Loose Particulate Mixture (i.e., Composition) Containing Metal Particles Patents (Class 75/255)
  • Patent number: 6652619
    Abstract: A niobium powder comprising at least one element selected from the group consisting of chromium, molybdenum, tungsten, boron, aluminum, gallium, indium, thallium, cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, bismuth, rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium; a sintered body of the niobium powder; and a capacitor comprising a sintered body as one electrode, a dielectric material formed on the surface of the sintered body, and counter electrode provided on the dielectric material.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: November 25, 2003
    Assignee: Showa Denko K.K.
    Inventors: Kazuhiro Omori, Kazumi Naito
  • Publication number: 20030205479
    Abstract: We have discovered that the formation of particulate inclusions at the surface of an aluminum alloy article, which inclusions interfere with a smooth transition from the alloy surface to an overlying aluminum oxide protective film, can be controlled by maintaining the content of mobile and nonmobile impurities within a specific range and controlling the particulate size and distribution of the mobile and nonmobile impurities and compounds thereof; by heat-treating the aluminum alloy at a temperature less than about 330° C.; and by creating the aluminum oxide protective film by employing a particular electrolytic process. When these factors are taken into consideration, an improved aluminum oxide protective film is obtained.
    Type: Application
    Filed: May 3, 2002
    Publication date: November 6, 2003
    Inventors: Yixing Lin, Brian T. West, Shun Jackson Wu, Clifford C. Stow, Senh Thach, Hong Wang, Jennifer Y. Sun
  • Publication number: 20030205106
    Abstract: A niobium powder comprising at least one element selected from the group consisting of chromium, molybdenum, tungsten, boron, aluminum, gallium, indium, thallium, cerium, neodymium, titanium, rhenium, ruthenium, rhodium, palladium, silver, zinc, silicon, germanium, tin, phosphorus, arsenic, bismuth, rubidium, cesium, magnesium, strontium, barium, scandium, yttrium, lanthanum, praseodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, hafnium, vanadium, osmium, iridium, platinum, gold, cadmium, mercury, lead, selenium and tellurium; a sintered body of the niobium powder; and a capacitor comprising a sintered body as one electrode, a dielectric material formed on the surface of the sintered body, and counter electrode provided on the dielectric material.
    Type: Application
    Filed: January 13, 2003
    Publication date: November 6, 2003
    Applicant: SHOWA DENKO K.K.
    Inventors: Kazuhiro Omori, Kazumi Naito
  • Publication number: 20030200836
    Abstract: A solder powder comprises solder particles having a distribution such that the number of particles having a particle diameter of 20 &mgr;m or less is 30% or less, wherein the oxygen content is 500 ppm or less. A flux for solder paste comprises an organic acid component consisting of an organic acid ester and an ester decomposer catalyst, an organic halogen compound, a reducing agent and a resin component. A solder paste mainly comprises a flux and a solder powder, wherein the water content of the solder paste is 0.5% by weight or less.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 30, 2003
    Applicant: SHOWA DENKO K.K.
    Inventors: Hitoshi Amita, Takashi Shoji, Shunsuke Nagasaki, Yoshinori Shibuya, Isamu Taguchi, Noriko Murase
  • Patent number: 6638335
    Abstract: A highly compressible iron powder for powder metallurgy has an optimized particle size distribution. The Vickers microhardness of the particles that do not pass through the sieve having the nominal opening of 150 &mgr;m is controlled to be at most about 110. The iron powder is suitable for production of magnetic parts having high magnetism and mechanical parts having high mechanical strength.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: October 28, 2003
    Assignee: Kawasaki Steel Corporation
    Inventors: Yukiko Ozaki, Masateru Ueta, Naomichi Nakamura
  • Publication number: 20030196511
    Abstract: These connecting rods are made from prealloyed manganese, sulfur, ferrous based powder. The prealloyed powder then is mixed with copper and carbon. The copper content is at higher than normal copper contents. The resulting forged connecting rods had an improvement in tensile strength and an improvement in fatigue strength.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 23, 2003
    Inventor: Edmond Ilia
  • Patent number: 6635100
    Abstract: A niobium powder for forming an anode of a solid electrolytic capacitor which improves the defects in the prior art that an average particle diameter is too small, niobium is consumed as an oxide film in anodic oxidation step and the effective electrode surface area decreases. In the improved powder, for primary particles, the average particle diameter is 0.10-2 &mgr;m, the geometric standard deviation of particle size distribution exceeds 1.4 and the degree of sphericity is 2 or less. Anodes for solid electrolytic capacitors which are suitable for the use of super-high capacity can be manufactured by using the improved powder.
