Loose Particulate Mixture (i.e., Composition) Containing Metal Particles Patents (Class 75/255)
  • Patent number: 7252698
    Abstract: The present invention provides nanoprisms etched to generate triangular framework structures. These triangular nanoframes possess no strong surface plasmon bands in the ultraviolet or visible regions of the optical spectrum. By adding a mild reducing agent, metal ions remaining in solution can be reduced, resulting in metal plating and reformation of nanoprisms. The extent of the backfilling process can be controlled, allowing the formation of novel nanoprisms with nanopores. This back-filling process is accompanied by a regeneration of the surface plasmon bands in the UV-visible spectrum.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: August 7, 2007
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Gabriella Métraux, YunWei Charles Cao, Rongchao Jin
  • Publication number: 20070172380
    Abstract: A metal powder becoming a raw material for obtaining a green compact by compacting, the metal powder having a plurality of accessible surfaces allowing for surface contact of adjacent metal powders with each other when filled, and a method for producing a green compact by compacting the metal powder, the method comprising the steps of: a charging step of charging the metal powder into a predetermined die, a compacting step of filling the metal powder in the die, and a compacting step of compacting the metal powder to obtain the green compact.
    Type: Application
    Filed: January 23, 2007
    Publication date: July 26, 2007
    Applicant: DENSO Corporation
    Inventors: Hirohiko Tatsumoto, Masayuki Nashiki
  • Patent number: 7244286
    Abstract: A copper alloy powder for an electrically conductive paste is provided, which is characterized in that the copper alloy powder comprises 80 to 99.9 mass % of Cu and 0.1 to 20 mass % of one or two elements selected from the group consisting of Ta and W and has an average particle size of 0.1 to 1 ?m. This copper alloy powder has a higher starting temperature for sintering, higher oxidation resistance and better heat resistance than a copper powder.
    Type: Grant
    Filed: November 28, 2002
    Date of Patent: July 17, 2007
    Assignee: Kawatetsu Mining Co., Ltd
    Inventor: Kensuke Matsuki
  • Publication number: 20070144614
    Abstract: The present invention provides a compound powder for making magnetic powder cores, a kind of magnetic powder core, and a process for making them. Said compound powder is a mixture composing of powder A and powder B, the content of powder A is 50-96 wt % and the content of powder B is 4-50 wt %, wherein powder A is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder; powder B bears different requirement characteristics from powder A and is at least one selected from iron powder, Fe—Si powder, Fe—Si—Al powder, Fe-based nanocrystalline powder, Fe-based amorphous powder, Fe—Ni powder and Fe—Ni—Mo powder. Said powder B adopts Fe-based amorphous soft magnetic powder with good insulation property as insulating agent and thus core loss of magnetic powder core decreases.
    Type: Application
    Filed: December 14, 2006
    Publication date: June 28, 2007
    Inventors: Zhichao Lu, Deren Li, Shaoxiong Zhou, Caowei Lu, Feng Guo, Jianliang Li, Jun Wang, Tongchun Zhao, Liang Zhang
  • Patent number: 7226493
    Abstract: The present invention relates to a method for grain refining of steel. A grain refining alloy having a composition FeXY where X is one or more elements selected from the group consisting of Cr, Mn, Si, Ni, and Mo and where Y is one or more oxide and/or sulphide and or nitride and/or carbide forming elements selected from the group consisting of Ce, La, Nd, Pr, Ti, Al, Zr, Ca, Ba, Sr, Mg, C and N where X is between 0.001 and 99% by weight based on the weight of the alloy and where Y is between 0.001 and 50% by weight of the alloy, said alloy additionally containing between 0.001 and 2% by weight of oxygen and/or between 0.001 and 2% by weight of sulphur, said alloy containing at least 103 inclusion particles per mm3 consisting of oxides and/or sulphides and/or carbides and/or nitrides of one or more of the Y elements and/or one or more of the X elements Cr, Mn and Si in addition to Fe, said inclusion particles having a mean diameter of less than 10 ?m, is added to molten steel in an amount of between 0.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: June 5, 2007
    Assignee: Elkem ASA
    Inventors: Oystein Grong, Ole Svein Klevan
  • Patent number: 7211125
    Abstract: An alloyed steel powder for metal injection molding that eliminates the problems of decreased product strength and difficulty of temperature control which exist in conventional alloys for sintering and that improves productivity of the sintering furnace is provided, together with a sintered body thereof. This alloyed steel powder for metal injection molding consists, as mass percentages, of 0.1 to 1.8% C, 0.3 to 1.2% Si, 0.1 to 0.5% Mn, 11 to 18% Cr, 2 to 5% Nb and the remainder Fe and unavoidable impurities, and which may further comprise 5.0% or less of at least one of Mo, V and W, or a sintered body (wherein C is 0.1 to 1.7%) of these powders. The alloyed steel powder for metal injection molding of the present invention results in a sintered body with a constant sintered density over a 50° C. range of sintering temperatures, thereby facilitating sintering temperature control and improving productivity.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: May 1, 2007
    Assignee: Mitsubishi Steel Mfg. Co., Ltd.
