Piezoresistive Patents (Class 73/721)
  • Publication number: 20140196546
    Abstract: A pressure sensor is claimed for measuring the pressure of a fluid. The pressure sensor comprises two or more half bridges, an analog-to-digital converter, a microcontroller, an output generator, and one or more redundancy circuits. Each half bridge comprises two resistive pressure sensing elements (RSPE) electrically coupled to the analog-to-digital converter. Each redundancy circuit comprises a switch and resistor electrically in series. A redundancy circuit may be disposed electrically in parallel with any or all of the RSPEs of the half bridges such that when an RSPE fails open, its corresponding redundancy circuit may be activated in order to permit the resistor of the redundancy circuit to take the place of the RSPE. This permits the analog-to-digital converter to continue to operate normally, even with a failed RSPE. The pressure sensor may then base its calculated pressure on the remaining half bridges which do not have a failed RSPE.
    Type: Application
    Filed: January 15, 2013
    Publication date: July 17, 2014
    Applicant: TRANSDUCERS DIRECT LLC
    Inventor: David Allen Topmiller
  • Patent number: 8770034
    Abstract: The present disclose relates to sensor including multiple sensor elements. In some cases, the multiple sensor elements may be mounted on a single substrate and each may be configured to sense a single parameter with different resolutions, sensitivities, and/or ranges, and/or the multiple parameters. In one example, multiple pressure sensing die may be mounted in a single package, and each may be configured as a differential pressure sensor, an absolute pressure sensor, and/or a gauge pressure sensor, as desired.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: July 8, 2014
    Assignee: Honeywell International Inc.
    Inventors: Ian Bentley, Lamar Floyd Ricks
  • Patent number: 8733176
    Abstract: A stress concentrating apparatus and a method for a MicroElectroMechanical System (MEMS) sensors is provided. The apparatus includes a plate having an inner region and outer region, the inner region being separated from the outer region by slits defined in the plate. A stress concentrator bridge connects the inner region to the outer region, and to mechanically amplify stress applied on the inner region of the plate. At least one stress sensor is operatively connected to the stress concentrator bridge, whereby the at least one stress sensor converts the mechanically amplified stress applied on the inner region into an electrical signal.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: May 27, 2014
    Assignee: Kontel Data System Limited
    Inventor: Ping Wai Li
  • Publication number: 20140137653
    Abstract: In a MEMS PRT having a diaphragm that is located offset from the center of the die, thermally-induced thermal noise in the output of a Wheatstone bridge circuit is reduced by locating the Wheatstone bridge circuit away from the largest area of the die and supporting pedestal.
    Type: Application
    Filed: October 23, 2013
    Publication date: May 22, 2014
    Inventors: Jen-Huang Albert Chiou, Xiaoyi Ding, Shiuh-Hui Steven Chen, Jeffrey J. Frye
  • Patent number: 8714021
    Abstract: A catheter die is provided and includes a device layer defining a cavity and including a piezoresistive pressure sensor operably disposed proximate to the cavity and an insulator having an opening and being disposed on an upper surface of the device layer such that a portion of the piezoresistive pressure sensor is exposed through the opening. The catheter die further includes an insulation layer bonded to a lower surface of the device layer and first and second bond pads, the first bond pad being electrically coupled to the portion of the piezoresistive pressure sensor via the opening and the second bond pad being disposed on the insulation layer.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 6, 2014
    Assignee: Amphenol Thermometrics, Inc.
    Inventor: Sisira Kankanam Gamage
  • Publication number: 20140102207
    Abstract: This disclosure provides example methods, devices and systems associated with a torque-insensitive header assembly. In one embodiment, a method comprises receiving, by a sensor, from an aperture defined by a shell, an environmental condition, wherein the sensor is coupled to a header and the header is coupled to the shell such that the sensor is isolated from a torque stress applied to the shell; measuring, by the sensor, the environmental condition to determine an environmental condition signal; and outputting, from the sensor, the environmental condition signal.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Applicant: Kulite Semiconductor Products, Inc.