    Type: Grant
    Filed: January 17, 2002
    Date of Patent: October 21, 2003
    Assignee: Kawatetsu Mining Co., Ltd.
    Inventor: Nobuyuki Sato
  • Patent number: 6630009
    Abstract: A paste composition, including a binding agent charged with metallic powder, to be used in a solid freeform fabrication procedure, comprising: a) a solidifiable binding agent comprised of at least one polymerizable resin, with a viscosity of less than 4000 mPa.s, measured at 25° C.; b) at least one initiator, in a concentration greater than about 0.1% by mass with respect to the mass of the resin; and c) a mixture of at least two metallic powders, said mixture having a volumetric concentration greater than 40% with respect to the composition, wherein said mixture of metal powders is either i) a bimodal or trimodal mixture in nature, or ii) is a majority of stainless steel with an amount of NiB or NiP and combinations thereof effective to lower the sintering temperature.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: October 7, 2003
    Assignee: 3D Systems, Inc.
    Inventors: Khalil M. Moussa, Kenneth J. Newell, Catherine Hinczewski, Charles H. Zenuk
  • Publication number: 20030183042
    Abstract: A niobium or tantalum powder of the present invention comprises aggregates in which primary particles of niobium or tantalum are aggregated, and have a pore distribution having a peak in the range from 1 to 20 &mgr;m as measured by mercury porosimetry. That is, the niobium or tantalum powder of the present invention comprises aggregates having large pores, which connect with vacancies between the primary particles and facilitate the permeation of an electrolyte over the entirety of the inside of each aggregate. Accordingly, a solid electrolytic capacitor comprising an anode electrode made of the niobium or tantalum powder has high capacity and also a low ESR.
    Type: Application
    Filed: December 2, 2002
    Publication date: October 2, 2003
    Inventors: Yukio Oda, Yujiro Mizusaki
  • Publication number: 20030177868
    Abstract: There are provided internally cross-linked, stable polymeric materials, in the form of substantially spherical particles, each particle consisting essentially of a single macromolecule. They have the unusual property of being soluble or dispersible in a liquid medium without significantly increasing the viscosity of the medium, rendering them potentially useful in imaging applications such as ink jet printers. They can be prepared by dissolving polymeric material in a solvent system to form a solution of the polymeric material at a concentration therein of less than the critical concentration for the polymer, causing the polymeric material to contract into an approximately spheroidal conformation in solution, cross-linking the polymeric material in solution in said spheroidal conformation so assumed, and recovering stable, cross-linked approximately spheroidal polymeric particles from the solution.
    Type: Application
    Filed: May 23, 2003
    Publication date: September 25, 2003
    Inventor: James E. Guillet
  • Patent number: 6623543
    Abstract: A method for forming dendritic metal powders, comprising the steps of: (1) heating a powder comprising non-dendritic particles, under conditions suitable for initial stage sintering, to form a lightly sintered material; and (2) breaking the lightly sintered material to form a powder comprising dendritic particles. In one embodiment, the lightly sintered material is broken by brushing the material through a screen. Another aspect of the present invention comprises the dendritic particles that are produced by the method described above. These particles can comprise any suitable metal, such as transition metals, rare earth metals, main group metals or metalloids or an alloy of two or more such metals. The particles can also comprise a ceramic material, such as a metal oxide. These particles are characterized by a dendritic, highly anisotropic, morphology arising from the fusion of substantially non-dendritic particles, and by a low apparent density relative to the substantially non-dendritic starting material.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 23, 2003
    Assignee: Mykrolis Corporation
    Inventors: Robert S. Zeller, Christopher J. Vroman
  • Publication number: 20030172772
    Abstract: The present invention relates to the production of ultrafine powders using a microwave plasma apparatus and chemical synthesis technique. Microwaves generated by a magnetron (1) are passed through waveguides (2) before they arrive at the head of a plasmatron (3). These high energy microwaves ionize a plasma gas, thus releasing large amounts of energy. The energy thus released is utilized to initiate and sustain chemical reactions between the desired elements being pumped in a spiral pattern into the plasmatron (3). The reaction products are quenched rapidly in a reactor column (4) into ultrafine powders.
    Type: Application
    Filed: March 11, 2003
    Publication date: September 18, 2003
    Applicant: Materials Modification, Inc.
