Nanosheet Or Quantum Barrier/well (i.e., Layer Structure Having One Dimension Or Thickness Of 100 Nm Or Less) Patents (Class 977/755)
  • Publication number: 20130112940
    Abstract: Semiconductor structures having a nanocrystalline core and corresponding nanocrystalline shell are described. In an example, a semiconductor structure includes an anisotropic nanocrystalline core composed of a first semiconductor material and having an aspect ratio between, but not including, 1.0 and 2.0. The semiconductor structure also includes a nanocrystalline shell composed of a second, different, semiconductor material at least partially surrounding the anisotropic nanocrystalline core.
    Type: Application
    Filed: May 31, 2012
    Publication date: May 9, 2013
    Inventors: Juanita Kurtin, Matthew J. Carillo, Steven Hughes
  • Publication number: 20130112986
    Abstract: The present disclosure relates to an enhancement mode gallium nitride (GaN) transistor device. The GaN transistor device has an electron supply layer located on top of a GaN layer. An etch stop layer (e.g., AlN) is disposed above the electron supply layer. A gate structure is formed on top of the etch stop layer, such that the bottom surface of the gate structure is located vertically above the etch stop layer. The position of etch stop layer in the GaN transistor device stack allows it to both enhance gate definition during processing (e.g., selective etching of the gate structure located on top of the AlN layer) and to act as a gate insulator that reduces gate leakage of the GaN transistor device.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Wen Hsiung, Jiun-Lei Jerry Yu, Fu-Wei Yao, Chun-Wei Hsu, Chen-Ju Yu, Fu-Chih Yang
  • Patent number: 8436335
    Abstract: Provided is a detecting element that detects a parameter for a predetermined gas or liquid in a surrounding atmosphere by being excited by excitation light and generating light corresponding to the surrounding atmosphere, the detecting element including: a substrate; and nanoscale crystal structures formed on the substrate and constituted by a compound semiconductor light emitting element having a heterostructure well layer, wherein when the nanoscale crystal structures adsorb atoms or molecules of the predetermined gas or liquid, there is distortion of a band of a structure with a smaller bandgap width in the well layer, this distortion brings about a change in transition energy, and this change brings about a change in at least one of an intensity and a wavelength of light generated by the well layer, thereby indicating the parameter for the gas or the liquid.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: May 7, 2013
    Assignee: Panasonic Corporation
    Inventor: Robert David Armitage
  • Publication number: 20130105863
    Abstract: An electrode structure, a GaN-based semiconductor device including the electrode structure, and methods of manufacturing the same, may include a GaN-based semiconductor layer and an electrode structure on the GaN-based semiconductor layer. The electrode structure may include an electrode element including a conductive material and a diffusion layer between the electrode element and the GaN-based semiconductor layer. The diffusion layer may include a material which is an n-type dopant with respect to the GaN-based semiconductor layer, and the diffusion layer may contact the GaN-based semiconductor layer. A region of the GaN-based semiconductor layer contacting the diffusion layer may be doped with the n-type dopant. The material of the diffusion layer may comprise a Group 4 element.
    Type: Application
    Filed: June 6, 2012
    Publication date: May 2, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-yub Lee, Wenxu Xianyu, Chang-youl Moon, Yong-young Park, Woo-young Yang, In-jun Hwang
  • Publication number: 20130101632
    Abstract: Methods and formulations for improving therapeutic potential of mithramycin (MTM) or MTM analogues are disclosed. For example, in certain aspects, methods for preparing a composition containing MTM or an MTM analogue nanoparticulate formulation and uses thereof are described. Furthermore, methods for delivering MTM or MTM analogues are disclosed.
    Type: Application
    Filed: September 20, 2012
    Publication date: April 25, 2013
    Applicant: UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION
    Inventor: University of Kentucky Research Foundation
  • Publication number: 20130095385
    Abstract: The present invention relates to a carbon-containing composite material of particles of an oxygen-containing lithium transition metal compound which are coated with essentially two carbon-containing layers, a method for its production as well as an electrode containing the composite material.
