vertical flexures coupling an inner gimbal to a proof-mass in a manner permitting flexure around a horizontal axis.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: August 26, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Cenk Acar
  • Patent number: 8813565
    Abstract: A multi-axis gyroscope includes a microelectromechanical structure configured to rotate with respective angular velocities about respective reference axes, and including detection elements, which are sensitive in respective detection directions and generate respective detection quantities as a function of projections of the angular velocities in the detection directions. The gyroscope including a reading circuit that generates electrical output signals, each correlated to a respective one of the angular velocities, as a function of the detection quantities. The reading circuit includes a combination stage that combines electrically with respect to one another electrical quantities correlated to detection quantities generated by detection elements sensitive to detection directions different from one another, so as to take into account a non-zero angle of inclination of the detection directions with respect to the reference axes.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: August 26, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Carlo Caminada, Luciano Prandi
  • Publication number: 20140230548
    Abstract: An integrated microelectromechanical structure is provided with: a die, having a substrate and a frame, defining inside it a detection region and having a first side extending along a first axis; a driving mass, anchored to the substrate, set in the detection region, and designed to be rotated in a plane with a movement of actuation about a vertical axis; and a first pair and a second pair of first sensing masses, suspended inside the driving mass via elastic supporting elements so as to be fixed with respect thereto in the movement of actuation and so as to perform a detection movement of rotation out of the plane in response to a first angular velocity; wherein the first sensing masses of the first pair and the first sensing masses of the second pair are aligned in respective directions, having non-zero inclinations of opposite sign with respect to the first axis.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Luca Coronato, Gabriele Cazzaniga, Sarah Zerbini
  • Publication number: 20140230547
    Abstract: Micromachined gyroscopes, such as those based upon microelectromechanical systems (MEMS) have the potential to dominate the rate-sensor market mainly due to their small size, low power and low cost. As MEMS gyroscopes are resonant devices requiring active excitation it would be beneficial to improve the resonator Q-factor reducing the electrical drive power requirements for the excitation circuitry. Further, many prior art MEMS gyroscope designs have multiple resonances arising from design and manufacturing considerations which require additional frequency tuning and control circuitry together with the excitation/sense circuitry. It would therefore be beneficial to enhance the bandwidth of the resonators to remove the requirement for such circuitry. Further, to address the relatively large dimensions of MEMS gyroscopes it would be beneficial for the MEMS gyroscopes to be fabricated directly above the CMOS electronics thereby reducing the die dimensions and lowering per die cost.
    Type: Application
    Filed: October 1, 2013
    Publication date: August 21, 2014
    Applicant: The Royal Institution for the Advancement of Learning / McGill University
    Inventors: Mourad El-Gamal, Mohannad Elsayed, Paul-Vahe Cicek, Frederic Nabki
  • Publication number: 20140224016
    Abstract: A resonator micro-electronic gyro, preferably a micro-electromechanical system (MEMS) gym comprises a first and a second resonator mass (1, 2) suspended for rotational vibration. The two masses (1, 2) are flexibly connected by four mechanical coupling elements (4, 5, 6, 7) for anti-phase vibration. There is at least one positive and at least one negative sensing electrode (S11+, S11?, S21+, S21?) on each resonator mass (1, 2) for detecting an out-of-plane output movement of the masses (1, 2). A detection circuit is connected to be said positive and negative sensing electrodes and determines the output signal by differential detection of the signals on the basis of the following formula: Sxout=({S21+}?M{S11+})?({S21?}?M{S11?}), wherein {S21+}, {S21?} sensing electrode signals of the positive and negative detection electrode of the second mass, respectively; {S11+}, {S11?} sensing electrode signals of the positive and negative detection electrode of the first mass, respectively, ?=compensation factor.