    Inventors: Krupashankara M. Sethuram, Raja Kalyanaraman
  • Patent number: 6620344
    Abstract: Copper particle clusters constituting a powder suitable for making a conductive paste are provided that are individually composed of not fewer than two and not more than 20 unit particles joined through neck portions. A conductive paste made from the powder is excellent in conductivity. A conductive filler for conductive paste is provided that consists essentially of a mixture of copper particle clusters A individually composed of two or more unit particles joined through neck portions and spherical metallic particles B of smaller diameter than the particles A. A conductive paste made from the filler is low in viscosity and excellent in conductivity.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: September 16, 2003
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Kazushi Sano, Yoshihiro Okada, Hiromasa Miyoshi, Yoshiomi Takada
  • Patent number: 6620219
    Abstract: A method for producing metal powder which involves the step of making an alkaline hydroxide, hydrazine or a hydrazine hydrate, and a metallic salt co-exist in a solvent comprising an alcohol, at least a portion of each being dissolved; wherein, in the step, metal powder comprising a metal contained in the metallic salt is precipitated by reducing the metallic salt with the hydrazine or the hydrazine hydrate. By the above method, a metal powder having a particle size of about 100 nm or less can be obtained and the metal powder is not contaminated with impurities originating from the reducing agent.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: September 16, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Tadasu Hosokura
  • Patent number: 6616728
    Abstract: A nitrogen containing niobium powder is disclosed as well as electrolytic capacitors formed from the niobium powders. Methods to reduce DC leakage in a niobium anode are also disclosed.
    Type: Grant
    Filed: December 7, 2001
    Date of Patent: September 9, 2003
    Assignee: Cabot Corporation
    Inventor: James A. Fife
  • Patent number: 6616727
    Abstract: The present invention relates to a method of preparing porous metal powder, a starting metal being oxidized and then reduced followed by that the obtained block metal body is milled. According to the present invention, the starting metal is oxidized in the presence of chlorine and/or chloride. The present block metal body after reduction has prismatic particles complicatedly entangled like a root so that the pore of the metal powder is open.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: September 9, 2003
    Assignee: Fukuda Metal Foil & Powder Co., Ltd.
    Inventors: Tadashi Koyama, Yoshiro Arami, Masato Kikukawa, Osamu Iwatsu, Yasuhiko Hashimoto
  • Patent number: 6613122
    Abstract: The invention concerns a pre-alloyed metal powder essentially consisting of at least two transition metals selected among iron, cobalt, nickel, copper and zinc, and also capable of containing molybdenum, as well as sintered parts obtained using said powders. Said powders have elementary grain size greater than 200 nm and less than 5 &mgr;m. The invention is particularly useful for making special steel parts or for making cutting or grinding tools.
    Type: Grant
    Filed: October 10, 2000
    Date of Patent: September 2, 2003
    Assignee: Eurotungstene Poudres
    Inventors: Maxime Bonneau, Sebastien Chabord, Guy Prost
  • Patent number: 6613123
    Abstract: Variable melting point solders and brazes having compositions comprising a metal or metal alloy powder having a low melting point with a metal powder having a higher melting point. Upon heating, in-situ alloying occurs between the low and high melting point powders such that solidification occurs at the solder or braze temperature thus creating a new, higher solidus (or melting) temperature with little or no intermetallic formation. A solder comprising Sn powder mixed with a Sn—Bi eutectic powder having a composition of 63 wt % Sn:57 wt % Bi such that the bulk composition of the mixture is 3 wt % Bi has an initial melting point of 140° C. and a re-melt temperature of 220° C. after heating due to in-situ alloying. A composition of Pb powder mixed with a Pb—Sn eutectic powder having a composition of 62 wt % Sn:58 wt % Pb such that the bulk composition of the mixture is 15 wt % Sn has an initial melting point of 183° C. and a re-melt temperature of 250° C.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: September 2, 2003
    Inventors: Stephen F. Corbin, Douglas J. McIsaac, Xin Qiao
  • Patent number: 6610120
    Abstract: A Mo source powder is added to and mixed with an iron-based powder containing 1.0% by mass or less of prealloyed Mn to yield a powder mixture containing 0.2 to 10.0% by mass of Mo, the resulting powder mixture is subjected to heat treatment in a reducing atmosphere to thereby yield an alloyed steel powder containing Mo as a powder partially diffused and bonded to a surface of the iron-based powder particles. The prepared alloyed steel powder for powder metallurgy has satisfactory compactability. The use of this alloyed steel powder can produce a sintered powder metal body (an intermediate material after compaction and preliminary sintering in re-compaction of sintered powder materials process) for highly strong sintered member.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: August 26, 2003
    Assignee: Kawasaki Steel Coporation
    Inventors: Naomichi Nakamura, Satoshi Uenosono, Shigeru Unami, Masashi Fujinaga
  • Publication number: 20030150530
    Abstract: We have discovered that the formation of particulate inclusions at the surface of an aluminum alloy article, which inclusions interfere with a smooth transition from the alloy surface to an overlying aluminum oxide protective film can be controlled by maintaining the content of mobile impurities within a specific range and controlling the particulate size and distribution of the mobile impurities and compounds thereof; by heat-treating the aluminum alloy at a temperature less than about 330° C.; and by creating the aluminum oxide protective film by employing a particular electrolytic process. When these factors are taken into consideration, an improved aluminum oxide protective film is obtained.
