Carbon Nanotubes (cnts) Patents (Class 977/742)
  • Patent number: 8986980
    Abstract: A technique is provided for a structure. A substrate has a nanopillar vertically positioned on the substrate. A bottom layer is formed beneath the substrate. A top layer is formed on top of the substrate and on top of the nanopillar, and a cover layer covers the top layer and the nanopillar. A window is formed through the bottom layer and formed through the substrate, and the window ends at the top layer. A nanopore is formed through the top layer by removing the cover layer and the nanopillar.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Gustavo A. Stolovitzky, Deqiang Wang
  • Patent number: 8987150
    Abstract: A fabric for use in chemical and biological (CB) protective garments includes at least one felt layer having from 25% to 100% carbon nanotube (CNT) fibers as a breathable physical barrier against toxic chemical droplets and/or pathogens. The felt layers are cleaned and consolidated into a mechanically competent sheet which can form adhesive seams having lapshear greater than the sheet itself. An additional supporting layer can be included. The supporting layer can be a wicking layer which is permeable with a chlorinated or otherwise chemically active solution to establish a reactive chemical barrier, the solution being dispensed on demand from a portable container. Embodiments include a second layer of CNT or of another backing fabric, sandwiching the wicking layer therebetween. Impermeable fluoropolymer seams can divide the fabric into a plurality of CNT/wicking cells. A layer of activated charcoal and/or halamine-forming hydantoin can be included for persistent reactive chemical protection.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: March 24, 2015
    Assignee: Warwick Mills Inc.
    Inventor: Charles A. Howland
  • Patent number: 8980137
    Abstract: A composite for providing electromagnetic shielding including a plurality of nanotubes; and a plurality of elongate metallic nanostructures.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: March 17, 2015
    Assignee: Nokia Corporation
    Inventors: Vladimir Alexsandrovich Ermolov, Markku Anttoni Oksanen, Khattiya Chalapat, Gheorghe Sorin Paraoanu
  • Patent number: 8981235
    Abstract: An electronic element includes a carbon nanotube film, at least one first electrode and at least one second electrode spaced from the at least one first electrode. The carbon nanotube film includes a number of carbon nanotube linear units spaced from each other, and a number of carbon nanotube groups. The carbon nanotube linear units extend along a first direction to form a number of first conductive paths. The carbon nanotube groups are combined with the carbon nanotube linear units by van der Waals force in a second direction intercrossed with the first direction, to form a number of second conductive paths. The carbon nanotube groups between adjacent carbon nanotube linear units are spaced from each other in the first direction. The at least one first and second electrodes are electrically connected with the carbon nanotube film through the first conductive paths or the second conductive paths.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: March 17, 2015
    Assignee: Beijing FUNATE Innovation Technology Co., Ltd.
    Inventors: Chen Feng, Li Qian, Yu-Quan Wang
  • Publication number: 20150069133
    Abstract: Chipless RFID tags (200, 210, 220, 230, 240, 250, 260, 310, 320, 330, 400, 410, 420, 500, 510, 520, 600, 610, and 620) are designed and fabricated from the structures of the nanotube elements and their patterns on a dielectric substrate (202, 311, 401, and 501 etc.) by thin film coating or printing following by a polymer curing process.
    Type: Application
    Filed: September 9, 2013
    Publication date: March 12, 2015
    Inventor: ZHENGFANG QIAN
  • Publication number: 20150068426
    Abstract: There is provided a liquid composition that can form a resistor exhibiting a stable resistance value. One mode of the liquid composition of the invention is a liquid composition comprising (a) an epoxy resin, (b) carbon black particles, (c) carbon nanotubes and (d) a solvent with a vapor pressure of less than 1.34×103 Pa at 25° C.