    Type: Application
    Filed: April 14, 2011
    Publication date: April 18, 2013
    Applicant: Sued-Chemie IP GmbH & Co. KG
    Inventors: Nicolas Tran, Christian Vogler, Peter Bauer
  • Publication number: 20130092526
    Abstract: An electrochemical glucose biosensor comprising two electrodes with at least one of electrodes having both a metallic layer and a non-metallic layer in direct contact with the metallic layer. The metallic layer is comprised of a noble metal element. A glucose reactive strip connects the first electrode and the second electrode.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 18, 2013
    Applicant: CPFilms Inc.
    Inventor: CPFilms Inc.
  • Publication number: 20130094629
    Abstract: An x-ray window includes a mount with a support frame and an aperture. A window film has a stack of layers including: a thin film layer comprising a material selected from the group consisting of diamond, graphene, diamond-like carbon, beryllium, and combinations thereof; a boron hydride layer; and a polymer layer. The window film, including the thin film layer, the boron hydride layer, and the polymer layer, extends across the aperture and is supported by the support frame. The window film is attached to the support frame, defining a sealed joint. The layers are capable of withstanding a differential pressure of at least 1 atmosphere. The window film is substantially transmissive to x-rays having an energy in the range of 100-20,000 electronvolts.
    Type: Application
    Filed: December 5, 2012
    Publication date: April 18, 2013
    Applicant: Moxtek, Inc.
    Inventor: Moxtek, Inc.
  • Publication number: 20130095632
    Abstract: This disclosure provides a method of fabricating a semiconductor stack and associated device, such as a capacitor and DRAM cell. In particular, a bottom electrode has a material selected for lattice matching characteristics. This material may be created from a relatively inexpensive metal oxide which is processed to adopt a conductive, but difficult-to-produce oxide state, with specific crystalline form; to provide one example, specific materials are disclosed that are compatible with the growth of rutile phase titanium dioxide (TiO2) for use as a dielectric, thereby leading to predictable and reproducible higher dielectric constant and lower effective oxide thickness and, thus, greater part density at lower cost.
    Type: Application
    Filed: December 7, 2012
    Publication date: April 18, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventor: Intermolecular, Inc.
  • Publication number: 20130095386
    Abstract: Modifications to the surface of an electrode and/or the surfaces of the electrode material can improve battery performance. For example, the modifications can improve the capacity, rate capability and long cycle stability of the electrode and/or may minimize undesirable catalytic effects. In one instance, metal-ion batteries can have an anode that is coated, at least in part, with a metal fluoride protection layer. The protection layer is preferably less than 100 nm in thickness.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 18, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Wu Xu, Wei Wang, Zhenguo Yang, Jiguang Zhang, Daiwon Choi
  • Patent number: 8421060
    Abstract: A logic device includes: a substrate having a channel layer; two input terminal patterns of ferromagnetic material formed on the substrate and spaced apart from each other along a longitudinal direction of the channel layer so as to serve as the input terminals of a logic gate; and an output terminal pattern of ferromagnetic material formed on the substrate and disposed between the two input terminal patterns to serve as an output terminal of the logic gate. The output terminal pattern reads an output voltage by using spin accumulation and diffusion of electron spins which are injected into the channel layer from the input terminal patterns.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: April 16, 2013
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyun Cheol Koo, Suk Hee Han, Joon Yeon Chang, Hyung Jun Kim, Jang Hae Ku
  • Publication number: 20130089614
    Abstract: Magnetic nanoparticles are provided that have a superparamagnetic core and a nanoporous silica shell surrounding the core. The shell is functionalized with amine or S-nitrosothiol groups both inside and outside the nanopores. A process to provide such nanoparticles involves hydrolyzing tetraethoxysilane (TEOS) in a microemulsion of a superparamagnetic nanoparticle to form a superparamagnetic nanoparticle encapsulated by an incompletely hydrolyzed nanoporous silica shell, and hydrolyzing an amine-containing compound or a thiol-containing compound in situ in the presence of the incompletely hydrolyzed nanoporous silica shell before hydrolysis and densification of the silica shell is complete to functionalize the nanoporous silica shell with amine or thiol groups both inside and outside the nanopores and to maintain nanoporosity of the shell.