    Type: Application
    Filed: September 20, 2012
    Publication date: August 14, 2014
    Inventor: Jacques Leclerc
  • Patent number: 8800369
    Abstract: A microelectromechanical gyroscope that includes a first mass oscillatable according to a first axis; an inertial sensor, including a second mass, drawn along by the first mass and constrained so as to oscillate according to a second axis, in response to a rotation of the gyroscope; a driving device coupled to the first mass so as to form a feedback control loop and configured to maintain the first mass in oscillation at a resonance frequency; and an open-loop reading device coupled to the inertial sensor for detecting displacements of the second mass according to the second axis. The driving device includes a read signal generator for supplying to the inertial sensor at least one read signal having the form of a square-wave signal of amplitude that sinusoidally varies with the resonance frequency.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 12, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Carlo Caminada, Luciano Prandi, Ernesto Lasalandra
  • Patent number: 8800370
    Abstract: A z-axis gyroscope design is presented with a 2-degree of freedom (DOF) sense mode allowing interchangeable operation in either precision (mode-matched) or robust (wide-bandwidth) modes. This is accomplished using a complete 2-DOF coupled system which allows for the specification of the sense mode resonant frequencies and coupling independent of frequency. By decoupling the frame connecting the sense system to a central anchor, x-y symmetry is preserved while enabling a fully coupled 2-DOF sense mode providing control over both the bandwidth and the amount of coupling independent of operational frequency. The robust mode corresponds to operation between the 2-DOF sense mode resonant frequencies providing a response gain and bandwidth controlled by frequency spacing. Precision mode of operation, however, relies on mode-matching the drive to the second, anti-phase sense mode resonant frequency which can be designed to provide a gain advantage over a similar 1-DOF system.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: August 12, 2014
    Assignee: The Regents of the University of California
    Inventors: Adam Schofield, Alexander Trusov, Andrei Shkel
  • Patent number: 8803624
    Abstract: A MEMS resonator has a resonator mass in the form of a closed ring anchored at points around the ring. A set of ring comb electrode arrangements is fixed to the ring at locations between the anchor points, to couple the input (drive) and output (sense) signals to/from the resonator mass.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: August 12, 2014
    Assignee: NXP, B.V.
    Inventor: Kim Phan Le
  • Patent number: 8794068
    Abstract: Bulk acoustic wave (BAW) gyroscopes purposefully operate using non-degenerate modes, i.e., resonant frequencies of drive and sense modes are controlled so they are not identical. The resonant frequencies differ by a small controlled amount (?f). The difference (?f) is selected such that the loss of sensitivity, as a result of using non-degenerate modes, is modest. Non-degenerate operation can yield better bandwidth and improves signal-to-noise ratio (SNR) over comparable degenerate mode operation. Increasing Q of a BAW resonator facilitates trading bandwidth for increased SNR, thereby providing a combination of bandwidth and SNR that is better than that achievable from degenerate mode devices. In addition, a split electrode configuration facilitates minimizing quadrature errors in BAW resonators.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: August 5, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Michael W. Judy, John A. Geen, Houri Johari-Galle
  • Patent number: 8794066
    Abstract: The invention relates to a micromechanical Coriolis rate of rotation sensor for detecting rates of rotation with components around measuring axes in three spatial directions which are orthogonal to one another. The Coriolis rate of rotation sensor has a substrate, a detection mass and at least two drive masses, wherein the drive masses can each be driven to perform a primary movement relative to the substrate. The direction of the primary movement of one of the at least two drive masses is perpendicular to the direction of the primary movement of another of the at least two drive masses. The detection mass is coupled to the drive masses. The invention also relates to an Inertial Measurement Unit (IMU) and to a method for detecting rates of rotation in three spatial directions which are orthogonal to one another.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: August 5, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten E.V.
    Inventors: Peter Merz, Manfred Weiss
  • Patent number: 8794067
    Abstract: A micromechanical rotation rate sensor, comprising at least one substrate, wherein the rotation rate sensor has at least a first and a second seismic mass which are coupled to one another by means of at least one coupling beam, and wherein the rotation rate sensor is embodied in such a way that it can detect rotation rates about at least a first and a second sensitive axis, wherein each seismic mass is assigned at least one actuator unit with which the deflection behavior of the seismic mass can be influenced.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: August 5, 2014
    Assignee: Continental Teves AG & Co. oHG
    Inventors: Bernhard Schmid, Stefan Günthner, Ramnath Sivaraman
  • Patent number: 8794065
    Abstract: An apparatus for inertial sensing. The apparatus includes a substrate member comprising a thickness of silicon. The apparatus also has a first surface region configured from a first crystallographic plane of the substrate and a second plane region configured from a second crystallographic plane of the substrate. The apparatus has a quartz inertial sensing device coupled to the first surface region, and one or more MEMS inertial sensing devices coupled to the second plane region.