    Type: Application
    Filed: November 13, 2014
    Publication date: March 12, 2015
    Inventors: Yasushi Kumashiro, Naoki Maruyama, Maki Inada
  • Patent number: 8974719
    Abstract: A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: March 10, 2015
    Assignee: Consolidated Nuclear Security, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Patent number: 8974960
    Abstract: The present disclosure includes a sulfur-carbon nanotube composite comprising a sheet of carbon nanotubes and sulfur nucleated upon the carbon nanotubes, and methods for synthesizing the same. In some embodiments, the sulfur-carbon composite may further be binder-free and include a sheet of carbon nanotubes, rendering a binder and a current collector unnecessary. In other embodiments of the present disclosure, a cathode comprising the sulfur-carbon nanotube composite is disclosed. In additional embodiments of the present disclosure, batteries may include the cathodes described herein. Those batteries may achieve high rate capabilities.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: March 10, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Arumugam Manthiram, Yu-Sheng Su
  • Patent number: 8974904
    Abstract: A nanocomposite dry adhesive. The nanocomposite dry adhesive includes a substrate; and an array of vertically aligned single-walled carbon nanotubes or vertically aligned multi-walled carbon nanotubes on the substrate, wherein the nanocomposite dry adhesive utilizes the array of single-walled carbon nanotubes or multi-walled carbon nanotubes as synthesized, the as synthesized single-walled carbon nanotubes being substantially free of randomly entangled nanotube segments on top of the vertically aligned single-walled carbon nanotubes, the as synthesized multi-walled carbon nanotubes having randomly entangled nanotube segments on top of the vertically aligned multi-walled carbon nanotubes; wherein the dry adhesive has a normal adhesion strength of at least about 5 N·cm?2, and a shear adhesion strength of at least about 13 N·cm?2. Methods of making a nanocomposite dry adhesive are also described.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: March 10, 2015
    Assignee: University of Dayton
    Inventors: Liming Dai, Liangti Qu, Morley O. Stone
  • Publication number: 20150062450
    Abstract: A touch panel includes an insulative substrate, a first adhesive layer, a first transparent conductive layer, a second adhesive layer, a second transparent conductive layer, a number of first electrodes, a first conductive trace, a number of second electrode, and a second conductive trace. The insulative substrate, the first adhesive layer, the first transparent conductive layer, the second adhesive layer, and the second transparent conductive layer are stacked with each other in that order. The first transparent conductive layer and the second transparent conductive layer are electrically insulated from each other only by the second adhesive layer. The second adhesive layer only covers part of the first transparent conductive layer so that the first transparent conductive layer has at least part exposed. A method for making the touch panel is also related.
    Type: Application
    Filed: December 10, 2013
    Publication date: March 5, 2015
    Applicant: TIANJIN FUNAYUANCHUANG TECHNOLOGY CO.,LTD.
    Inventor: HO-CHIEN WU
  • Publication number: 20150062465
    Abstract: Disclosed are a touch window and a touch device including the same. The touch window includes first and second areas, wherein the second area is bentable from the first area.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 5, 2015
    Inventor: Jae Hak HER
  • Patent number: 8968605
    Abstract: The present invention relates to a conductive polymer composition for a PTC element with decreased NTC characteristics, using carbon nanotubes, a PTC binder resin, and a cellulose-based or polyester-based resin for fixing the carbon nanotubes and the PTC binder, and to a PTC element, a circuit and a sheet heating element using the same.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: March 3, 2015
    Assignee: LG Hausys, Ltd.
    Inventors: Seong-Hoon Yue, Yong-Bae Jung, Min-Hee Lee, Won-Kook Kim, Dong-Joo Kwon
  • Patent number: 8968924
    Abstract: Compositions, and methods of obtaining them, useful for lithium ion batteries comprising discrete oxidized carbon nanotubes having attached to their surface lithium ion active materials in the form of nanometer sized crystals or layers. The composition can further comprise graphene or oxygenated graphene.
    Type: Grant
    Filed: July 8, 2014
    Date of Patent: March 3, 2015
    Assignee: Molecular Rebar Design, LLC
    Inventors: Clive P. Bosnyak, Kurt W. Swogger
  • Patent number: 8968506
    Abstract: This disclosure is related to a method for making a touch panel. The method includes following steps. A substrate having a surface is provided, wherein the surface defining a touch-view area and a trace area. A first mask layer is supplied to cover the trace area. An adhesive layer is applied on the touch-view area. A carbon nanotube film is placed on the adhesive layer and the first mask layer. The adhesive layer is solidified. The first mask layer and part of the carbon nanotube film on the trace area are removed to expose the trace area. An electrode and a conductive trace are formed on the trace area.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: March 3, 2015
    Assignee: Shih Hua Technology Ltd.