    Type: Application
    Filed: February 8, 2002
    Publication date: August 14, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Yixing Lin, Brian T. West, Hong Wang, Shun Jackson Wu, Jennifer Y. Sun, Clifford C. Stow, Senh Thach
  • Patent number: 6605129
    Abstract: The present invention relates to a powdered niobium for a capacitor having a good specific leakage current value, a sintered body using the powdered niobium, a capacitor using the sintered body and production method of the capacitor. A powdered niobium for a capacitor, characterized in that the content of each of the elements such as iron, nickel, cobalt, silicon, sodium, potassium and magnesium is about 100 ppm by weight or less and/or the total content thereof is about 350 ppm by weight or less is used. A niobium sintered body or a capacitor is constructed using the powdered niobium. A niobium sintered body for a capacitor, comprises at least one of niobium monoxide crystal and a diniobium mononitride crystal.
    Type: Grant
    Filed: February 25, 2000
    Date of Patent: August 12, 2003
    Assignee: Showa Denko Kabushiki Kaisha
    Inventor: Kazumi Naito
  • Patent number: 6605251
    Abstract: This invention relates to a lubricant for metallurgical powder compositions. According to the invention, the lubricant contains a polyolefine-based polymer, which has a weight-average molecular weight Mw of 500-10000. The invention further concerns a metal-powder composition containing the lubricant, method for making sintered products by using the lubricant, and use of the same in cold and warm compaction.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: August 12, 2003
    Assignee: Höganäs AB
    Inventor: Hilmar Vidarsson
  • Patent number: 6602315
    Abstract: Improved methods for coating particulate materials at low shear conditions and preferably below the melting point of the coating material are provided. In one aspect, metallurgical compositions are provided that contain a metal-based powder bound to an alloying powder or powders by way of a low melting polymer or wax binding agent, which is preferably polyethylene. The binding agent is blended with the metal-based and alloying powders at elevated temperatures preferably below the melting point of the binding agent. The bonded metallurgical composition can be used in compaction processes to manufacture compacted parts that can be sintered to impart strength.
    Type: Grant
    Filed: July 20, 2001
    Date of Patent: August 5, 2003
    Assignees: Hoeganaes Corporation, Ameka, Inc.
    Inventors: William Hendrickson, Sydney Luk
  • Publication number: 20030136222
    Abstract: In a high-speed fabrication process for producing highly uniform ultra-small metallic micro-spheres, a molten metal is passed through a small orifice, producing a stream of molten metal therefrom. A series of molten metal droplets forms from the break up of the capillary stream. Applied harmonic disturbances are used to control and generate satellite and parent droplets. Significantly, the satellite droplets formed are smaller than the orifice, allowing for the production of smaller metal balls with larger orifices. The satellite droplets are separated from the parent droplets by electrostatic charging and deflection or by aerodynamic or acoustic sorting. Preferably, the satellite droplets are cooled before being collected to avoid defects and achieve high uniformity of the resulting metal balls.
    Type: Application
    Filed: November 12, 2002
    Publication date: July 24, 2003
    Inventors: Melissa Orme-Marmerelis, Robert F. Smith
  • Patent number: 6589311
    Abstract: There is provided a method of making a high-melting metal powder which has high purity and excellent formability and, particularly, of a metal powder of spherical particles made of Ta, Ru, etc. having a higher melting point than iron. There is also provided a target of high-melting metal or its alloy, which is made by the sintering under pressure of these powders and which has high purity and a low oxygen concentration and shows high density and a fine and uniform structure. A powder metal material mainly composed of a high-melting metal material is introduced into a thermal plasma into which hydrogen gas has been introduced, thereby to accomplish refining and spheroidizing. Further, an obtained powder is pressed under pressure by hot isostatic pressing, etc.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: July 8, 2003
    Assignee: Hitachi Metals Ltd.