    Type: Grant
    Filed: February 26, 2011
    Date of Patent: August 5, 2014
    Assignee: mCube Inc.
    Inventor: Xiao “Charles” Yang
  • Patent number: 8794069
    Abstract: An angular velocity sensor includes a vibrator, a support substrate, an anchor section, a connection beam section, a driving section, and a detection section. The vibrator includes an inner vibrator and an outer vibrator, which vibrate in opposite circumferential directions when driven by the driving section. The connection beam section couples the vibrator to the anchor section, and is elastic in a z-direction and a circumferential direction. The connection beam section includes first connection beams, each of which is coupled to the outer vibrator at one end and is coupled to the inner vibrator at the other end, and second connection beams, each of which is coupled to a vibration node of a corresponding first connection beam at one end and is coupled to the anchor section at the other end.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: August 5, 2014
    Assignee: DENSO CORPORATION
    Inventors: Takashi Katsumata, Hirofumi Higuchi
  • Patent number: 8794047
    Abstract: A method and apparatus for the precise measuring operation of a micromechanical rotation rate sensor, including at least one deflectively suspended seismic mass, at least one drive device for driving the seismic mass, and at least one first and one second trimming electrode element, which are jointly assigned directly or indirectly to the seismic mass, a first electrical trimming voltage (UTO1, UTLO1, UTRO1) being set between the first trimming electrode element and the seismic mass, and a second electrical trimming voltage (UTO2, UTLO2, UTRO2) being set between the second trimming electrode element and the seismic mass, the first and the second electrical trimming voltages being set at least as a function of a quadrature parameter (UT) and a resonance parameter (Uf).
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: August 5, 2014
    Assignees: Continental Teves AG & Co. oHG, VTI Technologies Oy
    Inventors: Stefan Günthner, Roland Hilser, Ramnath Sivaraman, Bernhard Schmid, Petri Klemetti
  • Publication number: 20140208848
    Abstract: A rotation sensor system is presented. The system comprises a rotating frame configured to be mounted on a gimbal and adapted for controllable rocking motion about a predetermined axis of said frame, and a proof mass assembly mounted on said rotating frame. The proof mass assembly comprises one or more proof mass elements each mounted for controllable movement with respect to the predetermined axis along a certain path, a distance of each proof mass element from said axis corresponding to a direction of the rocking motion of said frame, thereby affecting a moment of inertia of said rotating frame.
    Type: Application
    Filed: April 1, 2012
    Publication date: July 31, 2014
    Applicant: RAMOT AT TEL-AVIV UNIVERSITY LTD.
    Inventors: Viacheslav Krylov, Assaf Ya'Akobovitz
  • Patent number: 8789417
    Abstract: Disclosed herein is an inertial sensor including: a driving part displaceably supported by a support; a driving electrode vibrating the driving part; and a detecting electrode detecting a force acting on the driving part in a predetermined direction, wherein the driving part includes: a center driving mass positioned at the center of the inertial sensor; side driving masses connected to and interlocking with the center driving mass and positioned at four sides based on the center driving mass; and connection bridges connecting the center driving mass, the side driving masses, and the support to each other.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 29, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jong Woon Kim, Heung Woo Park, Won Kyu Jeung
  • Patent number: 8789418
    Abstract: Disclosed herein is an inertial sensor. The inertial sensor includes: a plurality of driving masses; support bodies connecting a connection bridge so as to support the driving masses; a connection bridge connecting the plurality of driving masses and connecting the plurality of driving masses with the support bodies; and an electrode pattern part including driving electrodes simultaneously driving the driving masses and sensing electrode detecting axial Coriolis force of each of the driving masses.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: July 29, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jong Woon Kim, Liwei Lin, Minyao Mao, Won Kyu Jeung
  • Patent number: 8789416
    Abstract: The invention relates to a MEMS gyroscope for detecting rotational motions about an x-, y-, and/or Z-axis, in particular a 3-D sensor, containing a substrate, several, at least two, preferably four, drive masses (2) that are movable radially With respect to a center and drive elements (7) for the oscillating vibration of the drive masses (2) in order to generate Coriolis forces on the drive masses (2) in the event of rotation of the substrate about the x-, y-, and/or Z-axis. The oscillating drive masses (2) are connected to at least one further non oscillating sensor mass (3) that however can be rotated about the x-, y-, and/or Z-axis together With the oscillating drive masses (2) on the substrate. Sensor elements (9, 10) are used to detect detections of the sensor mass (3) and/or drive masses (2) in relation to the substrate due to the generated Coriolis forces. At least two, preferably four anchors (5) are used to rotatably fasten the sensor mass (3) to the substrate by means of springs (4).