    Inventor: Nora Kurtz
  • Patent number: 8695431
    Abstract: Sensors used in mapping strata beneath a marine body are described, such as in a towed array. A first acoustic sensor uses a piezoelectric sensor mounted with a thin film separation layer of flexible microspheres on a rigid substrate. Additional non-acoustic sensors are optionally mounted on the rigid substrate for generation of output used to reduce noise observed by the acoustic sensors. A second sensor is a motion sensor including a conductive liquid in a chamber between a rigid tube and a piezoelectric motion film circumferentially wrapped about the tube. Combinations of acoustic, non-acoustic, and motion sensors co-located in rigid streamer housing sections are provided, which reduce noise associated with different sensor locations.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: April 15, 2014
    Assignee: Solid Seismic, LLC
    Inventor: Richard E. Pearce
  • Patent number: 8661911
    Abstract: Provided is a piezo-resistive pressure sensor that realizes sensitive and accurate measurement of pressure, by reducing the variation of electrical conduction due to thermal variation in piezo resistance elements, without lowering the sensitivity of measurement. Piezo-resistance sections R1, R2, R3 and R4 are arranged on diaphragm 31, near the border between diaphragm 31 and support section 32. By this means, pressure can be measured with high sensitivity. The area of a part where a group of piezo-resistance elements are placed, and the outer shape of that part, are the same between piezo-resistance sections R1, R2, R3 and R4. By this means, piezo-resistance sections R1, R2, R3 and R4 have uniform temperature distribution and reduce the variation of electrical conduction due to thermal variation in piezo resistance elements.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: March 4, 2014
    Assignee: Mitsumi Electric, Co., Ltd.
    Inventor: Norikazu Oizumi
  • Publication number: 20140053652
    Abstract: A method, device and system for a gage pressure transducer including the making thereof are provided. In one embodiment, a method comprises receiving, at a first diaphragm, a first pressure, wherein the first diaphragm is composed of metal; transferring, from the first diaphragm, to a first sensor, the first pressure using a first oil region, wherein the first oil region is disposed between the first diaphragm and the first sensor; receiving, at the first sensor, the first pressure; measuring, by the first sensor, the first pressure to generate a first pressure signal; and outputting, from the first sensor, to a first header pin, the first pressure signal, wherein the first header pin is electrically coupled to the first sensor using a first conductive glass frit.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Inventor: Nora Kurtz
  • Patent number: 8631707
    Abstract: A dual diaphragm pressure transducer, or sensor, with compensation for non-pressure effects is disclosed. The pressure sensor can include two pressure transducers located on separate portions of a chip. The first pressure transducer can be a differential pressure transducer, which produces a signal proportional to one or more applied pressures and includes other non-pressure effects. The second pressure transducer can be sealed in a hermetic chamber and thus can produce a signal proportional only to non-pressure effects. The signals can be combined to produce a signal proportional to the applied pressures with no non-pressure effects. The first and second pressure transducers can be physically and/or electrically isolated to improve sealing between the two pressure transducers and prevent pressure leaks therebetween.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: January 21, 2014
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander Ned, Sorin Stefanescu, Nora Kurtz
  • Patent number: 8631708
    Abstract: An absolute piezo-resistive pressure sensor system and method employing multiple pressure sensing elements operating simultaneously to detect pressure. Both pressure sensing elements being subject to a common reference pressure within a sealed cavity. The first pressure sensing element detecting an offset voltage resulting from the progressive release of mechanical stress at an assembly interface between the sensing element and a base plate on which the sensing elements are assembled. Electronic circuitry compensates the pressure measured by the second pressure sensing element based on the offset voltage detected by the first pressure sensing element.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: January 21, 2014
    Assignee: Codman Neuro Sciences Sárl
    Inventor: Rocco Crivelli
  • Patent number: 8627559
    Abstract: A method for manufacturing a Micro-Electro-Mechanical System pressure sensor, including forming a gauge wafer including a diaphragm and a pedestal region. The method includes forming an electrical insulation layer disposed on a second surface of the diaphragm region and forming a plurality of sensing elements patterned on the electrical insulation layer disposed on the second surface in the diaphragm region, forming a cap wafer with a central recess in an inner surface and a plurality of through-wafer embedded vias made of an electrically conductive material in the cap wafer, creating a sealed cavity by coupling the inner recessed surface of the cap wafer to the gauge wafer, such that electrical connections from the sensing elements come out to an outer surface of the cap wafer through the vias, and attaching a spacer wafer with a central aperture to the pedestal region with the central aperture aligned to the diaphragm region.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 14, 2014
    Assignee: S3C, Inc.