    Type: Application
    Filed: June 13, 2011
    Publication date: April 11, 2013
    Inventors: Xuefeng Zhang, Teodor Veres
  • Publication number: 20130089786
    Abstract: An electrode active material for a lithium secondary battery, a method of preparing the electrode active material, an electrode for a lithium secondary battery which includes the same, a lithium secondary battery using the electrode. The electrode active material includes a core active material and a coating layer including magnesium aluminum oxide (MgAlO2) and formed on the core active material, 1s binding energy peaks of oxygen (O) in the electrode active material measured by xray photoelectron spectroscopy (XPS) are shown at positions corresponding to 529.4±0.5 eV, about 530.7 eV, and 531.9±0.5 eV, and a peak intensity at the position corresponding to 529,4±0.5 eV is stronger than a peak intensity at the position corresponding to about 530.7 eV.
    Type: Application
    Filed: August 14, 2012
    Publication date: April 11, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Chang-Ui Jeong, Sung-Hwan Moon, Jae-Hyuk Kim, Yury Matulevich, Hee-Young Chu, Myung-Hwan Jeong, Jong-Seo Choi
  • Patent number: 8416823
    Abstract: The invention provides a quantum well active region for an optoelectronic device. The quantum well active region includes barrier layers of high bandgap material. A quantum well of low bandgap material is between the barrier layers. Three-dimensional high bandgap barriers are in the quantum well. A preferred semiconductor laser of the invention includes a quantum well active region of the invention. Cladding layers are around the quantum well active region, as well as a waveguide structure.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: April 9, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: James J. Coleman, Victor C. Elarde
  • Patent number: 8415546
    Abstract: Disclosed is a fabrication method of a metal nanoplate using metal, metal halide or a mixture thereof as a precursor. The single crystalline metal nanoplate is fabricated on a single crystalline substrate by performing heat treatment on a precursor including metal, metal halide or a mixture thereof and placed at a front portion of a reactor and the single crystalline substrate placed at a rear portion of the reactor under an inert gas flowing condition. A noble metal nanoplate of several micrometers in size can be fabricated using a vapor-phase transport process without any catalyst. The fabricated nanoplate is a single crystalline metal nanoplate having high crystallinity, high purity and not having a two-dimensional defect. Morphology and orientation of the metal nanoplate with respect to the substrate can be controlled by controlling a surface direction of the single crystalline substrate. The metal nanoplate of several micrometer size is mass-producible.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 9, 2013
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Bongsoo Kim, Youngdong Yoo
  • Publication number: 20130082218
    Abstract: An oxide sintered body including an oxide of indium and aluminum and having an atomic ratio Al/(Al+In) of 0.01 to 0.08.
    Type: Application
    Filed: May 24, 2011
    Publication date: April 4, 2013
    Inventors: Kazuaki Ebata, Shigekazu Tomai, Koki Yano, Kazuyoshi Inoue
  • Publication number: 20130084464
    Abstract: The present invention provides for an inorganic nanostructure-organic polymer heterostructure, useful as a thermoelectric composite material, comprising (a) an inorganic nanostructure, and (b) an electrically conductive organic polymer disposed on the inorganic nanostructure. Both the inorganic nanostructure and the electrically conductive organic polymer are solution-processable.
    Type: Application
    Filed: November 26, 2012
    Publication date: April 4, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: The Regents of the University of California
  • Publication number: 20130081678
    Abstract: According to one embodiment, a conductive material includes a carbon substance and a metallic substance mixed with and/or laminated to the carbon substance. The carbon substance has at least one dimension of 200 nm or less. The carbon substance includes a graphene selected from single-layered graphene and multi-layered graphene, a part of carbon atoms constituting the graphene is substituted with a nitrogen atom. The metallic substance includes at least one of a metallic particle and a metallic wire.