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: July 29, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Alessandro Rocchi
  • Patent number: 8783103
    Abstract: Error sources relating to the drive signal applied to the resonator of an inertial sensor, such as in-phase offset errors relating to the drive signal and/or electronic pass-through of the drive signal to accelerometer sense electronics, are detected by modulating the drive signal and sensing accelerometer signals that are induced by the modulated drive signal. Error sources related to aerodynamics of an inertial sensor resonator are detected by modulating the distance between the resonator and the underlying substrate and sensing accelerometer signals that are induced by such modulation. Compensating signals may be provided to substantially cancel errors caused by such error sources.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: July 22, 2014
    Assignee: Analog Devices, Inc.
    Inventors: William A. Clark, John A. Geen
  • Patent number: 8783105
    Abstract: A yaw-rate sensor is described as having a substrate which has a main plane of extension for detecting a yaw rate about a first axis extending parallel to the main plane of extension is provided, the yaw-rate sensor having a first rotation element and a second rotation element, the first rotation element being drivable about a first axis of rotation, the second rotation element being drivable about a second axis of rotation, the first axis of rotation being situated perpendicularly to the main plane of extension, the second axis of rotation being situated perpendicularly to the main plane of extension, the first rotation element and the second rotation element being drivable in opposite directions.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 22, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Burkhard Kuhlmann, Rolf Scheben, Daniel Christoph Meisel, Benjamin Schmidt, Thorsten Balslink
  • Patent number: 8783104
    Abstract: A vibration gyro element includes: a base section; a detection arm extending from the base section in a first direction; a joint section disposed at an end portion of the base section; a first drive arm extending from the joint section in a second direction intersecting with the first direction in a plan view; a second drive arm extending from the joint section in a direction opposite to the extending direction of the first drive arm; a first set of drive electrodes provided to the first drive arm; a second set of drive electrodes provided to the second drive arm; and a set of detection electrodes provided to the detection arm, wherein the first drive arm vibrates in a third direction perpendicular to the first direction and the second direction, the second drive arm vibrates in a same direction as the first drive arm.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: July 22, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Ryuta Nishizawa
  • Publication number: 20140196541
    Abstract: A sensor includes a sensor element configured to measure a physical variable. At least one elastic damping element is configured to damp external interfering vibrations. The at least one elastic damping element is configured to electrically and/or mechanically contact the sensor element.
    Type: Application
    Filed: June 19, 2012
    Publication date: July 17, 2014
    Applicant: Robert Bosch GmbH
    Inventor: Michael Hofsaess
  • Publication number: 20140190258
    Abstract: A gyroscope includes: a mass, which is movable with respect to a supporting body; a driving loop for keeping the mass in oscillation according to a driving axis; a reading device, which supplying an output signal indicating an angular speed of the body; and a compensation device, for attenuating spurious signal components in quadrature with respect to a velocity of oscillation of the mass. The reading device includes an amplifier, which supplies a transduction signal indicating a position of the mass according to a sensing axis. The compensation device forms a control loop with the amplifier, extracts from the transduction signal an error signal representing quadrature components in the transduction signal, and supplies to the amplifier a compensation signal such as to attenuate the error signal.
    Type: Application
    Filed: January 9, 2014
    Publication date: July 10, 2014
    Applicant: STMicroelectronics S.r.l.