    Inventors: James Tjanmeng Suminto, Mohammad Yunus
  • Patent number: 8616065
    Abstract: The present disclosure relates to sensors including pressure sensors. In some cases, the pressure sensor may include a membrane or diaphragm, multiple sense elements connected to one another in a bridge configuration and positioned on the membrane, and an amplifier coupled to an output of the bridge configuration and having an output, where the diaphragm, sense elements and amplifier may be formed on a singled substrate or formed integrally therewith, or both. In one example, the pressure sensor may sense a particular range of pressures applied to the sensor, and/or may include an amplifier that has a selectable gain for amplifying an output of the bridge.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: December 31, 2013
    Assignee: Honeywell International Inc.
    Inventors: Carl Stewart, Alistair Bradley, Lamar Ricks
  • Patent number: 8607637
    Abstract: A gage pressure transducer comprising a first pressure sensing assembly exposed to a main pressure and a second pressure sensing assembly exposed to a reference pressure. The pressure sensing assemblies comprise half-bridge sensors and means for using an alignment glass plate with each sensor which reduces the amount of oil required for operation, which consequently reduces the back pressures caused by large volumes of oil. The pressure sensor assemblies are hermetically sealed using glass frits, therefore enabling the gage pressure transducer to robustly and accurately measure pressure in harsh environments.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: December 17, 2013
    Assignee: Kulite Semiconductors Products, Inc.
    Inventor: Nora Kurtz
  • Patent number: 8578782
    Abstract: A system for measuring a multiplicity of pressures as those experienced by a model in a wind tunnel is depicted. The system includes individual sensor devices which are connected to an electronics module. The sensors may be connected to the electronics module via a cable in a first embodiment. In an alternate embodiment, the sensors may be connected to the electronics module via a mating connector located therebetween. A memory component which stores compensation coefficients associated with each of the sensors may also be included in the system to correct errors associated with each sensor. The advantage of the various embodiments is that each sensor does not have any compensation stored thereon and thus, the sensors can be made very small to operate at very high temperatures without any loss of accuracy.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: November 12, 2013
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned, Joseph R. VanDeWeert
  • Patent number: 8561470
    Abstract: A single pressure sensing capsule has a reference pressure ported to the rear side of a silicon sensing die. The front side of the silicon sensing die receives a main pressure at another port. The difference between the main and reference pressure results in the sensor providing an differential pressure output. The reference pressure or main pressure may be derived from a pump pressure which is being monitored. The pump pressure output is subjected to a pump ripple or a sinusoidally varying pressure. In order to compensate for pump ripple, a coiled tube or an adjustable dampening chamber comprising a spiral inlet tube and a volume cavity can be used. The tube length is selected to suppress the pump ripple as applied to the sensor die. In this manner, the pump ripple cannot cause resonance which would result in pressure amplification and which pressure amplification would destroy the sensor.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: October 22, 2013
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Richard Martin, Robert Gardner, Adam Kane, Nora Kurtz
  • Publication number: 20130247677
    Abstract: A pressure sensor includes a detecting circuit configured to detect the difference between outputs from a first pressure variation sensor and a second pressure variation sensor. The first pressure variation sensor and the second pressure variation sensor have the same distance of a gap, and have frequency characteristics different from each other, that is, cutoff frequencies different from each other by setting the value of a capacity of the cavity of the first pressure variation sensor to be larger than the value of a capacity of the cavity of the second pressure variation sensor.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 26, 2013
    Applicant: SEIKO INSTRUMENTS INC.
    Inventors: Takeshi UCHIYAMA, Masataka SHINOGI
  • Publication number: 20130247676
    Abstract: A pressure sensor includes a detecting circuit configured to detect the difference between outputs from a first pressure variation sensor and a second pressure variation sensor. The first pressure variation sensor and the second pressure variation sensor have a lower limit frequency which provides sensitivity equal to or higher than a predetermined value as the effectively same frequency characteristics in accordance at least with a capacity of a cavity or a distance of a gap. The gap of the first pressure variation sensor communicates the exterior of the pressure sensor and the interior of the cavity of the first pressure variation sensor, and the gap of the second pressure variation sensor communicates the interior of the cavity of the first pressure variation sensor and the interior of the cavity of the second pressure variation sensor.
    Type: Application
    Filed: February 28, 2013
    Publication date: September 26, 2013
    Applicant: SEIKO INSTRUMENTS INC.