    Inventors: Yuji Soda, Michitaka Aihara
  • Patent number: 7198657
    Abstract: A metal powder produced by a process which comprises directing at least three successive gas beams at a molten metal stream inside an atomization chamber, the at least three gas beams being oriented in different directions. This abstract is neither intended to define the invention disclosed in this specification nor intended to limit the scope of the invention in any way.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: April 3, 2007
    Assignee: Boehler Edelstahl GmbH & Co. KG
    Inventor: Claes Tornberg
  • Patent number: 7192465
    Abstract: A niobium powder for capacitors, having an average particle size of from 10 to 500 ?m, which is a granulated powder having an oxygen content of 3 to 9% by mass; a sintered body thereof; and a capacitor fabricated from the sintered body as one part electrode, a dielectric material formed on the surface of the sintered body, and another part electrode provided on the dielectric material. A capacitor manufactured from the sintered body of a niobium powder of the present invention is prevented from deterioration in the performance for a long period of time and has high reliability.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: March 20, 2007
    Assignee: Showa Denko K.K.
    Inventors: Kazumi Naito, Nobuyuki Nagato
  • Patent number: 7189277
    Abstract: Molding compositions and forming processes for normally rust-prone iron-based powders, and articles produced therefrom. Metal alloy systems that can be successfully formed using the processes of the invention, include elemental iron and iron alloys including low and medium alloy steels, tool steels and a number of specialty iron-base alloys.
    Type: Grant
    Filed: August 20, 2004
    Date of Patent: March 13, 2007
    Inventor: Robert Craig Morris
  • Patent number: 7186289
    Abstract: There is provided a nickel powder suitable as conductive particles for use in conductive paste and conductive resin, that is inexpensive, has superior weather resistance, low resistivity when kneaded with resin, and is stable when used in the long-term, and a production method therefor. A nickel powder is produced by a two stage reduction and precipitation process from an aqueous solution containing a bivalent nickel salt, wherein an average primary particle diameter is 0.2 ?m to 2.0 ?m as measured with a scanning electron microscope (SEM), wherein an average secondary particle diameter is 8 ?m to 50 ?m according to laser particle size distribution measurement, wherein a tap density is 0.5 g/ml to 2.0 g/ml, wherein a cobalt content is 1 to 20 weight %. The cobalt may be contained in only the surface layer of the nickel powder at a content of 1 weight % to 40 weight %.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: March 6, 2007
    Assignee: Sunitomo Metal Mining Co., Ltd.
    Inventors: Toshihiro Kato, Shuji Okada, Shoji Futaki
  • Patent number: 7182801
    Abstract: Provided are non-magnetic nickel powders and a method for preparing the same. The nickel powders have non-magnetic property and a HCP crystal structure. The method include (a) dispersing nickel powders with a FCC crystal structure in an organic solvent to prepare a starting material dispersion, and (b) heating the starting material dispersion to transform the nickel powders with the FCC crystal structure to the nickel powders with the HCP crystal structure. The nickel powders do not exhibit magnetic agglomeration phenomenon. Therefore, the pastes for inner electrode formation in various electronic devices, which contain the nickel powders of the present invention, can keep the well-dispersed state. Also, inner electrodes made of the nickel powders can have a low impedance value even at high frequency band.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: February 27, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Soon-ho Kim, Jae-young Choi, Tae-wan Kim, Eun-bum Cho, Yong-kyun Lee
  • Patent number: 7175688
    Abstract: A Ni—Fe based alloy powder of the present invention contains not less than 90% by a combined mass of Ni and Fe and homogeneously has particles having an average particle diameter from 0.1 to 1 ?m, and an average value of mass ratio Fe/(Fe+Ni) from 15% to 25% both inclusive, wherein the ratio of a maximum value X and a minimum value Y of Fe/(Fe+Ni), which are found at individual points in the region ranging from the center of any particle of the alloy powder to locations apart by 0.9 fold of the particle radius therefrom, X/Y is from 1 to 2. By producing a sintered part using this Ni—Fe based alloy powder as a raw material powder, it is possible to obtain electronic circuit parts which are homogenous and have high magnetic permeability.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: February 13, 2007
    Assignee: Kawatetsu Mining Co., Ltd.