    Inventors: Chun-Yi Hu, Yi-Lin Chang, Chih-Han Chao, Po-Sheng Shih
  • Patent number: 8968604
    Abstract: Disclosed is a single-walled carbon nanotube dispersion liquid containing a single-walled carbon nanotube, a fullerene and a solvent.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 3, 2015
    Assignee: Kuraray Co., Ltd.
    Inventor: Takahiro Kitano
  • Patent number: 8968582
    Abstract: A method of forming an electrode is disclosed. A carbon nanotube is deposited on a substrate. A section of the carbon nanotube is removed to form at least one exposed end defining a first gap. A metal is deposited at the at least one exposed end to form the electrode that defines a second gap.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Aaron D. Franklin, Joshua T. Smith, George S. Tulevski
  • Publication number: 20150048302
    Abstract: A light emitting diode includes a substrate, an un-doped GaN layer, a plurality of carbon nanotubes, an N-type GaN layer, an active layer formed on the N-type GaN layer, and a P-type GaN layer formed on the active layer. The substrate includes a first surface and a second surface opposite and parallel to the first surface. A plurality of convexes is formed on the first surface of the substrate. The un-doped GaN layer is formed on the first surface of the substrate. The plurality of carbon nanotubes is formed on an upper surface of the un-doped GaN layer. The plurality of carbon nanotubes is spaced from each other to expose a portion of the upper surface of the un-doped GaN layer. The N-type GaN layer is formed on the exposed portion of the upper surface of the un-doped GaN layer and covering the carbon nanotubes therein.
    Type: Application
    Filed: March 20, 2014
    Publication date: February 19, 2015
    Applicant: ADVANCED OPTOELECTRONIC TECHNOLOGY, INC.
    Inventors: YA-WEN LIN, CHING-HSUEH CHIU, PO-MIN TU, SHIH-CHENG HUANG
  • Patent number: 8957690
    Abstract: The present invention relates to a micro contact probe used for a probe card. An exemplary embodiment of the present invention provides a micro contact probe including a coating layer of a nanostructure such as carbon nanotubes formed on a surface thereof to reduce contact resistance when contacting a semiconductor chip. According to the micro contact probe of which the surface is coated with the nanostructure, contact resistance between the probe and the semiconductor chip is lowered and the high frequency characteristics are improved, such that a more accurate measurement can be obtained.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: February 17, 2015
    Assignee: Korea Institute of Machinery & Materials
    Inventors: Jung-Yup Kim, Hak-Joo Lee, Chang-Soo Han
  • Patent number: 8956556
    Abstract: The present application is directed to dielectric isolators for use in aircraft fuel systems to control lightning induced current and allow dissipation of electrostatic charge. The dielectric isolators are configured to have a high enough impedance to limit lightning currents to low levels, but low enough impedance to allow electrostatic charge to dissipate without allowing buildup. Although the dielectric isolators may develop a potential difference across the dielectric length due to the effects of lightning currents and its inherent impedance, they are configured to withstand these induced voltages without dielectric breakdown or performance degradation. In one embodiment, the dielectric isolator includes a tube constructed of a composition including a thermoplastic organic polymer (e.g., PEEK) and carbon nanotubes, and a pair of fittings attached to opposing ends of the tube.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: February 17, 2015
    Assignee: Eaton Corporation
    Inventors: Clifton P. Breay, Sara D. Pfannenstiel, Stephen C. Matthews, Edward W. S. Bryant
  • Patent number: 8958153
    Abstract: An optical polarizer includes a supporting element and an optical polarizing film supported by the supporting element. The optical polarizing film includes a carbon nanotube film structure and a metallic layer disposed on the carbon nanotube film structure.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: February 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chen Feng, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8958579
    Abstract: A thermoacoustic device includes a substrate, a sound wave generator and a signal device. The substrate has a net structure and includes a number of first wires and a number of second wires. The first wires and the second wires are crossed with each other. Each of the first wires includes a composite wire. The composite wire includes a carbon nanotube wire structure and a coating layer wrapping the carbon nanotube wire structure. The sound wave generator is located on a surface of the substrate and includes a carbon film. The signal input device is configured to input signals to the sound wave generator.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: February 17, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Xiao-Yang Lin, Lin Xiao, Shou-Shan Fan
  • Patent number: 8958207