    Inventors: Takeshi UCHIYAMA, Masataka SHINOGI
  • Patent number: 8516895
    Abstract: A pressure sensor diagnostic system of the present disclosure includes an excitation module, a frequency determination module, and a fault determination module. The excitation module excites an in-cylinder pressure sensor and causes the in-cylinder pressure sensor to oscillate. The frequency determination module determines an oscillation frequency of the in-cylinder pressure sensor. The fault determination module diagnoses the in-cylinder pressure sensor based on the oscillation frequency.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 27, 2013
    Inventors: Douglas R. Verner, Kenneth J. Buslepp, Joseph R. Dulzo
  • Patent number: 8511170
    Abstract: A pressure transducer includes a substrate, a piezoresistive element, a first conductive element, a first terminal, and a test structure. The substrate has a surface and a cavity. A diaphragm layer is formed over the cavity and over the surface of the substrate. The piezoresistive element is formed in the diaphragm layer. The first conductive element is formed in the diaphragm layer, and has a first conductivity type. The first conductive element is coupled to the piezoresistive element. The first terminal is formed over a surface of the diaphragm layer and coupled to the first conductive element. The test structure has the first conductivity type and is formed in the diaphragm layer. The test structure has an edge spaced apart from an edge of the first conductive element by a predetermined distance. A surface charge accumulation on the diaphragm layer is detected using the test structure.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: August 20, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lianjun Liu, Chad S. Dawson, Bernhard H. Grote, Woo Tae Park
  • Publication number: 20130192378
    Abstract: An MEMS pressure sensor is designed to reduce or eliminate thermal noise, such as temperature offset voltage output. The pressure sensor includes a pressure sensing element having a diaphragm, and a cavity formed as part of the pressure sensing element, where the cavity receives a fluid such that the diaphragm at least partially deflects. The pressure sensing element also includes a plurality of piezoresistors, which are operable to generate a signal based on the amount of deflection in the diaphragm. At least one trench is integrally formed as part of the pressure sensing element, and an adhesive connects the pressure sensing element to the at least one substrate such that at least a portion of the adhesive is attached to the trench and redistributes thermally induced stresses on the pressure sensing element such that the thermally induced noise is substantially eliminated.
    Type: Application
    Filed: January 30, 2012
    Publication date: August 1, 2013
    Applicant: CONTINENTAL AUTOMOTIVE SYSTEMS, INC.
    Inventors: Jen-Huang Albert Chiou, Shiuh-Hui Steven Chen
  • Patent number: 8460961
    Abstract: A method for forming a transducer including the step of providing a semiconductor-on-insulator wafer including first and second semiconductor layers separated by an electrically insulating layer, wherein the first layer is formed or provided by hydrogen ion delamination of a starting wafer. The method further includes doping the first layer to form a piezoresistive film and etching the piezoresistive film to form at least one piezoresistor. The method also includes depositing or growing a metallization layer on the semiconductor-on-insulator wafer, the metallization layer including an electrical connection portion that is located on or is electrically coupled to the piezoresistor. The method includes removing at least part of the second semiconductor layer to form a diaphragm, with the at least part of the piezoresistor being located on the diaphragm, and joining the wafer to a package by melting a high temperature braze material or a glass frit material.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: June 11, 2013
    Assignee: Rosemount Aerospace Inc.
    Inventors: Shuwen Guo, Odd Harald Steen Eriksen, Kimiko J. Childress
  • Publication number: 20130125659
    Abstract: An absolute piezo-resistive pressure sensor system and method employing multiple pressure sensing elements operating simultaneously to detect pressure. Both pressure sensing elements being subject to a common reference pressure within a sealed cavity. The first pressure sensing element detecting an offset voltage resulting from the progressive release of mechanical stress at an assembly interface between the sensing element and a base plate on which the sensing elements are assembled. Electronic circuitry compensates the pressure measured by the second pressure sensing element based on the offset voltage detected by the first pressure sensing element.