    Inventors: Gang Han, Hideo Murata, Hideki Nakamura
  • Patent number: 6589312
    Abstract: This invention uses nanoparticles to broaden the range of economic materials, improve performance across this broader range, and thereby lower costs of hydride and other storage systems. Nanoparticles can have dramatically different mechanical, chemical, electrical, thermodynamic, and/or other properties than their parent (precursor) materials. Because of this fundamental characteristic, nanophase materials can greatly improve the range of possibilities of materials selection, performance, cost, and practicality for hydride storage systems, advancing the early commerciality of such systems for hydrogen fuel cells or other applications. Among such hydrogen storage improvements are cheaper and better-performing metals, alloys, and/or compounds; lower weight; and reduced storage volumes.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: July 8, 2003
    Inventors: David G. Snow, Charles J. Brumlik
  • Publication number: 20030110888
    Abstract: A method of forming a powder metal material or article includes the steps of molding a compact from a metallurgical powder, and then sintering the compact. The metallurgical powder may include at least one of a stainless steel powder and a low-chromium steel-base powder, and about 0.5 to about 15 weight percent of glass powder. Alternatively, the metallurgical powder may include at least one of a stainless steel powder and a low-chromium steel-base powder, about 3 to about 15 weight percent molybdenum, and about 1 to about 15 weight percent of nickel-base alloy powder. The present invention also is directed to metallurgical powders useful in and materials and articles made by the methods of the present invention. Such articles include, but are not limited to, valve guides for internal combustion engine EGR systems, valve seats, exhaust system components, combustion chambers, other combustion engine parts subjected to high temperature, and chemical industry valve and corrosion parts.
    Type: Application
    Filed: October 24, 2001
    Publication date: June 19, 2003
    Inventor: John C. Kosco
  • Publication number: 20030110896
    Abstract: An anti-bonding agent for blast furnace slag or its grading adjusted slag includes one or more polymers having a main constituent unit shown by 1
    Type: Application
    Filed: September 4, 2002
    Publication date: June 19, 2003
    Applicant: Kokan Mining Co., Ltd.
    Inventors: Hiroyuki Mitsufuji, Chiaki Yoshizawa, Takashi Wada, Atsushi Yamaguchi, Tomoo Takahashi, Mitsuo Kinoshita, Tatsushi Sugiyama
  • Patent number: 6576099
    Abstract: Methods to at least partially reduce a niobium oxide are described wherein the process includes heat treating the niobium oxide in the presence of a getter material and in an atmosphere which permits the transfer of oxygen atoms from the niobium oxide to the getter material, and for a sufficient time and at a sufficient temperature to form an oxygen reduced niobium oxide. Niobium oxides and/or suboxides are also described as well as capacitors containing anodes made from the niobium oxides and suboxides. Anodes formed from niobium oxide powders using binders and/or lubricants are described as well as methods to form the anodes.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: June 10, 2003
    Assignee: Cabot Corporation
    Inventors: Jonathon L. Kimmel, Ricky W. Kitchell
  • Patent number: 6576038
    Abstract: A method to agglomerate metal particles such as tantalum and niobium powders is described which includes combining a volatilizable or vaporizable liquid with the particles to form wet particles; compacting the wet particles; drying the compacted wet particles to form a cake; and heat treating the cake to form the agglomerated particles. Also described are agglomerated particles obtained by this method and further, particles, preferably tantalum or niobium powder, having a flow rate of at least about 65 mg/sec and/or an improved pore size distribution, and/or a higher Scott Density. Capacitors made from tantalum powder and niobium powder are also described.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: June 10, 2003
    Assignee: Cabot Corporation
    Inventor: Bhamidipaty K. D. P. Rao
  • Patent number: 6576037
    Abstract: The invention concerns a pre-alloyed metal powder consisting essentially of tungsten and/or molybdenum, at least one transition metal selected among iron, cobalt, nickel and copper, and optionally at least one additive, the iron content being less than 50 wt. % and the total additive content being less than 3 wt. %, relative to the total weight of metals, said pre-alloyed metal powder having elementary grain size measured with scanning electron microscope, greater than 200 nm and less than 5 micrometers. The invention also concerns a sintered part obtained with such a powder. The invention is particularly applicable for producing sintered parts to be used as electric contacts, heat sinks, spark machining electrodes, mechanical balance weights, inertial units, tool-holders, anti-radiation screen, armament components, sintered steel or diamond charged cutting or grinding tools or with titanium carbide.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: June 10, 2003
    Assignee: Eurotungstene Poudres
    Inventors: Maxime Bonneau, Jean-Francois Lartigue, Jean Maniak
  • Publication number: 20030103858
    Abstract: The present invention provides iron-based metallurgical powder compositions and a method of making and using the same. The metallurgical powder compositions of the present invention contain certain amounts of an iron-alloy powder having iron and at least one alloying additive; substantially pure iron powder; and a carbon powder, such as graphite. The metallurgical powder compositions are prepared by admixing the iron-alloy powder with the iron powder and carbon powder. The metallurgical powder compositions thus produce and when formed into metal parts have, for example, improved machinability properties.