    Inventors: Andrea Donadel, Davide Magnoni, Marco Garbarino
  • Publication number: 20140190256
    Abstract: Disclosed herein is a vibratory gyro sensor system, including: a driving unit shifting a signal output from a first sensing element of a gyro sensor by a preset shift phase, amplifying the phase shifted signal to a preset gain, and self-oscillates the amplified signal to generate and feedback a driving signal; an automatic gain control unit converting and amplifying capacitance output from a second sensing element of a gyro sensor into voltage; and a signal detection unit converting and amplifying the capacitance output from the first sensing element and the second sensing element into voltage.
    Type: Application
    Filed: March 17, 2013
    Publication date: July 10, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: SAMSUNG ELECTRO-MECHANICS CO., LTD.
  • Publication number: 20140190257
    Abstract: A method of using a MEMS gyroscope is disclosed herein, wherein the MEMS gyroscope comprised a magnetic sensing mechanism. A magnetic field is generated by a magnetic source, and is detected by a magnetic sensor. The magnetic field varies at the location of the magnetic sensor; and the variation of the magnetic field is associated with the movement of the proof-mass of the MEMS gyroscope. By detecting the variation of the magnetic field, the movement and thus the target angular velocity can be measured.
    Type: Application
    Filed: July 6, 2013
    Publication date: July 10, 2014
    Inventors: Biao Zhang, Tao Ju
  • Publication number: 20140182375
    Abstract: Disclosed herein is an angular velocity sensor including: first and second mass bodies; a first frame provided at an outer side of the first and second mass bodies; a first flexible part connecting the first and second mass bodies to the first frame in a Y axis direction, respectively; a second flexible part connecting the first and second mass bodies to the first frame in an X axis direction, respectively; a second frame provided at an outer side of the first frame; a third flexible part connecting the first and second frames to each other in the X axis direction; and a fourth flexible part connecting the first and second frames to each other in the Y axis direction, wherein the first frame has a thickness in a Z axis direction thinner than that of the second frame.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 3, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jong Woon KIM, Jun Lim, Jae Chang Lee
  • Patent number: 8763459
    Abstract: A vibratory gyroscope utilizing a frequency-based measurement and providing a frequency output.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: July 1, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Oliver Brand, Stefan Schild
  • Patent number: 8763460
    Abstract: There is provided an angular velocity sensor, including: a flexible part connecting a fixing part to an oscillation unit; a driving unit formed on the flexible part or the oscillation unit to oscillate the oscillation unit; a sensing unit formed on the flexible part or the oscillation unit to sense a displacement of the oscillation unit according to an angular velocity input; a control piezoelectric element formed on the flexible part to control rigidity of a motion of the oscillation unit; and an impedance element electrically connected to the control piezoelectric element to apply impedance to the control piezoelectric element.
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: July 1, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jong Woon Kim, Mao Minyao, Lin Liwei, Won Kyu Jeung
  • Publication number: 20140174180
    Abstract: A high-performance angular rate detecting device is provided. A driving part including a drive frame and a Coriolis frame is leviated by at least two fixing beams which share a fixed end and are extending in a direction orthogonal to a driving direction, thereby vibrating the driving part. Even when a substrate is deformed by mounting or heat fluctuation, internal stress generated to the fixed beam and a supporting beam is small, thereby maintaining a vibrating state such as resonance frequency and vibration amplitude constant. Therefore, a high-performance angular rate detecting device which is robust to changes in mounting environment can be obtained.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Heewon JEONG, Yasushi GOTO
  • Publication number: 20140174181
    Abstract: In order to provide a technology capable of suppressing degradation of measurement accuracy due to fluctuation of detection sensitivity of an MEMS by suppressing fluctuation in natural frequency of the MEMS caused by a stress, first, fixed portions 3a to 3d are displaced outward in a y-direction of a semiconductor substrate 2 by deformation of the semiconductor substrate 2. Since a movable body 5 is disposed in a state of floating above the semiconductor substrate 2, it is not affected and displaced by the deformation of the semiconductor substrate 2. Therefore, a tensile stress (+?1) occurs in the beam 4a and a compressive stress (??2) occurs in the beam 4b. At this time, in terms of a spring system made by combining the beam 4a and the beam 4b, increase in spring constant due to the tensile stress acting on the beam 4a and decrease in spring constant due to the compressive stress acting on the beam 4b are offset against each other.