    Type: Application
    Filed: January 23, 2013
    Publication date: May 23, 2013
    Applicant: Codman Neuro Sciences Sarl
    Inventor: Rocco Crivelli
  • Patent number: 8434369
    Abstract: A preloaded pressure sensor module (PPSM) is disclosed, where the PPSM outputs a linear Conductivity Response versus Pressure Force input. The PPSM has a convex or concave profile which is prepared by pressing a flat pressure sensor device onto to a convex or concave base respectively so that the pressure sensitive layer inside the sensor module is bent and displays a preloaded effect.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: May 7, 2013
    Assignee: Universal Cement Corporation
    Inventors: Chih-Sheng Hou, Yann-Cherng Chern
  • Patent number: 8429977
    Abstract: A very robust sensor element for an absolute-pressure measurement is described, which is suitable for high temperatures and able to be miniaturized to a large extent. The micromechanical pressure-sensor element includes a sensor diaphragm having a rear-side pressure connection and at least one dielectrically insulated piezo resistor for signal acquisition. Furthermore, the pressure-sensor element has a front-side reference volume, which is sealed by a cap structure spanning the sensor diaphragm. The cap structure is realized as thin-film structure.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: April 30, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Marcus Ahles, Hubert Benzel
  • Publication number: 20130098159
    Abstract: A semiconductor filter is provided to operate in conjunction with a differential pressure transducer. In one embodiment, a method comprises receiving, at a filter, a pressure, wherein the pressure includes a static pressure component and a dynamic pressure component; filtering, by the filter, at least the dynamic pressure component of the pressure; outputting, from the filter, a filtered pressure; receiving, at a first surface of a diaphragm, the pressure; receiving, at a second surface of the diaphragm, the filtered pressure, wherein the second surface of the diaphragm is operatively coupled to the filter; and measuring, at a sensor operatively coupled to the diaphragm, a difference between the pressure and the filtered pressure.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 25, 2013
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: Kulite Semiconductor Products, Inc., Nora Kurtz
  • Patent number: 8418544
    Abstract: A bending transducer for generating electrical energy from deformations includes at least: one deformable support device, on which a first connecting electrode and a second connecting electrode are formed, one piezoelectric element attached to the support device having a least one first electrode and one second electrode, the first connecting electrode being contacted with the first electrode of the piezoelectric element, and the second connecting electrode being contacted with the second electrode of the piezoelectric element. The first connecting electrode and/or the second connecting electrode are applied as a structured conductive layer to the support device in at least some areas.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: April 16, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Michael Hortig, Thorsten Pannek, Gustav Klett, Marian Keck
  • Patent number: 8393222
    Abstract: An absolute piezo-resistive pressure sensor system and method employing multiple pressure sensing elements operating simultaneously to detect pressure. Both pressure sensing elements being subject to a common reference pressure within a sealed cavity. The first pressure sensing element detecting an offset voltage resulting from the progressive release of mechanical stress at an assembly interface between the sensing element and a base plate on which the sensing elements are assembled. Electronic circuitry compensates the pressure measured by the second pressure sensing element based on the offset voltage detected by the first pressure sensing element.
    Type: Grant
    Filed: February 27, 2010
    Date of Patent: March 12, 2013
    Assignee: Codman Neuro Sciences Sárl
    Inventor: Rocco Crivelli
  • Publication number: 20130055821
    Abstract: The present disclose relates to sensor including multiple sensor elements. In some cases, the multiple sensor elements may be mounted on a single substrate and each may be configured to sense a single parameter with different resolutions, sensitivities, and/or ranges, and/or the multiple parameters. In one example, multiple pressure sensing die may be mounted in a single package, and each may be configured as a differential pressure sensor, an absolute pressure sensor, and/or a gauge pressure sensor, as desired.
    Type: Application
    Filed: September 6, 2011
    Publication date: March 7, 2013
    Inventors: Ian Bentley, Lamar Floyd Ricks
  • Patent number: 8381596
    Abstract: Pressure sensors having a topside boss and a cavity formed using deep reactive-ion etching (DRIE) or plasma etching. Since the boss is formed on the topside, the boss is aligned to other features on the topside of the pressure sensor, such as a Wheatstone bridge or other circuit elements. Also, since the boss is formed as part of the diaphragm, the boss has a reduced mass and is less susceptible to the effects of gravity and acceleration. These pressure sensors may also have a cavity formed using a DRIE or plasma etch. Use of these etches result in a cavity having edges that are substantially orthogonal to the diaphragm, such that pressure sensor die area is reduced. The use of these etches also permits the use of p-doped wafers, which are compatible with conventional CMOS technologies.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 26, 2013
    Assignee: Silicon Microstructures, Inc.
    Inventors: Holger Doering, Rainer Cholewa
  • Patent number: 8375799
    Abstract: Methods and devices for adhesively bonding a sensor die to a substrate are described. In some cases, a sensor assembly may include a pressure sensor die mounted to a substrate with an adhesive. The pressure sensor die may be fabricated to include a back-side having one or more adhesion features (e.g. recesses or indentations), which increase the surface area of the pressure sensor die that is in contact with the adhesive, to thereby increase the adhesion force therebetween. In some cases, the one or more adhesion features may define a non-planar interface between the pressure sensor die and the adhesive which, in some instances, may reduce the formation and/or propagation of cracks in the adhesive, which also may help increase the adhesion force therebetween.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: February 19, 2013
    Assignee: Honeywell International Inc.