    Type: Application
    Filed: October 8, 2002
    Publication date: June 5, 2003
    Inventors: Michael C. Baran, K.S.V.L. Narasimhan
  • Publication number: 20030097906
    Abstract: The dental bonding material of the present invention comprises a composition of precious metal particles consisting essentially of high fusing temperature metal particles having a melting temperature above at least about 1200° C. in a size range between 1 micron and 150 microns and low fusing temperature metal particles having a melting temperature below about 1080° C. with or without a suitable carrier for coating or brushing the dental bonding material upon the surface of a metal framework or coping. The dental bonding material may further include a conventional flux preferably containing the element boron in a concentration of between 0 and 5% by weight of the dental material. It is essential to heat treat the bonding material after it is coated on the metal surface at a temperature below the melting temperature of the high fusing temperature metal particles and high enough to cause a partial melting of the low fusing temperature metal particles but not a complete melting thereof.
    Type: Application
    Filed: November 26, 2001
    Publication date: May 29, 2003
    Inventors: Itzhak Shoher, Aharon E. Whiteman
  • Patent number: 6569221
    Abstract: This invention relates to an alloy suitable for use in industrial and other heating applications, having a ferritic stainless steel alloy comprising, in weight %, less than 0.02% carbon; ≦0.5% silicon; ≦0.2% manganese; 10.0-40.0% chromium; ≦0.6% nickel; ≦0.01% copper; 2.0-10.0% aluminum; one or more of Sc, Y, La, Ce, Ti, Zr, Hf, V, Nb and Ta in an amount of 0.1-1.0; remainder iron and unavoidable impurities. A heating element of this alloy is provided. A diffusion furnace having such a heating element is also provided.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: May 27, 2003
    Assignee: Sandvik Aktiebolag
    Inventor: Roger Berglund
  • Patent number: 6569262
    Abstract: Lead-free solder metal powder material including two or more metals capable of forming an intermetallic compound and having an unreacted phase and an amorphous phase. Further, a lead-free solder paste is prepared by mixing the powder material with a soldering flux. The powder material is preferably formed using a mechanical milling process.
    Type: Grant
    Filed: February 23, 2000
    Date of Patent: May 27, 2003
    Assignee: International Business Machines Corporation
    Inventor: Ikuo Shohji
  • Patent number: 6569220
    Abstract: A method of producing iron powder comprises the step of providing a supply of iron oxide powder of a size less than 1000 microns which is then heated in a reducing agent atmosphere to a temperature between 1000° F. and 2100° F., thus resulting in the ironoxide powder being reduced to iron powder, cooling the iron powder in an inert gas atmosphere to a temperature below 150° F. and milling to a median particle size diameter of less than or equal to 20 microns.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: May 27, 2003
    Inventors: Donald W. Clark, C. William Cornelssen
  • Publication number: 20030089199
    Abstract: When copper powder manufactured by a wet reduction method is kneaded with resin in a high filling rate, it is difficult to maintain a low viscosity. The invention is to solve the problem of high viscosity without changing the characteristics such as particle size and specific surface area of the copper powder obtained by a wet reduction method. This invention relates to copper powder for an electrically conductive paste wherein copper powder manufactured by a wet reduction method is subjected to a surface-flattening treatment in which the particles are mechanically collided each other.
    Type: Application
    Filed: December 16, 2002
    Publication date: May 15, 2003
    Inventors: Kazushi Sano, Yoshihiro Okada, Hiromasa Miyoshi
  • Publication number: 20030089197
    Abstract: A niobium hydride or niobium hydride alloy is ground at a temperature of −200 to 30° C. in the presence of a dispersion medium to obtain a niobium powder for capacitors, having a low oxygen content, the niobium powder for capacitors is granulated to obtain a niobium granulated product for capacitors, having an average particle size of 10 to 500 &mgr;m, the niobium powder or granulated powder for capacitors is sintered to obtain a sintered body, and a capacitor is fabricated by forming a dielectric material on the surface of the sintered body and providing another part electrode on the dielectric material, whereby a capacitor having good LC characteristics and less dispersed in the LC characteristics is obtained.