    Abstract: The electronic device includes a heat generator 54, a heat radiator 58, and a heat radiation material 56 disposed between the heat generator 54 and the heat radiator 58 and including a plurality of linear structures 12 of carbon atoms and a filling layer 14 formed of a thermoplastic resin and disposed between the plurality of linear structures 12.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: February 17, 2015
    Assignee: Fujitsu Limited
    Inventors: Yoshitaka Yamaguchi, Taisuke Iwai, Shinichi Hirose, Daiyu Kondo, Ikuo Soga, Yohei Yagishita, Yukie Sakita
  • Publication number: 20150041763
    Abstract: Embodiments of the present invention provide a method of forming carbon nanotube based semiconductor devices. The method includes creating a guiding structure in a substrate for forming a device; dispersing a plurality of carbon nanotubes inside the guiding structure, the plurality of carbon nanotubes having an orientation determined by the guiding structure; fixating the plurality of carbon nanotubes to the guiding structure; and forming one or more contacts to the device. Structure of the formed carbon nanotube device is also provided.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Lawrence A. Clevenger, Chandrasekhar Narayan, Gregory Allen Northrop, Carl John Radens, Brian Christopher Sapp
  • Patent number: 8951632
    Abstract: A composition includes a carbon nanotube (CNT)-infused carbon fiber material that includes a carbon fiber material of spoolable dimensions and carbon nanotubes (CNTs) infused to the carbon fiber material. The infused CNTs are uniform in length and uniform in distribution. The CNT infused carbon fiber material also includes a barrier coating conformally disposed about the carbon fiber material, while the CNTs are substantially free of the barrier coating. A continuous CNT infusion process includes: (a) functionalizing a carbon fiber material; (b) disposing a barrier coating on the functionalized carbon fiber material (c) disposing a carbon nanotube (CNT)-forming catalyst on the functionalized carbon fiber material; and (d) synthesizing carbon nanotubes, thereby forming a carbon nanotube-infused carbon fiber material.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: February 10, 2015
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Tushar K. Shah, Slade H. Gardner, Mark R. Alberding, Harry C. Malecki
  • Patent number: 8951942
    Abstract: A method for the preparation of carbon nanotube modified fluids such, that the dispersion of nanotubes in such fluids, exampled by those which are oil based is enhanced through the combined use of mechanical, sonic and ultrasonic devices.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 10, 2015
    Inventors: Martin Pick, Krzysztof Kazimiers Koziol, Alan Hardwick Windle
  • Patent number: 8951602
    Abstract: A method for depositing high aspect ratio molecular structures (HARMS), which method comprises applying a force upon an aerosol comprising one or more HARM-structures, which force moves one or more HARM-structures based on one or more physical features and/or properties towards one or more predetermined locations for depositing one or more HARM-structures in a pattern by means of an applied force.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: February 10, 2015
    Assignee: Canatu Oy
    Inventors: David P. Brown, Albert G. Nasibulin, Esko I. Kauppinen, David Gonzales
  • Patent number: 8951444
    Abstract: In a method for functionalizing a carbon nanotube surface, the nanotube surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the nanotube surface, providing chemically functional groups at the nanotube surface, producing a functionalized nanotube surface. A functionalized nanotube surface can be exposed to at least one vapor stabilization species that reacts with the functionalization layer to form a stabilization layer that stabilizes the functionalization layer against desorption from the nanotube surface while providing chemically functional groups at the nanotube surface, producing a stabilized nanotube surface. The stabilized nanotube surface can be exposed to at least one material layer precursor species that deposits a material layer on the stabilized nanotube surface.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: February 10, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer
  • Patent number: 8951631
    Abstract: A composition includes a carbon nanotube (CNT)-infused metal fiber material which includes a metal fiber material of spoolable dimensions, a barrier coating conformally disposed about the metal fiber material, and carbon nanotubes (CNTs) infused to the metal fiber material. A continuous CNT infusion process includes: (a) disposing a barrier coating and a carbon nanotube (CNT)-forming catalyst on a surface of a metal fiber material of spoolable dimensions; and (b) synthesizing carbon nanotubes on the metal fiber material, thereby forming a carbon nanotube-infused metal fiber material.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: February 10, 2015
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Tushar K. Shah, Slade H. Gardner, Mark R. Alberding, Harry C. Malecki
  • Publication number: 20150036797
    Abstract: An intraoral radiation device comprises a biocompatible intraoral receptacle with an X-ray source therein.