    Inventors: Alistair David Bradley, Lamar Floyd Ricks, Richard Alan Davis
  • Patent number: 8371174
    Abstract: A micro-deformable piezoresistive material is provided, including a hard plastic body, a micro-deformable rough texture surface, and a plurality of conductive particles. The micro-deformable rough texture surface is formed on a side of the hard plastic body, wherein the maximum deformation of the rough texture surface is far less than the thickness of the hard plastic body. Additionally, the conductive particles are evenly dispersed in the plastic body.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: February 12, 2013
    Assignee: Universal Cement Corporation
    Inventors: Yi-Ling Chen, Chih Sheng Hou, Chia-Hung Chou
  • Patent number: 8371160
    Abstract: A piezoresistive sensor assembly is provided that has a flex circuit having at least one air flow aperture formed therein. A sensor die is coupled to an absolute support and the flex circuit. The sensor die has a diaphragm that deflects in response to air flow that flows through the air flow aperture and is incident on the diaphragm. The sensor die includes one or more gages positioned on or in the diaphragm.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: February 12, 2013
    Assignee: Meggitt (San Juan Capistrano), Inc.
    Inventors: Tom Kwa, Don L. Danielson
  • Patent number: 8359927
    Abstract: A method and apparatus are described for fabricating an exposed differential pressure sensor (30) which protects interior electrical components (37) formed on a topside surface of a differential pressure sensor transducer die (31) from corrosive particles using a molding compound (39), but which vents both sides of a piezoresistive transducer sensor diaphragm (33) through a first vent hole (42) formed in an exposed die flag (36) and a second vent hole (38) formed in an exposed cap structure (33), enabling the sensor diaphragm (33) to sense differential pressure variations directly or indirectly through a protective gel.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: January 29, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Stephen R. Hooper, James D. MacDonald, William G. McDonald
  • Patent number: 8353215
    Abstract: A fluid pressure differential measuring instrument comprises a diaphragm that is displaced by a pressure differential between two environmental pressure zones. Diaphragm displacement induced by the pressure differential between the two zones is converted to a torsional strain upon a cylindrical element in a third environmental zone. The torsional strain is measured by calibrated electrical sensing means positioned physically in the third environmental zone.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: January 15, 2013
    Inventor: Leroy C. Delatorre
  • Publication number: 20120318068
    Abstract: There is disclosed a high pressure sensing header which is relatively insensitive to mounting torque. The header comprises an outer torque isolating shell which surrounds an inner “H” section header. The inner “H” section header has a thick diaphragm and is surrounded by the torque isolating shell which is secured to the “H” section header at a peripheral flange of the “H” section header. In this manner when the header is installed, the installation force is absorbed by the outer shell and there is no installation force or torque exhibited by the inner “H” section which will respond only to stress due to pressure. The torque isolating shell also contains a top surface which has a counterbore that accommodates a crush ring. When the unit is installed, the crush ring is crushed against an installation wall to enable the inner header to receive pressure without experiencing significant installation force.
    Type: Application
    Filed: August 27, 2012
    Publication date: December 20, 2012
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: ANTHONY D. KURTZ, Adam Kane, Boaz Kochman
  • Publication number: 20120297885
    Abstract: A preloaded pressure sensor module (PPSM) is disclosed, where the PPSM outputs a linear Conductivity Response versus Pressure Force input. The PPSM has a convex or concave profile which is prepared by pressing a flat pressure sensor device onto to a convex or concave base respectively so that the pressure sensitive layer inside the sensor module is bent and displays a preloaded effect.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Applicant: UNIVERSAL CEMENT CORPORATION
    Inventors: Chih-Sheng HOU, Yann-Cherng CHERN
  • Patent number: 8302483
    Abstract: In a pressure sensing element made of piezoresistors formed into a silicon substrate, thermally-induced stresses on the piezoresistors and thermally-induced voltage offsets can be reduced by thinning the substrate prior to forming the resistors and then forming the resistors into the thinned-out recess. Forming a circular or disk-shaped recess in the substrate and then forming the resistors therein is believed to cause thermally-induced stresses to be evenly distributed and/or cancelled out on all four piezoresistors of a Wheatstone bridge circuit.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: November 6, 2012
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Jen-Huang Albert Chiou, Shiuh-Hui Steven Chen
  • Patent number: 8297127
    Abstract: A pressure sensor is disclosed that may include a minimum amount of fluid coupling packaging. In one illustrative embodiment, a pressure sensor assembly may include a pressure sensor die having a front side and a back side, and a pressure sensing diaphragm. The pressure sensor assembly may further include a housing having a mounting side and a sensing side. The sensing side may define a pressure port. The pressure sensor die may be secured to the housing such that the pressure sensing diaphragm is exposed to the pressure port, and such that front side of the pressure sense die is accessible from outside of the housing.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: October 30, 2012
    Assignee: Honeywell International Inc.