    Inventor: Kensuke Matsuki
  • Patent number: 7172642
    Abstract: Magnetic metal particles containing iron as a main component, comprising cobalt in an amount of usually 20 to 50 atm %, calculated as Co, based on whole Fe, aluminum in an amount of usually 3 to 15 atm %, calculated as Al, based on whole Fe and a rare earth element in an amount of usually 3 to 20 atm %, calculated as rare earth element, based on whole Fe, and having an average major axis diameter of usually 0.02 to 0.065 ?m, preferably from 0.02 to less than 0.05 ?m, a coercive force of usually 159.2 to 222.9 kA/m (2,000 to 2,800 Oe), a soluble Na content of usually not more than 30 ppm, a soluble Ca content of usually not more than 100 ppm, and an oxidation stability ??s of usually not more than 10%.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: February 6, 2007
    Assignee: Toda Kogyo Corporation
    Inventors: Akinori Yamamoto, Yasutaka Ota, Haruki Kurokawa, Masaaki Maekawa
  • Patent number: 7169209
    Abstract: Disclosed are metal alloy particles containing substantially no lead, each exhibiting a plurality of different melting points including an original lowest melting point (a) and a highest melting point, wherein, when the metal alloy particles are subjected to differential scanning calorimetry (DSC), at least one exothermic peak is observed in the DSC, wherein each of the metal alloy particles exhibits the original lowest melting point (a) at least at a surface portion thereof, and wherein, when each metal alloy particle is heated at a temperature equal to or higher than the original lowest melting point (a) to melt at least a surface portion of each metal alloy particle, followed by cooling to room temperature to thereby solidify the melted portion of each metal alloy particle, the resultant solid metal alloy particle having experienced the melting and solidification exhibits an elevated lowest melting point (a?) higher than the original lowest melting point (a).
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: January 30, 2007
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Shuichi Nakata, Yasuki Shimamura
  • Patent number: 7163569
    Abstract: An object of the present invention is to provide a low-alloyed steel powder for sintering that can yield a sintered compact with high density and uniform characteristics, and to provide a sintered compact having such characteristics. The present invention is a raw powder for sintering, comprising Fe as its primary component and also comprising 0.8 wt % or less of C, 0.05 to 1.0 wt % of Si, 1.0 wt % or less of Mn, and 1.0 to 10.0 wt % or less of Ni, wherein the mean grain size of the raw powder for sintering is 8.5 ?m or less; and is also a granulated powder for sintering obtained by granulating the raw powder for sintering by means of a binder.
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: January 16, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Hisataka Toyoshima, Atsushi Watanabe
  • Patent number: 7156893
    Abstract: Methods of forming niobium powders and other metal powders are described. The method involves milling the metal powders at elevated temperatures and in the presence of at least one liquid solvent. The methods of the present invention have the ability to reduce DC leakage and/or increase capacitance capabilities of metal powders when formed into capacitor anodes. The present invention further has the ability to significantly reduce the milling time necessary to form high surface area metal powders and leads to reducing the amount of contaminants in the metal powders. Metal powders such as niobium powders having reduced amount of contaminants and/or having DC leakage or capacitance capabilities are also described. A process is further described for forming a flaked metal by wet-milling a metal powder into a flaked metal wherein at least one liquid fluorinated fluid is present during the wet-milling process.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: January 2, 2007
    Assignee: Cabot Corporation
    Inventors: Kurt A. Habecker, James A. Fife
  • Patent number: 7153339
    Abstract: Metallurgical powder compositions of the present invention include an iron based powder combined with a master alloy powder, as a mechanical property enhancing powder. The addition of master alloy powders has been found to enhance the mechanical properties of the final, sintered, compacted parts made from metallurgical powder compositions, especially at low sintering temperatures. Metallurgical powder compositions include at least about 80 weight percent of an iron-based metallurgical powder and from about 0.10 to about 20 weight percent of a master alloy powder. Master alloy powders include iron and from about 1.0 to about 40 weight percent chromium, and from about 1.0 to about 35 weight percent silicon, based on the weight of the master alloy powder.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: December 26, 2006
    Assignee: Hoeganaes Corporation
    Inventors: Bruce Lindsley, Patrick King, Christopher T. Schade
  • Patent number: 7150776
    Abstract: High purity refractory metals, valve metals, refractory metal oxides, valve metal oxides, or alloys thereof suitable for a variety of electrical, optical and mill product/fabricated parts usages are produced from their respective oxides by metalothermic reduction of a solid or liquid form of such oxide using a reducing agent that establishes (after ignition) a highly exothermic reaction, the reaction preferably taking place in a continuously or step-wise moving oxide such as gravity fall with metal retrievable at the bottom and an oxide of the reducing agent being removable as a gas or in other convenient form and unreacted reducing agent derivatives being removable by leaching or like process.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: December 19, 2006
    Assignee: H.C. Starck Inc.
