Nanosheet Or Quantum Barrier/well (i.e., Layer Structure Having One Dimension Or Thickness Of 100 Nm Or Less) Patents (Class 977/755)
  • Publication number: 20130256137
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: LUX BIO GROUP, INC.
    Inventor: Gordon HOLT
  • Publication number: 20130260371
    Abstract: Described are devices and methods for forming one or more nanomembranes including electroactive nanomembranes within a nanowell or nanotube, or combinations thereof, in a support material. Nanopores/nanochannels can be formed by the electroactive nanomembrane within corresponding nanowells. The electroactive nanomembrane is capable of controllably altering a dimension, a composition, and/or a variety of properties in response to electrical stimuli. Various embodiments also include devices/systems and methods for using the nanomembrane-containing devices for molecular separation, purification, sensing, etc.
    Type: Application
    Filed: April 2, 2012
    Publication date: October 3, 2013
    Applicant: LUX BIO GROUP, INC.
    Inventor: Gordon HOLT
  • Publication number: 20130260234
    Abstract: A longer-lasting lithium battery cathode includes a current collector, a cathode active material layer, and a protective film. The cathode active material layer is coated on the current collector. The protective film layer is coated on the cathode active material layer, and the protective film layer consists of inorganic particles.
    Type: Application
    Filed: August 13, 2012
    Publication date: October 3, 2013
    Applicants: UER TECHNOLOGY CORPORATION, UER TECHNOLOGY (SHENZHEN) LIMITED
    Inventors: BOR-YUAN HSIAO, CHENG-CHUNG CHIU, CHIEN-FANG HUANG
  • Publication number: 20130248482
    Abstract: Disclosed is a method of patterning a layered material. A layered material is provided, and a photoresist layer is formed thereon. The photoresist layer is patterned by a focused laser beam to expose a part of the layered material. The exposed layered material is etched to pattern the layered material.
    Type: Application
    Filed: September 11, 2012
    Publication date: September 26, 2013
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chin-Tien YANG, Ming-Chia LI, Chung-Ta CHENG
  • Patent number: 8542540
    Abstract: Embodiments of tunneling barriers and methods for same can embed modules exhibiting a monodispersion characteristic into a dielectric layer (e.g., between first and second layers forming a dielectric layer). In one embodiment, by embedding C60 molecules inbetween first and second insulating layers forming a dielectric layer, a field sensitive tunneling barrier can be implemented. In one embodiment, the tunneling barrier can be between a floating gate and a channel in a semiconductor structure. In one embodiment, a tunneling film can be used in nonvolatile memory applications where C60 provides accessible energy levels to prompt resonant tunneling through the dielectric layer upon voltage application.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: September 24, 2013
    Assignee: Cornell University
    Inventors: Edwin C. Kan, Tuo-Hung Hou
  • Publication number: 20130242283
    Abstract: A lightweight, low volume, inexpensive LADAR sensor incorporating 3-D focal plane arrays is adapted specifically for personal electronic appliances. The present invention generates, at high speed, 3-D image maps and object data at short to medium ranges. The techniques and structures described may be used to extend the range of long range systems as well, though the focus is on compact, short to medium range ladar sensors suitable for use in personal electronic devices. 3-D focal plane arrays are used in a variety of physical configurations to provide useful new capabilities to a variety of personal electronic appliances.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: Advanced Scientific Concepts, Inc.
    Inventors: Howard Bailey, Patrick Gilliland, Barton Goldstein, Laurent Heughebaert, Brad Short, Joseph Spagnolia, Roger Stettner
  • Publication number: 20130240350
    Abstract: An electronic device housing includes a substrate and a nano titanium dioxide coating formed on the substrate. The nano titanium dioxide coating has a thickness of about 10-100 nm. The nano titanium dioxide coating is formed of rutile crystals or composite crystals formed of rutile and anatase. A method for making the electronic device is also described.