    Inventors: Richard Wade, Ian Bentley
  • Patent number: 8297124
    Abstract: A pressure sensor includes: a housing; a pressure receiver which seals an opening of the housing and transmits pressure from outside the housing to the inside of the housing; and a pressure sensing element having a pressure sensing portion and a pair of base portions which are respectively coupled to both ends of the pressure sensing portion. In the pressure sensor, a force detecting direction is set to be a detection axis, a line connecting the pair of base portions and a displacement direction of the pressure receiver are arranged in parallel, one of the base portions is coupled to a central region, which is displaced by the pressure, of the pressure receiver, and the other of the base portions is coupled to a marginal region, which is at a fixing side, of the pressure receiver through a connecting member.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: October 30, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Jun Watanabe, Masanobu Fujisaki, Hisao Motoyama
  • Patent number: 8297125
    Abstract: A differential pressure sensor includes two pressure ports for allowing media to pass into contact with both the top and bottom sides of the diaphragm. A silicon pressure sensor die can be attached between the pressure ports using die attach materials for sensing a differential pressure between the media to evaluate media differential pressure. A cap with an opening can be placed on topside of a diaphragm formed in the silicon pressure die. The silicon pressure die can include die bond pads that can be electrically connected to the diaphragm to output electrical signals. The cap can seal the die bond pads from the harsh media and route the electrical signals therein. Media can pass through the opening in the cap such that a media path to the top of the diaphragm is not exposed to the die bond pads of the silicon pressure die to ensure long-term sensor reliability.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: October 30, 2012
    Assignee: Honeywell International Inc.
    Inventors: Carl Stewart, Richard Alan Davis, Gilberto Morales
  • Publication number: 20120266684
    Abstract: Apparatus and related fabrication methods are provided for a sensor device. The sensor device includes a sensor structure including a first portion having a sensing arrangement formed thereon and a second structure. A sealing structure is interposed between the sensor structure and the second structure, wherein the sealing structure surrounds the first portion of the sensor structure. The sealing structure establishes a fixed reference pressure on a first side of the first portion, and an opposing side of the first portion is exposed to an ambient pressure.
    Type: Application
    Filed: April 21, 2011
    Publication date: October 25, 2012
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Stephen R. Hooper, Dwight L. Daniels, James D. MacDonald, William G. McDonald, Chunlin C. Xia
  • Publication number: 20120234098
    Abstract: A gage pressure transducer comprising a first pressure sensing assembly exposed to a main pressure and a second pressure sensing assembly exposed to a reference pressure. The pressure sensing assemblies comprise half-bridge sensors and means for using an alignment glass plate with each sensor which reduces the amount of oil required for operation, which consequently reduces the back pressures caused by large volumes of oil. The pressure sensor assemblies are hermetically sealed using glass frits, therefore enabling the gage pressure transducer to robustly and accurately measure pressure in harsh environments.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 20, 2012
    Applicant: Kulite Semiconductor Products, Inc.
    Inventors: ANTHONY D. KURTZ, Nora Kurtz
  • Patent number: 8261617
    Abstract: A micro semiconductor-type pressure sensor and a manufacturing method thereof are provided. The micro semi-conductor-type pressure sensor is implemented by etching a cavity-formation region of a substrate to form a plurality of trenches, oxidizing the plurality of trenches through a thermal oxidation process to form a cavity-formation oxide layer, forming a membrane-formation material layer on upper portions of the cavity-formation oxide layer and the substrate, forming a plurality of etching holes in the membrane-formation material layer, removing the cavity-formation oxide layer through the plurality of etching holes to form a cavity buried in the substrate, forming a membrane reinforcing layer on an upper portion of the membrane-formation material layer to form a membrane for closing the cavity, and forming sensitive films made of a piezoresisive material on an upper portion of the membrane.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: September 11, 2012
    Assignee: Electronics and Telecomunications Research Institute
    Inventors: Chang Auck Choi, Chang Han Je, Gunn Hwang, Youn Tae Kim, Sung Hae Jung, Myung Lae Lee, Sung Sik Lee, Seok Hwan Moon
  • Patent number: 8256301
    Abstract: A micromechanical pressure sensing device includes a silicon support structure, which is configured to provide a plurality of silicon support beams. The device further includes one or more diaphragms attached to and supported by the support beams, and at least one piezoresistive sensing device, which is buried in at least one of the support beams. The piezoresistive sensing device is arranged to sense a strain induced in the silicon support structure, the strain being induced by a fluid in contact with the one or more diaphragms, to determine the pressure acting on the one or more diaphragms.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: September 4, 2012
    Assignee: Infineon Technologies AG
    Inventor: Henrik Jakobsen
  • Publication number: 20120216622
    Abstract: In a pressure sensing element made of piezoresistors formed into a silicon substrate, thermally-induced stresses on the piezoresistors and thermally-induced voltage offsets can be reduced by thinning the substrate prior to forming the resistors and then forming the resistors into the thinned-out recess. Forming a circular or disk-shaped recess in the substrate and then forming the resistors therein is believed to cause thermally-induced stresses to be evenly distributed and/or cancelled out on all four piezoresistors of a Wheatstone bridge circuit.