    Inventors: Leonid N. Shekhter, Terrance B. Tripp, Leonid L. Lanin, Anastasia M. Conlon, Howard V. Goldberg
  • Patent number: 7149074
    Abstract: Methods to at least partially reduce a niobium oxide are described wherein the process includes heat treating the niobium oxide in the presence of a getter material and in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the getter material, and for a sufficient time and at a sufficient temperature to form an oxygen reduced niobium oxide. Niobium oxides and/or suboxides are also described as well as capacitors containing anodes made from the niobium oxides and suboxides.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: December 12, 2006
    Assignee: Cabot Corporation
    Inventors: Jonathon L. Kimmel, Yongjian Qiu
  • Patent number: 7144440
    Abstract: A hard particle having improved adhesion to a base material, a wear-resistant iron-base sintered alloy, a method of manufacturing the same, and a valve seat are provided. The hard particle comprises 20% to 70% Mo by mass, 0.2% to 3% C by mass, 1% to 15% Mn by mass, with the remainder being unavoidable impurities and Co. The sintered alloy comprises, as a whole, 4% to 35% Mo by mass, 0.2% to 3% C by mass, 0.5% to 8% Mn by mass, 3% to 40% Co by mass, with the remainder being unavoidable impurities and Fe. The alloy comprises a base material component comprising 0.2% to 5% C by mass, 0.1% to 10% Mn by mass, with the remainder being unavoidable impurities and Fe. The alloy further comprises a hard particle component comprising 20% to 70% Mo by mass, 0.2% to 3% C by mass, 1% to 15% Mn by mass, with the remainder being unavoidable impurities and Co. The hard particles are dispersed in the base material in an areal ratio of 10% to 60 %.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: December 5, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kimihiko Ando
  • Patent number: 7141528
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: November 28, 2006
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Paolina Atanassova, Klaus Kunze, Paul Napolitano, David Dericotte
  • Patent number: 7141185
    Abstract: Conductive ink compositions which can be cured to highly conductive metal traces by means of “chemical welding” include additives which reduce the curing temperatures for use with low-temperature substrates. Conductive ink compositions can be deposited on a substrate coated with a cure temperature reducing agent to reduce the curing temperatures.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: November 28, 2006
    Assignee: Parelec, Inc.
    Inventors: Brian F. Conaghan, Paul H. Kydd, David L. Richard
  • Patent number: 7135054
    Abstract: The invention is a novel photo-induced method for converting large quantities of silver nanospheres into nanoprisms, the nanoprisms formed by this method and applications in which the nanoprisms are useful. Significantly, this light driven process results in a colloid with a unique set of optical properties that directly relate to the nanoprism shape of the particles. Theoretical calculations coupled with experimental observations allow for the assignment of the nanoprism plasmon bands and the first identification of two distinct quadrupole plasmon resonances for a nanoparticle. Finally, unlike the spherical particles from which they derive and which Rayleigh light scatter in the blue, these nanoprisms exhibit scattering in the red, permitting multicolor diagnostic labels based not only on nanoparticle composition and size but also on shape.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: November 14, 2006
    Assignee: Northwestern University
    Inventors: Rongchao Jin, Yunwei Cao, Chad A. Mirkin
  • Patent number: 7132006
    Abstract: An object of the present invention is to provide an antimony-containing niobium sintered body for a capacitor having a small specific leakage current value, an antimony-containing niobium powder for use in the sintered body, and a capacitor using the sintered body. In the present invention, an antimony-containing niobium powder having an antimony content of preferably about 0.1 to about 10 mol % and an average particle size of preferably about 0.2 to about 5 ?m is used. By using this antimony-containing niobium powder, a sintered body and a capacitor are constructed.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: November 7, 2006
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Kazuhiro Omori, Kazumi Naito
  • Patent number: 7132385
    Abstract: The present invention is related to a high loading supported carbon catalyst having Pt or a Pt alloy supported into an electrically conductive carbon support. Specifically, in the carbon supported catalyst, a loading of the supported Pt or Pt alloy is in the range of about 50% to about 60% by weight, an average particle size is about 1 nm to about 3 nm, and a total specific surface area of the carbon supported catalyst is greater than about 200 m2/g. The carbon supported catalyst may improve the performance of a fuel cell because the catalytic metal particles have a small size and a high degree of dispersion. Also, a carbon supported catalyst having very fine catalyst particles uniformly dispersed may be prepared even at a high loading may be prepared.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: November 7, 2006
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Chan-ho Pak
  • Patent number: 7132005
    Abstract: Novel forms of molybdenum metal, and apparatus and methods for production thereof. Novel forms of molybdenum metal are preferably characterized by a surface area of substantially 2.5 m2/g. Novel forms of molybdenum metal are also preferably characterized by a relatively uniform size.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: November 7, 2006
    Assignee: Cyprus Amax Minerals Company
    Inventors: Mohamed H. Khan, Joel A. Taube
  • Patent number: 7122069
    Abstract: A Mo—Cu composite powder is provided which is comprised of individual finite particles each having a copper phase and a molybdenum phase wherein the molybdenum phase substantially encapsulates the copper phase. The composite powder may be consolidated by conventional P/M techniques and sintered without copper bleedout according to the method described herein to produce Mo—Cu pseudoalloy articles having very good shape retention, a high sintered density, and a fine microstructure.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: October 17, 2006
    Assignee: Osram Sylvania Inc.