    Type: Application
    Filed: August 5, 2013
    Publication date: February 5, 2015
    Inventor: EHUD NACHALIEL
  • Publication number: 20150035411
    Abstract: A pressing force sensor that includes a flat membrane piezoelectric element and a support. The flat membrane piezoelectric element includes a piezoelectric sheet having a piezoelectric constant d14. A first electrode is formed on a first main surface of the piezoelectric sheet and a second electrode is formed on a second main surface thereof. Long directions of the first electrode and the second electrode and a uniaxial stretching direction of the piezoelectric sheet form an angle of 45°. An opening portion having an elliptical section is formed on the support. The flat membrane piezoelectric element abuts the opening portion of the support. The support and the flat membrane piezoelectric element are disposed such that the opening portion is included within an area of the second electrode.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 5, 2015
    Inventors: Hideki Kawamura, Masamichi Ando
  • Publication number: 20150037239
    Abstract: A method for dispersing nanotubes, comprising forming a nanocomposite solution with associated nanotubes and nanoplatelets, mixing a surfactant to the nanocomposite solution, separating the nanocomposite in solution, wherein the nanotubes remain suspended in the surfactant solution, and isolating the nanotubes in solution. In certain instances, the method further comprises functionalizing the nanotubes in solution.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 5, 2015
    Applicants: KANEKA NORTH AMERICA LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Hung-Jue SUE, Xi ZHANG, Riichi NISHIMURA
  • Patent number: 8946683
    Abstract: The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: February 3, 2015
    Assignees: The Board of Trustees of the University of Illinois, Purdue Research Foundation
    Inventors: John A. Rogers, Qing Cao, Muhammad Alam, Ninad Pimparkar
  • Patent number: 8940444
    Abstract: Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: January 27, 2015
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Thomas Gennett, David S. Ginley, Wade Braunecker, Chunmei Ban, Zbyslaw Owczarczyk
  • Patent number: 8940815
    Abstract: A resin composition comprising a polyolefin, carbon nanotubes and poly(hydroxy carboxylic acid). The invention also covers a process for preparing a resin composition comprising a polyolefin, carbon nanotubes and poly(hydroxy carboxylic acid) by (i) blending a poly(hydroxy carboxylic acid) with carbon nanotubes to form a composite (ii) blending the composite with a polyolefin. The use of poly(hydroxy carboxylic acids) as a compatibilizer to blend carbon nanotubes into polyolefins is also claimed.
    Type: Grant
    Filed: August 25, 2008
    Date of Patent: January 27, 2015
    Assignee: Total Research & Technology Feluy
    Inventors: Guy Debras, Romain Luijkx
  • Patent number: 8940628
    Abstract: A method of manufacturing an interconnection of an embodiment includes: forming a via which penetrates an interlayer insulation film on a substrate; forming an underlying film in the via; removing the underlying film on a bottom part of the via; forming a catalyst metal inactivation film on the underlying film; removing the inactivation film on the bottom part of the via; forming a catalyst metal film on the bottom part of the via on which the inactivation film is removed; performing a first plasma treatment and a second plasma treatment using a gas not containing carbon on a member in which the catalyst metal film is formed; forming a graphite layer on the catalyst film after the first and second plasma treatment processes; and causing a growth of a carbon nanotube from the catalyst film on which the graphite layer is formed.