    Type: Application
    Filed: May 14, 2013
    Publication date: September 19, 2013
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventors: CHWAN-HWA CHIANG, QI-JIAN DU
  • Publication number: 20130240907
    Abstract: An electron multiplier for a system for detecting electromagnetic radiation or an ion flow is disclosed. The multiplier includes at least one active structure intended to receive a flow of incident electrons, and to emit in response a flow of electrons called secondary electrons. The active structure includes a substrate on which is positioned a thin nanodiamond layer formed from diamond particles the average size of which is less than or equal to about 100 nm.
    Type: Application
    Filed: September 9, 2011
    Publication date: September 19, 2013
    Applicant: PHOTONIS FRANCE
    Inventors: Gert Nutzel, Pascal Lavoute, Richard B. Jackman
  • Publication number: 20130235491
    Abstract: A heat enabled magnetic media having a composite magnetic recording layer structure that includes first and second magnetic layers and an exchange coupling layer sandwiched between the first and second magnetic layers. The exchange coupling layer has a reduced Curie temperature that allows the magnetic layers to become decoupled a lower temperature. This reduced Curie temperature can be achieved the addition of an alloying element such as Ni or Cu into the exchange coupling layer. Therefore, the exchange coupling layer can be constructed of an alloy such as FePtNi FePtCu, and the magnetic layers can be constructed of a material such as FePt.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 12, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Oleksandr Mosendz, Hans J. Richter
  • Patent number: 8524600
    Abstract: Embodiments of the invention provide methods for forming materials on a substrate used for metal gate and other applications. In one embodiment, a method includes forming a cobalt stack over a barrier layer disposed on a substrate by depositing a cobalt layer during a deposition process, exposing the cobalt layer to a plasma to form a plasma-treated cobalt layer during a plasma process, and repeating the cobalt deposition process and the plasma process to form the cobalt stack containing a plurality of plasma-treated cobalt layers. The method further includes exposing the cobalt stack to an oxygen source gas to form a cobalt oxide layer from an upper portion of the cobalt stack during a surface oxidation process and heating the remaining portion of the cobalt stack to a temperature within a range from about 300° C. to about 500° C. to form a crystalline cobalt film during a thermal annealing crystallization process.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 3, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Yu Lei, Xinyu Fu, Anantha Subramani, Seshadri Ganguli, Srinivas Gandikota
  • Publication number: 20130220405
    Abstract: A process for manufacturing colloidal nanosheet, by lateral growth, on an initial colloidal nanocrystal, of a crystalline semiconductor material represented by the formula MnXy, where M is a transition metal and X a chalcogen. The process includes the following steps: The preparation of a first organic solution, non or barely coordinating used as a synthesis solvent and including at least one initial colloidal nanocrystal; The preparation of a second organic solution including precursors of M and X, and including an acetate salt. And the slow introduction over a predetermined time scale of a predetermined amount of the second solution in a predetermined amount of the first solution, at a predetermined temperature for the growth of nanosheets. The use of the obtained material is also presented.
    Type: Application
    Filed: October 24, 2011
    Publication date: August 29, 2013
    Applicant: SOLARWELL
    Inventors: Benoit Mahler, Sandrine Ithurria
  • Publication number: 20130221323
    Abstract: The invention relates to light-emitting devices, and related components, systems and methods. In one aspect, the present invention is related to light emitting diode (LED) light extraction efficiency. A non-limiting example, the application teaches a method for improving light emitting diode (LED) extraction efficiency, by providing a nano-rod light emitting diode; providing quantum wells; and reducing the size of said nano-rod LED laterally in the quantum-well plane (x and y), thereby improving LED extraction efficiency.
    Type: Application
    Filed: August 16, 2011
    Publication date: August 29, 2013
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Mei-Ling Kuo, Shawn-Yu Lin, Yong-Sung Kim, Mei-Li Hsieh
  • Publication number: 20130217565
    Abstract: Two methods of producing nano-pads of catalytic metal for growth of single walled carbon nanotubes (SWCNT) are disclosed. Both methods utilize a shadow mask technique, wherein the nano-pads are deposited from the catalytic metal source positioned under the angle toward the vertical walls of the opening, so that these walls serve as a shadow mask. In the first case, the vertical walls of the photo-resist around the opening are used as a shadow mask, while in the second case the opening is made in a thin layer of the dielectric layer serving as a shadow mask. Both methods produce the nano-pad areas sufficiently small for the growth of the SWCNT from the catalytic metal balls created after high temperature melting of the nano-pads.