    Inventors: Leonid P Dorfman, Michael J. Scheithauer, David L. Houck, Anna T. Spitsberg, Jeffrey N. Dann
  • Patent number: 7118611
    Abstract: This invention uses nanoparticle mixtures to broaden the range of economic materials, improve performance across this broader range, and thereby lower costs of hydride and other storage systems. Nanoparticles can have dramatically different mechanical, chemical, electrical, thermodynamic, and/or other properties than their parent (precursor) materials. Because of this fundamental characteristic, nanophase materials can greatly improve the range of possibilities of materials selection, performance, cost, and practicality for hydride storage systems, advancing the early commerciality of such systems for hydrogen fuel cells or other applications. Among such hydrogen storage improvements are cheaper and better-performing metals, alloys, and/or compounds; lower weight; and reduced storage volumes.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: October 10, 2006
    Inventors: David G. Snow, Charles J. Brumlik
  • Patent number: 7108734
    Abstract: The invention concerns a silicon powder for making alkyl- or aryl-halogenosilanes, with particle-size distribution less than 350 ?m, and containing less than 3% and preferably less than 2% of particles having a size less than 5 ?m. Said powder enables to improve efficiency of synthesis reaction.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: September 19, 2006
    Assignee: Rhodia Silicones SAS
    Inventor: Thomas Margaria
  • Patent number: 7087550
    Abstract: A combination comprising a bed of a particulate copper-containing catalyst bed, a guard bed in the form of shaped units formed from lead carbonate and/or basic lead carbonate particles having an average (by volume) particle size below 100 ?m.
    Type: Grant
    Filed: January 22, 2002
    Date of Patent: August 8, 2006
    Assignee: Johnson Matthey PLC
    Inventor: Michael John Watson
  • Patent number: 7066975
    Abstract: An object of the present invention is to provide nitrogen-containing metallic powder at high productivity, which powder contains a metal such as niobium or tantalum containing nitrogen uniformly, and enables production of an anode electrode that has high specific capacitance and low leakage current and that exhibits excellent reliability for a prolonged period of time. There is provided nitrogen-containing metallic powder which is a solid solution containing 50–20,000 ppm nitrogen, in which the metal that constitutes the metallic powder is niobium or tantalum. The nitrogen-containing metallic powder is produced through the process in which while a metallic compound is reduced with a reducing agent, a nitrogen-containing gas is introduced into a reaction system to thereby form metal, and nitrogen is simultaneously incorporated into metal.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: June 27, 2006
    Assignee: Cabot Supermetals, K.K.