    Type: Grant
    Filed: December 26, 2013
    Date of Patent: January 27, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yuichi Yamazaki, Tadashi Sakai
  • Patent number: 8940937
    Abstract: Disclosed is a novel method for the selective molecular conversion of raw material carbon nanotubes containing a mixture of metallic carbon nanotubes and semiconductive carbon nanotubes in a manner that is based on the electrical properties or diameter of the carbon nanotubes. The present invention causes a photoreaction of raw material carbon nanotubes containing a mixture of metallic carbon nanotubes and semiconductive carbon nanotubes with a disulfide or a sulfide of the following formula (I) or (II) (wherein R1 and R2 each independently represent a hydrocarbon group that may have a substituent) in an organic solvent that contains the raw material carbon nanotubes and the disulfide of the formula (I) or the sulfide of the formula (II), so as to selectively functionalize the metallic carbon nanotubes, or functionalize the carbon nanotubes diameter selectively.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: January 27, 2015
    Assignee: Japan Science and Technology Agency
    Inventors: Yutaka Maeda, Takeshi Akasaka
  • Patent number: 8940244
    Abstract: The present invention relates to hierarchical structured nanotubes, to a method for preparing the same and to an application for the same, wherein the nanotubes include a plurality of connecting nanotubes for constituting a three-dimensional multi-dendrite morphology; and the method includes the following steps: (A) providing a polymer template including a plurality of organic nanowires; (B) forming an inorganic layer on the surface of the organic nanowires in the polymer template; and (C) performing a heat treatment on the polymer template having the inorganic layer on the surface so that partial atoms of the organic nanowires enter the inorganic layer.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: January 27, 2015
    Assignee: National Tsing Hua University
    Inventors: Hsueh-Shih Chen, Po-Hsun Chen, Jeng Liang Kuo, Tsong-Pyng Perng
  • Patent number: 8940190
    Abstract: A composite for providing electromagnetic shielding including a plurality of nanotubes; and a plurality of elongate metallic nanostructures.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Nokia Corporation
    Inventors: Vladimir Alexsandrovich Ermolov, Markku Anttoni Oksanen, Khattiya Chalapat, Gheorghe Sorin Paraoanu
  • Patent number: 8940193
    Abstract: One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 27, 2015
    Assignee: Littelfuse, Inc.
    Inventors: Lex Kosowsky, Robert Fleming
  • Patent number: 8940453
    Abstract: An electrode catalyst for a fuel cell includes a complex support including at least one metal oxide and carbon-based material; and a palladium (Pd)-based catalyst supported by the complex support. A method of manufacturing the electrode catalyst includes dissolving a precursor of a palladium (Pd)-based catalyst in a solvent and preparing a mixture solution for a catalyst; adding a complex support including at least one metal oxide and a carbon-based material to the mixture solution for a catalyst and stirring the mixture solution to which the complex support is added; drying the mixture solution for a catalyst, to which the complex support is added, in order to disperse the precursor of the Pd-based catalyst on the complex support; and reducing the precursor of the Pd-based catalyst dispersed on the complex support. A fuel cell includes the electrode catalyst.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seon-ah Jin, Chan-ho Pak, Kyung-jung Kwon, Kang-hee Lee, Dae-jong Yoo, Jong-won Lee
  • Patent number: 8936681
    Abstract: A method for making an epitaxial structure is provided. The method includes the following steps. A substrate is provided. The substrate has an epitaxial growth surface for growing epitaxial layer. A carbon nanotube layer is placed on the epitaxial growth surface. An epitaxial layer is epitaxially grown on the epitaxial growth surface. The carbon nanotube layer is removed. The carbon nanotube layer can be removed by heating.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: January 20, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8932481
    Abstract: A cathode active material includes a core including a material having an olivine structure, and a nitrogen atom doped into at least a portion of the core.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: January 13, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kyu-sung Park, Young-min Choi
  • Patent number: 8933496
    Abstract: A method and apparatus for making analog and digital electronics which includes a composite including a squishable material doped with conductive particles. A microelectromechanical systems (MEMS) device has a channel made from the composite, where the channel forms a primary conduction path for the device. Upon applied voltage, capacitive actuators squeeze the composite, causing it to become conductive. The squishable device includes a control electrode, and a composite electrically and mechanically connected to two terminal electrodes. By applying a voltage to the control electrode relative to a first terminal electrode, an electric field is developed between the control electrode and the first terminal electrode. This electric field results in an attractive force between the control electrode and the first terminal electrode, which compresses the composite and enables electric control of the electron conduction from the first terminal electrode through the channel to the second terminal electrode.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: January 13, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Vladimir Bulovic, Jeffrey H. Lang, Sarah Paydavosi, Annie I-Jen Wang, Trisha L. Andrew, Apoorva Murarka, Farnaz Niroui, Frank Yaul, Jeffrey C. Grossman