    Type: Application
    Filed: February 21, 2012
    Publication date: August 22, 2013
    Inventor: Alexander Kastalsky
  • Publication number: 20130216894
    Abstract: An inorganic material based surface-mediated cell (SMC) comprising (a) a cathode comprising a non-carbon-based inorganic cathode active material having a surface area to capture and store lithium thereon; (b) an anode comprising an anode current collector alone or both an anode current collector and an anode active material; (c) a porous separator; (d) a lithium-containing electrolyte in physical contact with the two electrodes, wherein the cathode has a specific surface area no less than 100 m2/g which is in direct physical contact with said electrolyte to receive lithium ions therefrom or to provide lithium ions thereto; and (e) a lithium source. This inorganic SMC provides both high energy density and high power density not achievable by supercapacitors and lithium-ion cells.
    Type: Application
    Filed: February 16, 2012
    Publication date: August 22, 2013
    Inventors: Yanbo Wang, Guorong Chen, Zhenning Yu, Bor Z. Jang, Aruna Zhamu
  • Publication number: 20130209673
    Abstract: The present application provides a heterojunction nano material, a negative pole piece of a lithium ion battery, and a lithium ion battery, where the heterojunction nano material includes a MoO3 nanobelt and a metal oxide in the alloy lithium intercalation mechanism coated on the surface of the MoO3 nanobelt. The negative pole piece of the lithium ion battery uses the heterojunction nano material as an active material, and the lithium ion battery using the negative pole piece of the lithium ion battery has a large reversible specific capacity and a high cycle stability.
    Type: Application
    Filed: December 19, 2012
    Publication date: August 15, 2013
    Applicant: Huawei Technologies Co., Ltd.
    Inventor: Huawei Technologies Co., Ltd.
  • Publication number: 20130209881
    Abstract: A negative active material and a lithium battery including the negative active material. The negative active material includes a non-carbonaceous nanoparticle capable of doping or undoping lithium; and a crystalline carbonaceous nano-sheet, wherein at least one of the non-carbonaceous nanoparticle and the crystalline carbonaceous nano-sheet includes a first amorphous carbonaceous coating layer on its surface, and thus an electrical conductivity thereof is improved. In addition, a lithium battery including the negative active material has an improved efficiency and lifetime.
    Type: Application
    Filed: August 3, 2012
    Publication date: August 15, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Ui-Song Do, Chang-Su Shin, So-Ra Lee, Beom-Kwon Kim, Jae-Myung Kim
  • Publication number: 20130207162
    Abstract: A field effect transistor and method of fabrication are provided. The field effect transistor comprises a plurality of elongated uniaxially-strained SiGe regions disposed on a silicon substrate, oriented such that they are in parallel to the direction of flow of electrical carriers in the channel. The elongated uniaxially-strained SiGe regions are oriented perpendicular to, and traverse through the transistor gate.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: International Business Machines Corporation
    Inventors: ALI KHAKIFIROOZ, Thomas N. Adam, Kangguo Cheng, Alexander Reznicek
  • Publication number: 20130207235
    Abstract: Aspects of the invention provide a method of forming a bipolar junction transistor. The method includes: providing a semiconductor substrate including a uniform silicon nitride layer over an emitter pedestal, and a base layer below the emitter pedestal; applying a photomask at a first end and a second end of a base region; and performing a silicon nitride etch with the photomask to simultaneously form silicon nitride spacers adjacent to the emitter pedestal and exposing the base region of the bipolar junction transistor. The silicon nitride etch may be an end-pointed etch.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Margaret A. Faucher, Paula M. Fisher, Thomas H. Gabert, Joseph P. Hasselbach, Qizhi Liu, Glenn C. MacDougall
  • Patent number: 8507890
    Abstract: An infrared photoconversion device comprising a collector with at least an active layer made of a single sheet of doped single-layer, bilayer, or multilayer graphene patterned as nanodisks or nanoribbons. The single sheet of doped graphene presents high absorbance and thus, the efficiency of devices such as photovoltaic cells, photodetectors, and light emission devices can be improved by using graphene as the central absorbing or emitting element. These devices become tunable because their peak absorption or emission wavelength is changed via electrostatic doping of the graphene.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: August 13, 2013