    Inventors: Yukio Oda, Tomoo Izumi, Yoshikazu Noguchi
  • Patent number: 7060120
    Abstract: To produce a hydrogen absorbing alloy powder which is an aggregate of alloy particles each including a metal matrix and added-components, an aggregate of metal matrix particles and an aggregate of added-component particles are used, and mechanical alloying is carried out. In this case, the relationship between the particle size D of the metal matrix particles and the particle size d of the added-component particles is set at d?D/6. Thus, the milling time can be shortened remarkably.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: June 13, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Izuru Kanoya, Takanori Suzuki, Mitsuya Hosoe, Hajime Goto
  • Patent number: 7053126
    Abstract: A process for producing a noble-metal type fine-particle dispersions, having the steps of an agglomeration step of adding a hydrazine solution to a dispersion in which primary particles of noble-metal type fine particles have been made to stand monodisperse in a solvent, to destabilize the dispersibility of the noble-metal type fine particles in the dispersion and cause the plurality of primary particles in the noble-metal type fine particles to agglomerate in the form of chains to obtain a dispersion of chainlike agglomerates; and a stabilization step of adding a hydrogen peroxide solution to the dispersion of the chainlike agglomerates obtained, to decompose and remove the hydrazine to stabilize the dispersibility of the chainlike agglomerates in the dispersion.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: May 30, 2006
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masaya Yukinobu, Yukiko Suekane
  • Patent number: 7008462
    Abstract: A thermal spray composition and method of deposition for abradable seals for use in gas turbine engines, turbochargers and steam turbines. The thermal spray composition includes a solid lubricant and a ceramic preferably comprising 5 to 60 wt % total of the composition in a ratio of 1:7 to 20:1 of solid lubricant to ceramic, the balance a matrix-forming metal alloy selected from Ni, Co, Cu, Fe and Al and combinations and alloys thereof. The solid lubricant is at least one of hexagonal boron nitride, graphite, calcium fluoride, lithium fluoride, magnesium fluoride, barium fluoride, tungsten disulfide and molybdenum disulfide particles. The ceramic includes at least one of albite, illite, quartz and alumina-silica.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: March 7, 2006
    Assignee: Sulzer Metco (Canada) Inc.
    Inventors: Petr Fiala, Anthony Peter Chilkowich, Karel Hajmrle
  • Patent number: 6974656
    Abstract: The present invention relates to a paste composition, including a bonding agent charged with a metallic powder, to be used in a prototyping procedure, a procedure for obtaining metallic products from said composition, and a metallic product obtained from said procedure. The composition is characterized by the fact that it includes: a bonding agent comprised of at least one photopolymerizable resin, with a viscosity of less than 4000 mPa.s, measured at 25° C., a photoinitiator, in a concentration greater than 0.2% by mass with respect to the mass of the resin, and a metallic powder in a volumetric concentration greater than 40% with respect to the composition, with said composition having a minimum reactivity on the order of 5 mm3/s per watt of lighting power.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: December 13, 2005
    Assignee: 3D Systems, Inc.
    Inventor: Catherine Hinczewski
  • Patent number: 6967183
    Abstract: Electrocatalyst powders and methods for producing electrocatalyst powders, such as carbon composite electrocatalyst powders. The powders have a well-controlled microstructure and morphology. The method includes forming the particles from an aerosol of precursors by heating the aerosol to a relatively low temperature, such as not greater than about 400° C.
    Type: Grant
    Filed: March 22, 2001
    Date of Patent: November 22, 2005
    Assignee: Cabot Corporation
    Inventors: Mark J. Hampden-Smith, Toivo T. Kodas, Plamen Atanassov, Klaus Kunze, Paul Napolitano, Rimple Bhatia, David E. Dericotte, Paolina Atanassova
  • Patent number: 6964693
    Abstract: A method for forming dendritic metal powders, comprising the steps of: (1) heating a powder comprising non-dendritic particles, under conditions suitable for initial stage sintering, to form a lightly sintered material; and (2) breaking the lightly sintered material to form a powder comprising dendritic particles. In one embodiment, the lightly sintered material is broken by brushing the material through a screen. Another aspect of the present invention comprises the dendritic particles that are produced by the method described above. These particles can comprise any suitable metal, such as transition metals, rare earth metals, main group metals or metalloids or an alloy of two or more such metals. The particles can also comprise a ceramic material, such as a metal oxide. These particles are characterized by a dendritic, highly anisotropic, morphology arising from the fusion of substantially non-dendritic particles, and by a low apparent density relative to the substantially non-dendritic starting material.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: November 15, 2005
    Assignee: Mykrolis Corporation
    Inventors: Robert S. Zeller, Christopher J. Vroman
  • Patent number: 6960237
    Abstract: A niobium powder having a nitrogen content of about 500—about 7,000 ppm by weight, and having a mean particle diameter of at least about 0.2 ?m and less than about 3 ?m. Preferably the niobium powder has a reduced content of impurities. A sintered body of the niobium powder. This sintered body generally has a specific leakage current index of not more than about 400 [pA/(?F·V)]. The capacitor having (i) an electrode composed of the sintered body, (ii) a counter electrode and (iii) a dielectric intervening between the two electrodes exhibits good leakage current characteristics.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: November 1, 2005
    Assignee: Showa Denko Kabushiki Kaisha
    Inventor: Kazumi Naito
  • Patent number: 6942930