    Type: Application
    Filed: February 26, 2014
    Publication date: June 26, 2014
    Applicant: Hitachi, Ltd
    Inventors: Munenori Degawa, Heewon Jeong
  • Patent number: 8756994
    Abstract: A vibrating gyro device includes a piezoelectric substrate, an upper main surface electrode, a lower main surface electrode, and a support substrate. The piezoelectric substrate is provided with inner open holes and outer open holes. Side edge surfaces of a frame-shaped region in the X-Y plane are exposed to the interior of the frame through the inner open holes. Side edge surfaces of the frame-shaped region are exposed to the exterior of the frame through the outer open holes. Drive detection electrodes arranged within the upper main surface electrode are bonded to the upper main surface of the frame-shaped region and together with the lower main surface electrode are electromechanically coupled with deformation of the frame-shaped region in the Z-axis direction and deformation of the frame-shaped region in a direction parallel or substantially parallel to the X-Y plane. The support substrate provides a vibration space for the frame-shaped region and supports the piezoelectric substrate.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: June 24, 2014
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Toshimaro Yoneda, Tsuguji Kambayashi
  • Publication number: 20140165723
    Abstract: This invention relates to inductive inertial sensors employing a magnetic drive and/or sense architecture. In embodiments, translational gyroscopes utilize a conductive coil made to vibrate in a first dimension as a function of a time varying current driven through the coil in the presence of a magnetic field. Sense coils register an inductance that varies as a function of an angular velocity in a second dimension. In embodiments, the vibrating coil causes first and second mutual inductances in the sense coils to deviate from each other as a function of the angular velocity. In embodiments, self-inductances associated with a pair of meandering coils vary as a function of an angular velocity in a second dimension. In embodiments, package build-up layers are utilized to fabricate the inductive inertial sensors, enabling package-level integrated inertial sensing advantageous in small form factor computing platforms, such as mobile devices.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Inventors: Qing MA, Feras EID, Kevin LIN, Johanna M. SWAN, Weng Hong TEH, Valluri R. RAO
  • Patent number: 8752429
    Abstract: A MEMS gyroscope includes: a microstructure having a fixed structure, a driving mass, movable with respect to the fixed structure according to a driving axis, and a sensing mass, mechanically coupled to the driving mass so as to be drawn in motion according to the driving axis and movable with respect to the driving mass according to a sensing axis, in response to rotations of the microstructure; and a driving device, for keeping the driving mass in oscillation with a driving frequency. The driving device includes a discrete-time sensing interface, for detecting a position of the driving mass with respect to the driving axis and a control stage for controlling the driving frequency on the basis of the position of the driving mass.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: June 17, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Luciano Prandi, Carlo Caminada
  • Publication number: 20140157896
    Abstract: A gyroscope having a resonant body utilizes a self-calibration mechanism that does not require physical rotation of the resonant body. Instead, interface circuitry applies a rotating electrostatic field to first and second drive electrodes simultaneously to excite both the drive and sense resonance modes of the gyroscope. When drive electrodes associated with both the drive and sense resonance modes of the gyroscope are excited by forces of equal amplitude but 90° phase difference, respectively, the phase shift in the gyroscope response, as measured by the current output of the sense electrodes for each resonance mode, is proportional to an equivalent gyroscope rotation rate.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Inventors: Giorgio Casinovi, Farrokh Ayazi, Wang Kyung Sung, Milap Jayesh Dalal, Arashk Norouz Pour Shirazi
  • Patent number: 8746064