    Assignees: Fundacio Institut de Ciencies Fotoniques, Consejo Superior de Investigaciones Cientificas
    Inventors: Frank Koppens, Francisco Javier García de Abajo
  • Patent number: 8507893
    Abstract: Provided are an electronic device and a light-receiving and light-emitting device which can control the electron configuration of a graphene sheet and the band gap thereof, and an electronic integrated circuit and an optical integrated circuit which use the devices. By shaping the graphene sheet into a curve, the electron configuration thereof is controlled. The graphene sheet can be shaped into a curve by forming the sheet on a base film having a convex structure or a concave structure. The local electron states in the curved part can be formed by bending the graphene sheet. Thus, the same electron states as the cylinder or cap part of a nanotube can be realized, and the band gaps at the K points in the reciprocal lattice space can be formed.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: August 13, 2013
    Assignee: Hitachi, Ltd.
    Inventor: Makoto Okai
  • Publication number: 20130199612
    Abstract: Provided are a hydrophobic antireflective substrate, a method for manufacturing the same, and a solar cell module including the same. The hydrophobic antireflective substrate includes: a substrate; a nanostructured layer having nanostructured portions formed on the substrate and nanoporous portions formed between the nanostructured portions; and a hydrophobic coating film formed on the nanostructured portions. The method for manufacturing a hydrophobic antireflective substrate includes: forming a nanostructured layer having nanostructured portions and nanoporous portions formed between the nanostructured portions on a substrate; and forming a hydrophobic coating film on the nanostructured portions.
    Type: Application
    Filed: November 15, 2012
    Publication date: August 8, 2013
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Korea Institute of Science and Technology
  • Publication number: 20130200299
    Abstract: A nanocomposite fluid includes a fluid medium; and a nanoparticle composition comprising nanoparticles which are electrically insulating and thermally conductive. A method of making the nanocomposite fluid includes forming boron nitride nanoparticles; dispersing the boron nitride nanoparticles in a solvent; combining the boron nitride nanoparticles and a fluid medium; and removing the solvent.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Ashley Leonard, Joshua C. Falkner
  • Publication number: 20130200334
    Abstract: A quantum well-based p-i-n light emitting diode is provided that includes nanopillars with an average linear dimension of between 50 nanometers and 1 micron. The nanopillars include a laminar layer of quantum wells capable of non-radiative energy transfer to quantum dot nanocrystals. Quantum dot-Quantum well coupling through the side walls of the nanopillar-configured LED structure achieves a close proximity between quantum wells and quantum dots while retaining the overlying contact electrode structures. A white LED with attractive properties relative to conventional incandescent and fluorescence lighting devices is produced.
    Type: Application
    Filed: January 18, 2013
    Publication date: August 8, 2013
    Applicant: THE PENN STATE RESEARCH FOUNDATION
    Inventor: THE PENN STATE RESEARCH FOUNDATION
  • Patent number: 8500887
    Abstract: The present application provides a protected solid adsorbent that includes a solid adsorbent substrate and a surface layer at least partially coating the solid adsorbent substrate, the surface layer being generally permeable to an active agent. Additionally, a process for protecting a solid adsorbent and an adsorption system that includes a vessel containing the protected solid adsorbent is provided.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen S. Yeganeh, Bhupender S. Minhas, Sufang Zhao, Tahmid I. Mizan, Richard W. Flynn
  • Publication number: 20130193527
    Abstract: The present disclosure includes micro-electro mechanical system (MEMS) structures and methods of forming the same. Substrates of the MEMS structures are bonded together by fusion bonding at high processing temperatures, which enables more complete removal of chemical species from the dielectric materials in the substrates prior to sealing cavities of the MEMS structures. Fusion bonding of MEMS structures reduces outgassing of chemical species and is compatible with the cavity formation process. The MEMS structures bonded by fusion bonding are mechanically stronger compared to eutectic bonding due to a higher bonding ratio. In addition, fusion bonding enables the formation of through substrate vias (TSVs) in the MEMS structures.