    Type: Application
    Filed: June 20, 2002
    Publication date: May 15, 2003
    Applicant: SHOWA DENKO K.K.
    Inventors: Kouichi Wada, Yasuo Tsumita, Toshiya Kawasaki, Kazumi Naito, Kazuhiro Omori
  • Publication number: 20030091457
    Abstract: A Mo—Cu composite powder is provided which is comprised of individual finite particles each having a copper phase and a molybdenum phase wherein the molybdenum phase substantially encapsulates the copper phase. The composite powder may be consolidated by conventional P/M techniques and sintered without copper bleedout according to the method described herein to produce Mo—Cu pseudoalloy articles having very good shape retention, a high sintered density, and a fine microstructure.
    Type: Application
    Filed: September 20, 2002
    Publication date: May 15, 2003
    Inventors: Leonid P. Dorfman, Michael J. Scheithauer, David L. Houck, Anna T. Spitsberg, Jeffrey N. Dann
  • Publication number: 20030084753
    Abstract: Disclosed is a rapidly expanding metallic mixture treated for oxidation prevention thereof at room temperature, comprising a metal salt and a metal powder, which prevents its spontaneous explosion due to oxidation of the metal powder in the mixture at room temperature during storage, or dysfunction of the mixture upon blasting work because of altered mixing ratios between the metal salt and the metal powder. The rapidly expanding metallic mixture is characterized in that the mixture is added with a water repellent such as oil or an inorganic preservative, or is coated with a resin and formed to the size of 0.1-100 mm3.
    Type: Application
    Filed: October 24, 2002
    Publication date: May 8, 2003
    Inventor: Chang Sun Kim
  • Publication number: 20030084754
    Abstract: Novel forms of molybdenum metal, and apparatus and methods for production thereof. Novel forms of molybdenum metal are preferably characterized by a surface area of substantially 2.5 m2/g. Novel forms of molybdenum metal are also preferably characterized by a relatively uniform size. Preferred embodiments of the invention may comprise heating a precursor material to a first temperature in the presence of a reducing gas, and increasing the first temperature at least once to reduce the precursor material and form the molybdenum metal product.
    Type: Application
    Filed: November 6, 2001
    Publication date: May 8, 2003
    Inventors: Mohamed H. Khan, Joel A. Taube
  • Patent number: 6558448
    Abstract: The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: May 6, 2003
    Assignee: UT-Battelle, LLC
    Inventor: Zhong-Cheng Hu
  • Publication number: 20030079566
    Abstract: The invention provides platinum or platinum alloy powders for use in fuel cells and for chemical reactions. The powders are characterized by a high surface area and, at the same time, low chlorine contents. The powders are prepared by forming a melt which contains, as starting substances, a low melting mixture of alkali metal nitrates, a chlorine-free platinum compound and optionally chlorine-free compounds of alloying elements, the melt is then heated to a reaction temperature at which the platinum compound and the compounds of alloying elements thermally decompose to give oxides, the melt is then cooled and dissolved in water and the oxides or mixed oxides formed are converted into platinum or platinum alloy powders by subsequent reduction. Binary or ternary eutectic mixtures from the LiNO3—KNO3—NaNO3 system are suitable as a low melting mixture of nitrates of the alkali metals. Hexahydroxoplatinic-(IV)-acid is preferably used as a chlorine-free platinum compound.
    Type: Application
    Filed: July 31, 2002
    Publication date: May 1, 2003
    Applicant: OMG AG & CO. KG
    Inventor: Peter Biberbach
  • Publication number: 20030075018
    Abstract: The invention relates to a process for the production of metallic and metal-ceramic composite components by powder injection molding of a system comprising a metal composite powder, a binder and optionally a ceramic component, where the metal composite powder used is mixed with a protecting liquid in an inert atmosphere before the mixing with the binder. The invention furthermore relates to molybdenum/copper and tungsten/copper composite powders which have a primary metal particle size of predominantly <2 &mgr;m, an oxygen content of <0.8% by weight and optionally a ceramic component, to the use of these composite powders for the production of composite components by powder injection molding, and to a process for the preparation of composite powders in which oxides of molybdenum or tungsten and of copper are mixed, dry-ground and reduced using hydrogen at a temperature of from 800 to 1050° C., and a ceramic component is optionally admixed with the resultant metal composite powder.