  • Publication number: 20150010788
    Abstract: Provided herein are electrochemical systems and related methods of making and using electrochemical systems. Electrochemical systems of the invention implement novel cell geometries and composite carbon nanomaterials based design strategies useful for achieving enhanced electrical power source performance, particularly high specific energies, useful discharge rate capabilities and good cycle life. Electrochemical systems of the invention are versatile and include secondary lithium ion cells, such as silicon-sulfur lithium ion batteries, useful for a range of important applications including use in portable electronic devices.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 8, 2015
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Adrianus I. ARIA, Morteza GHARIB
  • Patent number: 8926934
    Abstract: A method for growing an array of carbon nanotubes includes the steps of: (a) providing a substrate; (b) forming a catalyst film on the substrate, the catalyst film including carbonaceous material; (c) introducing a mixture of a carrier gas and a carbon source gas flowing across the catalyst film; (d) focusing a laser beam on the catalyst film to locally heat the catalyst to a predetermined reaction temperature; and (e) growing an array of the carbon nanotubes from the substrate.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: January 6, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai-Li Jiang, Zhuo Chen, Chun-Xiang Luo, Shou-Shan Fan
  • Patent number: 8926933
    Abstract: The present invention is directed to methods of making nanofiber yarns. In some embodiments, the nanotube yarns comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: January 6, 2015
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Mei Zhang, Ray H. Baughman, Kenneth Ross Atkinson
  • Patent number: 8929076
    Abstract: A heat-dissipation structure includes a first carbon nanotube layer and a metal mesh layer. The first carbon nanotube layer and the metal mesh layer are stacked on each other. The first carbon nanotube layer includes at least one first carbon nanotube paper. An electronic device applying the heat-dissipation structure is also disclosed.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: January 6, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ling Zhang, Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 8921612
    Abstract: A supported noble metal catalyst comprising palladium salts enveloped by colloids applied to the support is produced by hydrolysing a palladium salt solution by means of a base and applying the colloidal suspension to a support. The catalyst can be used in hydrogenations.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: December 30, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Konrad Möbus, Tracy Dunn, Baoshu Chen
  • Patent number: 8917079
    Abstract: A reference potential adjusting apparatus is provided. The reference potential adjusting apparatus includes a reference potential measuring unit configured to measure a potential of a solution, a counter electrode disposed in the solution, and configured to change the potential of the solution through oxidation-reduction reactions with the solution, and a comparator configured to compare a measurement voltage provided by the reference voltage measuring unit to a reference voltage provided by a reference voltage supply unit, and to adjust reactions of the counter electrode with the solution according to the result of the comparison. The reference potential measuring unit includes a reference electrode, a common electrode disposed to be spaced apart from the reference electrode, and at least one nano structure contacting the reference electrode and the common electrode, and having electrical conductivity changing according to the potential of the solution.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: December 23, 2014
    Assignee: SNU R&DB Foundation
    Inventors: Jin Hong Ahn, Young June Park
  • Patent number: 8916081
    Abstract: A method for using a Poisson's ratio material includes a carbon nanotube film structure is provided. The carbon nanotube film structure includes a plurality of carbon nanotubes. A first part of the carbon nanotubes are aligned a first direction, a second part of the carbon nanotubes are aligned a second direction. The first direction is substantially perpendicular to second direction. When the Poisson's ratio material is stretched or compressed substantially along the first or second direction, a Poisson's ratio value is negative.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: December 23, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Lu-Zhuo Chen, Chang-Hong Liu, Jia-Ping Wang, Shou-Shan Fan