    Type: Application
    Filed: March 23, 2012
    Publication date: August 1, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Hua CHU, Kuei-Sung CHANG, Te-Hao LEE
  • Publication number: 20130187114
    Abstract: A non-volatile memory device includes a plurality of non-volatile memory cells. Each of the non-volatile memory cells includes a first electrode, a diode steering element, a storage element located in series with the diode steering element, a second electrode, and a nano-rail electrode having a width of 15 nm or less.
    Type: Application
    Filed: January 23, 2012
    Publication date: July 25, 2013
    Applicant: SanDisk 3D LLC
    Inventors: James K. Kai, Henry Chien, George Matamis, Vinod R. Purayath
  • Publication number: 20130187110
    Abstract: Embodiments of the invention generally include a method of forming a nonvolatile memory device that contains a resistive switching memory element that has improved device switching performance and lifetime, due to the addition of a current limiting component disposed therein. The electrical properties of the current limiting component are configured to lower the current flow through the variable resistance layer during the logic state programming steps by adding a fixed series resistance in the resistive switching memory element of the nonvolatile memory device. In one embodiment, the current limiting component comprises a tunnel oxide that is a current limiting material disposed within a resistive switching memory element in a nonvolatile resistive switching memory device.
    Type: Application
    Filed: January 19, 2012
    Publication date: July 25, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Mihir Tendulkar, Imran Hashim, Yun Wang
  • Publication number: 20130186458
    Abstract: A design of a quantum well region that allows faster and more efficient carrier collection in quantum well solar cells. It is shown that for a quantum well material system displaying a negligible valence band offset, the conduction band confinement energies and barrier thicknesses can be designed to favor a sequential thermionic promotion and resonant tunneling of electrons to the conduction band continuum resulting in faster carrier collection rates than for a conventional design. An evaluation of the proposed design in the context of devices incorporating GaAs/GaAsN quantum wells shows a collection of all photo-generated carriers within several to tenths of ps (10?12 s) from deep quantum wells rather than several ns, as it is the case for conventional designs. The incorporation of the proposed design in single and multijunction solar cells is evaluated with efficiency enhancements.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 25, 2013
    Applicant: The University of Houston System
    Inventors: Alexandre Freundlich, Andenet Alemu
  • Publication number: 20130181326
    Abstract: An improved semiconductor capacitor and method of fabrication is disclosed. A MIM stack, comprising alternating first-type and second-type metal layers (each separated by dielectric) is formed in a deep cavity. The entire stack can be planarized, and then patterned to expose a first area, and selectively etched to recess all first metal layers within the first area. A second selective etch is performed to recess all second metal layers within a second area. The etched recesses can be backfilled with dielectric. Separate electrodes can be formed; a first electrode formed in said first area and contacting all of said second-type metal layers and none of said first-type metal layers, and a second electrode formed in said second area and contacting all of said first-type metal layers and none of said second-type metal layers.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Joseph Ervin, Chengwen Pei, Ravi M. Todi, Geng Wang
  • Patent number: 8486830
    Abstract: A via forming method that includes forming via-holes in a substrate is provided. The method includes putting the substrate, having the via-holes, in a first solution to fill the via-holes with the first solution. Metal particles are sunk into the via-holes by supplying a second solution containing the metal particles to the first solution. A first curing process of heat-treating the substrate is performed so as to form vias in the via-holes. A multi-chip package that includes the substrate having the vias is also provided.