    Type: Application
    Filed: November 21, 2002
    Publication date: April 24, 2003
    Inventors: Helmut Meinhardt, Bernd Meyer, Matthias Knuwer, Dietmar Fister, Wolfgang Wiezoreck
  • Publication number: 20030075012
    Abstract: A hard metal grade powder is produced from hard material, metal binder, and non-water-soluble pressing aid components, by forming a slurry containing the components and pure water as a liquid phase and then drying the slurry. Here, the hard material and metal binder components are first milled in water, to form a slurry. Then the pressing aid components are added to the slurry in the form of an emulsion produced with the aid of an emulsifier with the addition of water.
    Type: Application
    Filed: November 22, 2002
    Publication date: April 24, 2003
    Inventors: Gerhard Knunz, Helmut Beirer, Andreas Lackner, Wolfgang Glatzle, Erwin Hartlmayr
  • Publication number: 20030077473
    Abstract: According to the invention, the shaped bodies are comprised of at least one heavy metal, preferably Fe, Ni, Co, Sn, Mo or W which can be reduced from a corresponding metallic compound at a temperature of less than 1 500° C. The shaped bodies have an outer diameter ranging from 0.05 to 0.5 mm, and a diameter-to-wall thickness ratio of 0.5 to 3%.
    Type: Application
    Filed: October 8, 2002
    Publication date: April 24, 2003
    Inventors: Frank Bretschneider, Herbert Stephan, Juergen Brueckner, Guentor Stephani, Lothar Schneider, Ulf Waag
  • Publication number: 20030075013
    Abstract: Multiphase polymeric binders for binder assisted forming of sinterable powder bodies are formulated to demonstrate improved rheological properties in the form of newtonion or near newtonion flow behavior thereby reducing dependence of binder viscosity on shear by tailoring the molecular weight and molecular weight distribution of the polymeric binder phases and the resulting polymer admixtures of the invention demonstrate shear rate independent behavior. Reduction of interfacial tension between binder phases by introduction of at least one macromolecule with separate segments selected to be compatible with the individual phases of the binder further increases processing performance as does use of polymer macromolecules having attributes that allow them to act as surface active materials at the interface of the sinterable powder and the multiphase binder composition. Predispersion of the surface active materials in the powder is facilitated by emulsification thereof in water prior to admixture with the powder.
    Type: Application
    Filed: October 17, 2002
    Publication date: April 24, 2003
    Inventor: Joseph A. Grohowski
  • Patent number: 6551377
    Abstract: This invention relates to powders of substantially spherical particles that consist essentially of at least about 10% by weight rhenium optionally alloyed with up to about 90% by weight tungsten or up to about 60% by weight molybdenum. In one embodiment, the spherical particles have an average diameter of less than about 150 microns, and more preferably, an average diameter within the range of from about 10 to about 50 microns. The powders according to the invention exhibit good flow characteristics and can be used to fabricate components having complicated shapes and configurations using conventional powder metallurgy techniques.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: April 22, 2003
    Assignee: Rhenium Alloys, Inc.
    Inventor: Todd A. Leonhardt
  • Publication number: 20030070509
    Abstract: A method of manufacturing niobium and/or tantalum powder consisting of: a first-stage reduction process of reducing niobium and/or tantalum oxides with alkali metals and/or alkaline-earth metals to obtain low-grade oxide powder represented by (NbTa) Ox, where x=0.06 to 0.35, a process of removing the oxide of alkali metals and/or alkaline-earth metals generated in the first-stage reduction process, and a second-stage reduction process of reducing the low-grade oxide powder obtained in the first-stage reduction process, with a melt solution of alkali metals and alkaline-earth metals to obtain niobium and/or tantalum powder.
    Type: Application
    Filed: October 10, 2002
    Publication date: April 17, 2003
    Inventors: Toshiyuki Osako, Tetsufumi Komukai
  • Publication number: 20030070508
    Abstract: A highly compressible iron powder for powder metallurgy has an optimized particle size distribution. The Vickers microhardness of the particles that do not pass through the sieve having the nominal opening of 150 &mgr;m is controlled to be at most about 110. The iron powder is suitable for production of magnetic parts having high magnetism and mechanical parts having high mechanical strength.
    Type: Application
    Filed: April 16, 2002
    Publication date: April 17, 2003
    Applicant: KAWASAKI STEEL CORPORATION
    Inventors: Yukiko Ozaki, Masateru Ueta, Naomichi Nakamura