    Type: Application
    Filed: February 25, 2011
    Publication date: August 30, 2012
    Applicant: CONTINENTAL AUTOMOTIVE SYSTEMS, INC.
    Inventors: Jen-Huang Albert Chiou, Shiuh-Hui Steven Chen
  • Patent number: 8245575
    Abstract: A piezoresistive pressure sensor that uses a protective gel to protect the piezoresistive device is susceptible to lead wire failure by vibration-induced waves in the protective gel. Such waves can be reduced and the device made more robust by the use of three-dimensional structures in the gel, which are configured to reduce and/or re-direct vibration-induced pressure waves in the gel. The structures are referred to as “breakwaters” in that they protect lead wires and lead wire connections from wave fronts and the damage that wave-induced pressure on the lead wires causes.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: August 21, 2012
    Inventors: Jen-Huang Albert Chiou, Jakob Schillinger, David Manfredi
  • Patent number: 8230745
    Abstract: Method and system for a wet/wet differential pressure sensor based on microelectronic packaging process. A top cap with a hole can be attached to a topside of a MEMS-configured pressure sense die with a pressure sensing diaphragm in order to allow sensed media to come in contact with the topside of the pressure sensing diaphragm. An optional constraint with a hole for stress relief can be attached to a backside of the pressure sense die. Adhesive and/or elastomeric seals and/or solder can be utilized to seal the pressure sense die allowing sensed media to come in contact with both sides of the pressure sensing diaphragm without coming into contact with wirebonds and other metallized surfaces. The MEMS-configured pressure sense die can also be bonded to a substrate with standard die attach materials. Such microelectronic packaging processes yield a high performance and cost effective solution thereby providing wet-wet pressure sensing capability.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: July 31, 2012
    Assignee: Honeywell International Inc.
    Inventors: Paul Rozgo, Alistair Bradley, Ryan S. Jones, Lamar F. Ricks
  • Patent number: 8230743
    Abstract: A pressure sensor is disclosed that can help isolate the sensor and/or sensor components from a media to be sensed and/or can help reduce sensor damage caused by harsh operating environments. In one illustrative embodiment, the pressure sensor may include a substrate having a pressure sensing die mounted on a first side of the substrate, a first housing member defining a first cavity around the pressure sensing die, and a second housing member defining a second cavity on the second side of the substrate. A passivating agent, such as a gel, can be positioned in both the first cavity and the second cavity to transmit pressure from the media to a pressure sensing element (e.g. diaphragm) while isolating the pressure sensing element and other components from the media. In some cases, the first housing member and/or the second housing member may include an opening for exposing the passivating agent to the media.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: July 31, 2012
    Assignee: Honeywell International Inc.
    Inventors: Richard Wade, Ian Bentley
  • Publication number: 20120174680
    Abstract: A pressure sensor is disclosed that may include a minimum amount of fluid coupling packaging. In one illustrative embodiment, a pressure sensor assembly may include a pressure sensor die having a front side and a back side, and a pressure sensing diaphragm. The pressure sensor assembly may further include a housing having a mounting side and a sensing side. The sensing side may define a pressure port. The pressure sensor die may be secured to the housing such that the pressure sensing diaphragm is exposed to the pressure port, and such that front side of the pressure sense die is accessible from outside of the housing.
    Type: Application
    Filed: January 7, 2011
    Publication date: July 12, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Richard Wade, Ian Bentley