    Type: Application
    Filed: September 24, 2012
    Publication date: April 4, 2013
    Inventors: Katsuyuki NAITO, Norihiro YOSHINAGA, Yoshihiko NAKANO, Yoshihiro AKASAKA, Shigeru MATAKE
  • Publication number: 20130082236
    Abstract: A light emitting device comprises a first layer having an n-type Group III-V semiconductor, a second layer adjacent to the first layer, the second layer comprising an active material that generates light upon the recombination of electrons and holes. The active material in some cases has one or more V-pits at a density between about 1 V-pit/?m2 and 30 V-pits/?m2. The light emitting device includes a third layer adjacent to the second layer, the third layer comprising a p-type Group III-V semiconductor.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventors: Jeff Ramer, Steve Ting
  • Patent number: 8409768
    Abstract: Growing spin-capable multi-walled carbon nanotube (MWCNT) forests in a repeatable fashion will become possible through understanding the critical factors affecting the forest growth. Here we show that the spinning capability depends on the alignment of adjacent MWCNTs in the forest which in turn results from the synergistic combination of a high areal density of MWCNTs and short distance between the MWCNTs. This can be realized by starting with both the proper Fe nanoparticle size and density which strongly depend on the sheet resistance of the catalyst film. Simple measurement of the sheet resistance can allow one to reliably predict the growth of spin-capable forests. The properties of pulled MWCNTs sheets reflect that there is a relationship between their electrical resistance and optical transmittance. Overlaying either 3, 5, or 10 sheets pulled out from a single forest produces much more repeatable characteristics.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: April 2, 2013
    Assignee: Board of Regents, The University of Texas Systems
    Inventors: Jae Hak Kim, Gil Sik Lee, Kyung Hwan Lee, Lawrence J. Overzet
  • Publication number: 20130078517
    Abstract: An electrode active material, an electrode including the electrode active material, a lithium battery including the electrode, and a method of preparing the electrode active material. The electrode active material includes a core having at least one of a metal or a metal oxide that enables intercalation and deintercalation of lithium ions and a crystalline carbon thin film that is formed on at least a portion of a surface of the core. The electrode active material has a nano-structure.
    Type: Application
    Filed: July 13, 2012
    Publication date: March 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jeong-kuk SHON, Jae-man Choi, Seung-sik Hwang, Moon-seok Kwon, Min-sang Song, Myung-hoon Kim, Ji-man Kim, Gwi-ok Park
  • Publication number: 20130075719
    Abstract: According to one embodiment, a thin film transistor includes a substrate, a gate electrode, a first insulating film, an oxide semiconductor film, a second insulating film, a source electrode, and a drain electrode. The gate electrode is provided on a part of the substrate. The first insulating film covers the gate electrode. The oxide semiconductor film is provided on the gate electrode via the first insulating film. The second insulating film is provided on a part of the oxide semiconductor film. The source and drain electrodes are respectively connected to first and second portions of the oxide semiconductor film not covered with the second insulating film. The oxide semiconductor film includes an oxide semiconductor. Concentrations of hydrogen contained in the first and second insulating films are not less than 5×1020 atm/cm3, and not more than 1019 atm/cm3, respectively.
    Type: Application
    Filed: May 30, 2012
    Publication date: March 28, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Shintaro NAKANO, Tomomasa UEDA, Kentaro MIURA, Nobuyoshi SAITO, Tatsunori SAKANO, Hajime YAMAGUCHI
  • Publication number: 20130078570
    Abstract: According to one embodiment, there is provided a method of forming a pattern, including forming a thermally crosslinkable molecule layer including a thermally crosslinkable molecule on a substrate, forming a photosensitive composition layer including a photosensitive composition on the thermally crosslinkable molecule layer, chemically binding the thermally crosslinkable molecule to the photosensitive composition by heating, selectively irradiating the photosensitive composition layer with energy rays, forming a block copolymer layer including a block copolymer on the photosensitive composition layer, and forming a microphase-separated structure in the block copolymer layer.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 28, 2013
    Inventors: Atsushi HIENO, Shigeki HATTORI, Hiroko NAKAMURA, Satoshi MIKOSHIBA, Koji ASAKAWA, Masahiro KANNO, Yuriko SEINO, Tsukasa AZUMA
  • Publication number: 20130075827
    Abstract: A method for fabricating a semiconductor device including providing a semiconductor substrate having a first opening and second opening. A dielectric layer is formed on the substrate. An etch stop layer on the dielectric layer in the first opening. Thereafter, a work function layer is formed on the etch stop layer and fill metal is provided on the work function layer to fill the first opening.