    Type: Grant
    Filed: July 13, 2010
    Date of Patent: July 16, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Dong Pyo Kim, Kyu Ha Baek, Kun Sik Park, Lee Mi Do
  • Patent number: 8487193
    Abstract: A conductive plate includes a substrate, an adhesive, and a conductive layer attached to the substrate through the adhesive. The conductive layer includes a plurality of conductive films, each of which includes a plurality of nanounits.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: July 16, 2013
    Assignee: Chimei Innolux Corporation
    Inventors: Chih-Chieh Chang, Jeah-Sheng Wu, Chih-Han Chao
  • Publication number: 20130177808
    Abstract: An anode protector of a lithium-ion battery and a method for fabricating the same are provided. A passivation protector (110) is formed on a surface of an anode (102) in advance by film deposition, such as atomic layer deposition (ALD). The passivation protector (110) is composed of a metal oxide having three dimensional structures, such as columnar structures. Accordingly, the present invention is provided with effective protection of the anode electrode structure and maintenance of battery cycle life under high-temperature operation.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 11, 2013
    Applicant: National Taiwan University of Science and Technology
    Inventors: Fu-Ming Wang, Hsin-Yi Wang, Chin-Shu Cheng
  • Publication number: 20130175659
    Abstract: In a method for forming a device, a (110) silicon substrate is etched to form first trenches in the (110) silicon substrate, wherein remaining portions of the (110) silicon substrate between the first trenches form silicon strips. The sidewalls of the silicon strips have (111) surface orientations. The first trenches are filled with a dielectric material to from Shallow Trench Isolation (STI) regions. The silicon strips are removed to form second trenches between the STI regions. An epitaxy is performed to grow semiconductor strips in the second trenches. Top portions of the STI regions are recessed, and the top portions of the semiconductor strips between removed top portions of the STI regions form semiconductor fins.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 11, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company. Ltd.
    Inventor: Ming-Chyi Liu
  • Publication number: 20130175534
    Abstract: A semiconductor device and a method of manufacturing the same are disclosed. In one embodiment, the semiconductor device includes a substrate, a first silicon nitride layer formed over the substrate, a first silicon oxide layer formed directly on the first silicon nitride layer and having a thickness of about 1000 ? or less, and a hydrogenated polycrystalline silicon layer formed directly on the first silicon oxide layer.
    Type: Application
    Filed: May 22, 2012
    Publication date: July 11, 2013
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Yun-Mo Chung, Ki-Yong Lee, Jin-Wook Seo, Jong-Ryuk Park
  • Patent number: 8481214
    Abstract: An electrode including structures configured to prevent an intercalation layer from detaching from the electrode and/or a structure configured to create a region on the electrode having a lower concentration of intercalation material. The electrode includes a support filament on which the intercalation layer is disposed. The support filament optionally has nano-scale dimensions.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: July 9, 2013
    Assignee: Catalyst Power Technologies
    Inventor: Ronald Anthony Rojeski
  • Patent number: 8480931
    Abstract: A composite structure and a method of manufacturing the composite structure. The composite structure includes a graphene sheet; and a nanostructure oriented through the graphene sheet and having a substantially one-dimensional shape.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-lyong Choi, Eun-kyung Lee, Dong-mok Whang, Byung-sung Kim
  • Publication number: 20130157046
    Abstract: A plastic article includes a plastic substrate and a non-conductive coating formed on the plastic substrate. The non-conductive coating is a Si—Al composite layer. The Si—Al composite layer has a L* value between 70 to 75, an a* value between 0 to 0.5, and a b* value between 0 to 0.5 in the CIE LAB. A method for manufacturing the plastic article is also provided.
    Type: Application
    Filed: June 20, 2012
    Publication date: June 20, 2013
    Applicants: FIH (HONG KONG) LIMITED, SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD.