    Abstract: The invention relates to a micromechanical sensor having at least two spring-mass damper oscillators. The micromechanical sensor has a first spring-mass-damper oscillating system with a first resonant frequency and a second spring-mass-damper oscillating system with a second resonant frequency which is lower than the first resonant frequency. The invention also relates to a method for detection and/or measurement of oscillations by means of a sensor such as this, and to a method for production of a micromechanical sensor such as this. The first and the second spring-mass-damper oscillating systems have electrodes which oscillate in a measurement direction about electrode rest positions with electrode deflections which are equal to or proportional to deflections of the spring-mass-damper oscillators.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: June 10, 2014
    Assignee: Fibercheck GmbH
    Inventors: Marco Dienel, Alexander Sorger, Jan Mehner
  • Patent number: 8746065
    Abstract: A rotational rate sensor includes: a substrate having a main plane of extension; a first Coriolis element; and a second Coriolis element. The first Coriolis element and the second Coriolis element have a first and a second center of gravity, respectively, and the elements are drivable along a drive direction. In the idle state of the rotational rate sensor, (i) the distance between the first center of gravity and the second center of gravity along the detection direction is less than a first value, and (ii) the distance between the first center of gravity and the second center of gravity along the third direction is less than a second value.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: June 10, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Torsten Ohms, Daniel Christoph Meisel
  • Patent number: 8746033
    Abstract: Failures can be detected with high accuracy even the ambient temperature changes or background vibration is applied.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: June 10, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Satoshi Asano, Masahiro Matsumoto, Yasushi Okada
  • Publication number: 20140150552
    Abstract: A sensing assembly device includes a substrate, a chamber above the substrate, a first piezoelectric gyroscope sensor positioned within the chamber, and a first accelerometer positioned within the chamber.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: Robert Bosch GmbH
    Inventors: Ando Feyh, Po-Jui Chen
  • Patent number: 8739626
    Abstract: A micromachined inertial sensor with a single proof-mass for measuring 6-degree-of-motions. The single proof-mass includes a frame, an x-axis proof mass section attached to the frame by a first flexure, and a y-axis proof mass section attached to the frame by a second flexure. The single proof-mass is formed in a micromachined structural layer and is adapted to measure angular rates about three axes with a single drive motion and linear accelerations about the three axes.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: June 3, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Cenk Acar
  • Patent number: 8739627
    Abstract: An inertial sensor (20) includes a drive mass (30) configured to undergo oscillatory motion and a sense mass (32) linked to the drive mass (30). On-axis torsion springs (58) are coupled to the sense mass (32), the on-axis torsion springs (58) being co-located with an axis of rotation (22). The inertial sensor (20) further includes an off-axis spring system (60). The off-axis spring system (60) includes off-axis springs (68, 70, 72, 74), each having a connection interface (76) coupled to the sense mass (32) at a location on the sense mass (32) that is displaced away from the axis of rotation (22). Together, the on-axis torsion springs (58) and the off-axis spring system (60) enable the sense mass (32) to oscillate out of plane about the axis of rotation (22) at a sense frequency that substantially matches a drive frequency of the drive mass (30).
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: June 3, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gary G. Li, Yizhen Lin, Andrew C. McNeil, Lisa Z. Zhang
  • Publication number: 20140144233
    Abstract: The present invention relates to an apparatus and a method for automatic gain control of a sensor, and a sensor apparatus. The apparatus for automatic gain control of a sensor including: a PID control unit for outputting a gain value applied compensated sensor signal by performing PID control while generating and changing a gain value to converge a peak value of a sensor signal to a target value; and a margin calculation unit for determining the degree of change of peaks of a previous gain value applied compensated sensor signal and a current gain value applied compensated sensor signal and performing calculation of a margin for stabilizing the compensated sensor signal according to the result of determination of the degree of change is provided. Further, a sensor apparatus and a method for automatic gain control of a sensor are provided.