    Abstract: Disclosed herein is a cooling roll which can provide bonded a magnet having excellent magnetic properties and having excellent reliability. A melt spinning apparatus 1 is provided with a tube 2 having a nozzle 3 at the bottom thereof, a coil 4 for heating the tube and a cooling roll 5 having a circumferential surface 53 in which gas expelling grooves 54 are formed. A melt spun ribbon 8 is formed by injecting the molten alloy 6 from the nozzle 6 so as to be collided with the circumferential surface 53 of the cooling roll 5, so that the molten alloy 6 is cooled and then solidified. In this process, gas is likely to enter between a puddle 7 of the molten alloy 6 and the circumferential surface 53, but such gas is expelled by means of the gas expelling grooves 54.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: September 13, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6939619
    Abstract: A metal powder is formed by the steps of preparing a reducing agent solution, preparing a mixed metallic salt solution by dissolving a nickel salt and a copper salt in a solvent, and mixing the reducing agent solution and the mixed metallic salt solution so that the copper salt is reduced to precipitate copper particle nuclei and then the nickel salt is reduced to precipitate nickel around the copper particle nuclei. A metal power produced by this production method, a conductive paste containing the metal powder and a monolithic ceramic electronic component in which internal electrodes are formed using the conductive paste are also disclosed.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: September 6, 2005
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tadasu Hosokura, Atsuyoshi Maeda
  • Patent number: 6934146
    Abstract: A niobium powder for a capacitor having a tapping density of 0.5 to 2.5 g/ml, and average particle size of 10 to 1000 ?mum, angle of repose form 10° to 60°, the BET specific surface area from 0.5 to 40 m2/g and a plurity of pore diameter peak tops in the pore distribution, and a producing method therof; (2) a niobium sintered body, which is obtained by sintering the above niobium powder and, having a plurality of pore diameter peak tops in a range of 0.01 ?mum to 500 ?mum, preferably, the peak tops of two peaks among the plurality of pore diameter peak tops having a highest relative intensity are present in the range of 0.2 to 0.7 ?mum and in the range of 0.7 to 3 ?mum, respectively, and a producing method thereof; (3) a capacitor using the above sintered body and a producing method thereof, and (4) an electronic circuit and electronic device using the above capacitor.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: August 23, 2005
    Assignee: Showa Denko K.K.
    Inventors: Kazuhiro Omori, Kazumi Naito, Toshiya Kawasaki, Kouichi Wada
  • Patent number: 6926751
    Abstract: Disclosed are provides conductive metal particles and conductive composite metal particles by which conductive materials having stable conductivity can be provided, and applied product thereof. The conductive metal particles have a number average particle diameter of 5 to 100 ?m, a BET specific surface area of 0.01×103 to 0.7×103 m2/kg, a sulfur element content of at most 0.1% by mass, an oxygen element content of at most 0.5% by mass and a carbon element content of at most 0.1% by mass. The conductive composite metal particles are obtained by coating the surfaces of the conductive metal particles with a high-conductive metal.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: August 9, 2005
    Assignee: JSR Corporation
    Inventors: Terukazu Kokubo, Naoki Yanadori
  • Patent number: 6896715
    Abstract: A nitrogen containing niobium powder is disclosed as well as electrolytic capacitors formed from the niobium powders. Methods to reduce DC leakage in a niobium anode are also disclosed.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: May 24, 2005
    Assignee: Cabot Corporation
    Inventor: James A. Fife
  • Patent number: 6884278
    Abstract: It is an object of the present invention to provide spherical metal particles having excellent monodispersity. The present invention relates to a method of manufacturing monodisperse spherical metal particles characterized by passing liquid metal through a porous membrane so as to disperse the resulting liquid metal particles in a continuous liquid phase.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: April 26, 2005
    Assignee: Miyazaka Prefecture
    Inventors: Masataka Shimizu, Kiyoshi Torigoe, Tadao Nakashima, Izumi Akazaki
  • Patent number: 6881240
    Abstract: When copper powder manufactured by a wet reduction method is kneaded with resin in a high filling rate, it is difficult to maintain a low viscosity. The invention is to solve the problem of high viscosity without changing the characteristics such as particle size and specific surface area of the copper powder obtained by a wet reduction method. This invention relates to copper powder for an electrically conductive paste wherein copper powder manufactured by a wet reduction method is subjected to a surface-flattening treatment in which the particles are mechanically collided each other.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: April 19, 2005
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Kazushi Sano, Yoshihiro Okada, Hiromasa Miyoshi
  • Patent number: 6878183
    Abstract: This invention relates to a method for sublimation refining which gives a high-purity product in high yield while preventing corrosion of the apparatus, contamination of the product and change in quality of the product and to an apparatus useful for the method. The apparatus of this invention for sublimation refining comprises a heat generating unit made of a material generating heat by electromagnetic induction, sublimating unit A and collecting units B and C, respectively independently controllable in temperature by electromagnetic induction heating and the inner surface or the inner tube of the sublimating or collecting unit is made of a material like metal and ceramic inert to sublimable substances.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: April 12, 2005
    Assignees: Nippon Steel Chemical Co., Ltd., Osaka Yuka Industries Co., Ltd.