    Inventors: Xu LIU, Da-Hua CAO
  • Publication number: 20130153845
    Abstract: A nonvolatile resistive memory element has a novel variable resistance layer that includes a metal nitride, a metal oxide-nitride, a two-metal oxide-nitride, or a multilayer stack thereof. One method of forming the novel variable resistance layer comprises an interlayer deposition procedure, in which metal oxide layers are interspersed with metal nitride layers and then converted into a substantially homogeneous layer by an anneal process. Another method of forming the novel variable resistance layer comprises an intralayer deposition procedure, in which various ALD processes are sequentially interleaved to form a metal oxide-nitride layer. Alternatively, a metal oxide is deposited, nitridized, and annealed to form the variable resistance layer or a metal nitride is deposited, oxidized, and annealed to form the variable resistance layer.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Yun Wang, Tony P. Chiang, Imran Hashim
  • Patent number: 8465661
    Abstract: A method of processing a graphene sheet material includes irradiating UV ray to a graphene sheet material in an atmosphere containing a first substance to inactivate an edge of the graphene sheet material by substituting an end group connected to the edge of the graphene sheet material with more stable functional group generated from the first substance, and irradiating UV ray to a surface of the graphene sheet material in an atmosphere containing a second substance containing oxygen to activate the second substance, and oxidize and remove a graphene sheet contained in the graphene sheet material sequentially from a surface side.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: June 18, 2013
    Assignee: Fujtsu Limited
    Inventor: Koji Asano
  • Publication number: 20130146530
    Abstract: One aspect of the present invention includes a membrane. The membrane includes a porous support and a polymeric layer disposed on the porous support. The membrane further includes a plurality of substantially hydrophobic mesoporous nanoparticles disposed within the polymeric layer. A water treatment system and a method of making a membrane are also presented.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hua Wang, Steven Thomas Rice, Gary William Yeager, Joseph Anthony Suriano, Elizabeth Marie Dees
  • Publication number: 20130140631
    Abstract: A method of formation of an isolation structure for vertical semiconductor devices, the resulting isolation structure, and a memory device to prevent leakage among adjacent vertical semiconductor devices are described.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 6, 2013
    Inventors: Kamal Karda, Chandra Mouli
  • Publication number: 20130136990
    Abstract: A cathode active material of a lithium ion battery includes a number of LiNi0.5Mn1.5O4 particles and an AlF3 layer coated on a surface of the LiNi0.5Mn1.5O4 particles. A method for making the cathode active material is provided. In the method, a number of LiNi0.5Mn1.5O4 particles are provided. The LiNi0.5Mn1.5O4 particles are added to a trivalent aluminum source solution to form a solid-liquid mixture. A fluorine source solution is put into the solid-liquid mixture to react and form an AlF3 layer coated on the surface of the LiNi0.5Mn1.5O4 particles. The coated LiNi0.5Mn1.5O4 particles are heat treated to form the cathode active material. A lithium ion battery including the cathode active material is also provided.
    Type: Application
    Filed: July 20, 2012
    Publication date: May 30, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: JIAN-GANG LI, XIANG-MING HE, JIAN-JUN LI, JIAN GAO, LI WANG
  • Publication number: 20130136991
    Abstract: According to one embodiment, a material includes a nickel oxide/hydroxide active film, wherein the nickel oxide/hydroxide active film has a physical characteristic of maintaining greater than about 80% charge over greater than 500 charge/discharge cycles, and wherein the nickel oxide/hydroxide active film has a physical characteristic of storing electrons at greater than about 0.5 electron per nickel atom.
    Type: Application
    Filed: November 26, 2012
    Publication date: May 30, 2013
    Applicant: LAWRENCE LIVERMORE NATIONAL SECURITY, LLC
    Inventor: Lawrence Livermore National Security, LLC
  • Publication number: 20130136989
    Abstract: A lithium iron phosphate hierarchical structure includes a plurality of lithium iron phosphate nano sheets and has an overall spherical-shaped structure. The overall spherical-shaped structure is constructed by a plurality of lithium iron phosphate nano sheets layered together. A method for making a lithium iron phosphate hierarchical structure includes several steps. In the method, a lithium ion contained liquid solution, a ferrous ion contained liquid solution, and a phosphate ion contained liquid solution are respectively provided. A concentration of lithium ions in the lithium ion contained liquid solution is equal to or larger than 1.8 mol/L. The lithium ion contained liquid solution, the ferrous ion contained liquid solution, and the phosphate ion contained liquid solution are mixed to form a liquid mixture. The liquid mixture is heated in a sealed reactor to form the lithium iron phosphate hierarchical structure.