    Type: Application
    Filed: November 22, 2013
    Publication date: May 29, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kyung Rin KIM, Byoung Won HWANG, Chang Hyun KIM
  • Publication number: 20140144232
    Abstract: A MEMS device (20) includes a substrate (28) and a drive mass (30) configured to undergo oscillatory motion within a plane (24) substantially parallel to a surface (50) of the substrate (28). The sensor (20) further includes drive springs (56), each of which includes a principal beam (70) and a flexion beam (72) coupled an end (74) of the principal beam (70). The flexion beam (72) is anchored to the drive mass (30) or the substrate (28). The flexion beam (72) exhibits a width (90) that is less than a width (88) of the principal beam (70). In response to oscillatory drive motion, the flexion beam (72) flexes so that the principal beam (70) rotates about a pivot point (96) within the plane (24). Thus, out-of-plane movement of the drive mass (30) is reduced thereby suppressing quadrature error.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Inventors: Yizhen Lin, Jan Mehner, Michael Naumann
  • Publication number: 20140144231
    Abstract: An inertial sensor (110) includes a drive system (118) configured to oscillate a drive mass (114) within a plane (24) that is substantially parallel to a surface (50) of a substrate (28). The drive system (118) includes first and second drive units (120, 122) having fixed fingers (134, 136) interleaved with movable fingers (130, 132) of the drive mass (114). At least one of the drive units (120) is located on each side (126, 128) of the drive mass (114). Likewise, at least one of the drive units (122) is located on each side (126, 128) of the drive mass (114). The drive units (122) are driven in phase opposition to the drive units (120) so that a levitation force (104) generated by the drive units (122) compensates for, or at least partially suppresses, a levitation force (100) generated by the drive units (120).
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Inventors: Yizhen Lin, Jan Mehner, Michael Naumann
  • Publication number: 20140144230
    Abstract: A driving device of a driving mass of a gyroscope comprises a differential read amplifier to supply first signals indicating a rate of oscillation of the driving mass; a variable-gain amplifier to supply second signals to drive the driving mass based on said first signals; a voltage elevator providing a power supply signal to the variable-gain amplifier; a controller generating a first control signal to control a gain of the variable-gain amplifier; and a first comparator, coupled to the variable-gain amplifier, generating a second control signal based on a comparison of the first control signal with a threshold, the second control signal controlling at least one among: (i) the variable-gain amplifier in such a way that the gain is increased only during the start-up phase of the gyroscope, and (ii) the voltage elevator in such a way that the power supply signal is increased only during the start-up phase.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 29, 2014
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Davide Magnoni, Marco Garbarino, Andrea Donadel
  • Patent number: 8733171
    Abstract: Gyroscopes that can compensate frequency mismatch are provided. In this regard, a representative gyroscope, among others, includes a top substrate including an outermost structure, a first driving structure and a first sensing structure. The first driving structure and the first sensing structure are disposed within the outermost structure. The first driving structure and the first sensing structure include a first driving electrode and a first sensing electrode that are disposed on a bottom surface of the first driving structure and first sensing structure, respectively. A portion of the mass on the top surface of the first sensing structure is removed. The gyroscope further includes a bottom substrate that is disposed below the top substrate. The bottom substrate includes a second driving electrode and a second sensing electrode that are disposed on a top surface of the bottom substrate and below the first driving electrode and the first sensing electrode.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: May 27, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wenhua Zhang, Robert G. Walmsley
  • Patent number: 8733172
    Abstract: An integrated microelectromechanical structure is provided with: a die, having a substrate and a frame, defining inside it a detection region and having a first side extending along a first axis; a driving mass, anchored to the substrate, set in the detection region, and designed to be rotated in a plane with a movement of actuation about a vertical axis; and a first pair and a second pair of first sensing masses, suspended inside the driving mass via elastic supporting elements so as to be fixed with respect thereto in the movement of actuation and so as to perform a detection movement of rotation out of the plane in response to a first angular velocity; wherein the first sensing masses of the first pair and the first sensing masses of the second pair are aligned in respective directions, having non-zero inclinations of opposite sign with respect to the first axis.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: May 27, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Luca Coronato, Gabriele Cazzaniga, Sarah Zerbini
  • Publication number: 20140137648
    Abstract: In one embodiment, an apparatus comprises a micromechanical gyroscope and a circuit. The micromechanical gyroscope is configured to be excited in a first mode by a drive signal, and configured to be excited in a second mode by a gyroscopic effect. The circuit is coupled to the micromechanical gyroscope and configured to detect the gyroscopic effect when the micromechanical gyroscope is in the second mode.
    Type: Application
    Filed: January 28, 2014
    Publication date: May 22, 2014
    Applicant: Sand 9, Inc.
    Inventors: Guiti Zolfagharkhani, Jan H. Kuypers, Alexei Gaidarzhy, David M. Chen, Pritiraj Mohanty