    Inventors: Mahito Soeda, Shuhei Hotta, Kazuo Ishii
  • Patent number: 6875253
    Abstract: A novel method for preparing fine particles comprising a transition metal and a noble metal which are monodispersed and have almost no particle diameter distribution, and are transferable to a CuAu-I type L10 ordered phase, with safety and at a low cost, wherein a salt or a complex of at least one transition metal selected from Fe and Co and a salt or a complex of at least one transition metal selected from Pt and Pd (exclusive of the combination of Co—Pd) is dissolved in an organic solvent miscible with water or an alcohol in the presence of an organic protecting agent, and the resultant solution is heated under reflux in the presence of an alcohol in an inert atmosphere, to thereby prepare a binary alloy comprising a transition metal and a noble metal, or a salt or a complex of at least one element selected from the group consisting of Cu, Bi, Sb, Sn, Pb and Ag is further dissolved in the above solvent and the resultant solution is heated under reflux in the presence of an alcohol in an inert atmosphere, to
    Type: Grant
    Filed: February 6, 2002
    Date of Patent: April 5, 2005
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Hideo Daimon, Yukiko Kurobe, Naoki Toshima
  • Patent number: 6875252
    Abstract: A copper powder is provided that has an average particle diameter in the range of from not less than 0.1 ?m to less than 1.5 ?m, that has a narrow particle size distribution width whose value A defined by Equation (1) below in terms of X25, X50 and X75 defined below is not greater than 1.2, and that forms a pseudo-fused sintered product when held at a temperature of 800° C. under an atmosphere of inert gas at one atmosphere pressure: A=(X75?X25)/X50??(1), where X25, X50 and X75 are values of particle diameter X corresponding to Q %=25%, 50% and 75% on a cumulative particle-size curve plotted in an orthogonal coordinate system whose abcissa represents particle diameter X (?m) and ordinate represents Q % (ratio of particles present of a diameter not greater than the corresponding value of X; expressed in units of vol % of particles). The copper powder is produced by conducting wet reduction of cuprous oxide into metallic copper powder in the presence of ammonia or an ammonium salt.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: April 5, 2005
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Kazushi Sano, Yoshihiro Okada, Hiromasa Miyoshi, Yoshiomi Takada
  • Patent number: 6872326
    Abstract: A method of manufacturing magnetic powder is disclosed. This method can provide magnetic powder from which a bonded magnet having excellent magnetic properties and reliability can be manufactured. A melt spinning apparatus 1 is provided with a tube 2 having a nozzle 3 at the bottom thereof, a coil 4 for heating the tube and a cooling roll 5. The cooling roll 5 is constructed from a roll base 51 and a circumferential surface 53 in which gas flow passages 54 for expelling gas are formed. A melt spun ribbon 8 is formed by injecting the molten alloy 6 from the nozzle 3 so as to be collided with the circumferential surface 53 of the cooling roll 5, so that the molten alloy 6 is cooled and then solidified. In this process, gas is likely to enter between a puddle 7 of the molten alloy 6 and the circumferential surface 53, but such gas is expelled by means of the gas flow passages 54. The magnetic powder is obtained by milling thus formed melt spun ribbon 8.
    Type: Grant
    Filed: February 25, 2003
    Date of Patent: March 29, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Akira Arai, Hiroshi Kato
  • Patent number: 6855184
    Abstract: The present invention relates to a niobium powder for a capacitor having Mg and Zr contents each of 50 to 400 mass ppm, a W content of 20 to 200 mass ppm and a Ta content of 300 to 3,000 mass ppm, with the contents of elements other than oxygen, nitrogen, hydrogen, Mg, Zr, W and Ta, each being 50 mass ppm or less, a sintered body using the powder and the capacitor using the sintered body. The capacitor using the sintered body made of the niobium powder of the present invention has a large capacitance per unit mass and good heat resistance property.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: February 15, 2005
    Assignee: Showa Denko K.K.
    Inventor: Kazumi Naito