    Type: Application
    Filed: April 27, 2012
    Publication date: May 30, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: LI WANG, XIANG-MING HE, WEN-TING SUN, JIAN-JUN LI, XIAN-KUN HUANG, JIAN GAO
  • Patent number: 8450779
    Abstract: A three-dimensional (3D) integrated circuit (IC) structure includes a first layer of graphene formed over a substrate; a first level of one or more active devices formed using the first layer of graphene; an insulating layer formed over the first level of one or more active devices; a second layer of graphene formed over the insulating layer; and a second level of one or more active devices formed using the second layer of graphene, the second level of one or more active devices electrically interconnected with the first level of one or more active devices.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: May 28, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Hen, Chung-Hsun Lin, Ning Su
  • Publication number: 20130129995
    Abstract: The present invention provides novel methods of fabricating microelectronics structures, and the resulting structures formed thereby, using EUV lithographic processes. The method involves utilizing an assist layer immediately below the photoresist layer. The assist layer can either be directly applied to the substrate, or it can be applied to any intermediate layer(s) that may be applied to the substrate. The preferred assist layers are formed from spin-coatable, polymeric compositions. The inventive method allows reduced critical dimensions to be achieved with improved dose-to-size ratios, while improving adhesion and reducing or eliminating pattern collapse issues.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 23, 2013
    Applicant: Brewer Science Inc.
    Inventor: Brewer Science Inc.
  • Publication number: 20130130004
    Abstract: Described herein are coated glass or glass-ceramic articles having improved smudge resistance. Further described are methods of making and using the improved articles. The coated articles generally include a glass or glass-ceramic substrate and an oleophilic coating disposed thereon. The oleophilic coating is not a free-standing adhesive film, but a coating that is formed on or over the glass or glass-ceramic substrate.
    Type: Application
    Filed: November 21, 2012
    Publication date: May 23, 2013
    Inventors: Charlotte Diane Milia, Wageesha Senaratne
  • Publication number: 20130130474
    Abstract: An apparatus includes a primary planar quantum well and a planar distribution of dopant atoms. The primary planar quantum well is formed by a lower barrier layer, a central well layer on the lower barrier layer, and an upper barrier layer on the central well layer. Each of the layers is a semiconductor layer. One of the barrier layers has a secondary planar quantum well and is located between the planar distribution of dopant atoms and the central well layer, The primary planar quantum well may be undoped or substantially undoped, e.g., intrinsic semiconductor.
    Type: Application
    Filed: December 12, 2012
    Publication date: May 23, 2013
    Inventors: Kirk William Baldwin, Loren N. Pfeiffer, Kenneth William West
  • Publication number: 20130131248
    Abstract: The present invention provides an organic-inorganic composite material having excellent thermal stability, electrical insulation and adhesiveness. The organic-inorganic composite material includes a resin composed of a triazine ring and obtained by thermally curing a varnish containing a mixture of a layered clay mineral (clay) subjected to interlayer modification with a curing catalyst for a cyanate ester compound and a cyanate ester compound, wherein the amount of the clay is from 0.1 to 12 wt % of the amount of the cyanate ester compound. The invention also provides a varnish which gives the organic-inorganic composite material, and an electrical device and a semiconductor device, each of which includes the organic-inorganic composite material.
    Type: Application
    Filed: November 8, 2012
    Publication date: May 23, 2013
    Applicant: Hitachi, Ltd.
    Inventor: Hitachi, Ltd.
  • Publication number: 20130112947
    Abstract: An organic photoelectric device may include an anode and a cathode configured to face each other, and an active layer between the anode and cathode, wherein the active layer includes a quinacridone derivative and a thiophene derivative having a cyanovinyl group.
    Type: Application
    Filed: April 13, 2012
    Publication date: May 9, 2013
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kwang Hee LEE, Kyu Sik KIM, Kyung Bae PARK, Dong-Seok LEEM, Seon Jeong LIM