    Type: Application
    Filed: September 26, 2011
    Publication date: March 28, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd., ("TSMC")
    Inventors: Da-Yuan Lee, Kuang-Yuan Hsu
  • Publication number: 20130078508
    Abstract: A lithium ion battery that incorporates an anode formed from a Group IV semiconductor material such as porous silicon is disclosed. The battery includes a cathode, and an anode comprising porous silicon. In some embodiments, the anode is present in the form of a nanowire, a film, or a powder, the porous silicon having a pore diameters within the range between 2 nm and 100 nm and an average wall thickness of within the range between 1 nm and 100 nm. The lithium ion battery further includes, in some embodiments, a non-aqueous lithium containing electrolyte. Lithium ion batteries incorporating a porous silicon anode demonstrate have high, stable lithium alloying capacity over many cycles.
    Type: Application
    Filed: June 7, 2011
    Publication date: March 28, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Sarah H. Tolbert, Eric J. Nemanick, Chris Byung-Hwa Kang
  • Publication number: 20130078533
    Abstract: An electrolyte for a lithium secondary battery, the electrolyte including a lithium salt, a non-aqueous organic solvent, and a polar additive based on a substituted hetero-bicyclic compound. Oxidation of the electrolyte is prevented by formation of a polar thin film on a surface portion of the positive electrode, which facilitates transfer of lithium ions. The lithium secondary batteries using the electrolyte have excellent high temperature life characteristics and high temperature conservation characteristics.
    Type: Application
    Filed: July 11, 2012
    Publication date: March 28, 2013
    Inventors: Yoon-sok Kang, Min-sik Park, Jun-young Mun, Jin-hwan Park, Dong-joon Lee
  • Publication number: 20130072613
    Abstract: A polymer composition having improved processing properties, in particular improved crystallization behavior, comprising a semi-aromatic polyamide and a graphene material. The graphene material may be a nano-graphene platelet. The semi-aromatic polyamide may comprise recurring units obtainable by a polycondensation reaction between at least one aromatic diamine and at least one non-aromatic diacid or derivatives thereof and/or recurring units obtainable by a polycondensation reaction between at least one aromatic diacid or derivatives thereof and at least one non-aromatic diamine. The composition may further comprise a polyamide different than the semi-aromatic polyamide. The composition may further comprise a filler.
    Type: Application
    Filed: March 23, 2011
    Publication date: March 21, 2013
    Applicant: SOLVAY SA
    Inventors: Hans Edouard Miltner, Vito Leo, Kermit S. Kwan, Sanjay Gurbasappa Charati, Ardechir Momtaz, Prakash Trivedi, Jignesh Markandray Shukla, Prakash Punjalal Panchal
  • Publication number: 20130068632
    Abstract: A DNA/RNA detection technology is provided. The open flow detection technique includes a substrate defining a pair of opposing microchannels, a pair of opposing electrodes in the opposing microchannels, and at least one ion exchanging nanomembrane coupled between the opposing microchannels such that the opposing microchannels are connected to each other only through the nanomembrane, wherein the nanomembrane is functionalized with a probe complementary to the macromolecule.
    Type: Application
    Filed: May 21, 2012
    Publication date: March 21, 2013
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Hsueh-Chia Chang, Zdenek Slouka, Satyajyoti Senapati, Li-Jing Cheng
  • Publication number: 20130069039
    Abstract: A virtual substrate structure includes a crystalline silicon substrate with a first layer of III-N grown on the silicon substrate. Ge clusters or quantum dots are grown on the first layer of III-N and a second layer of III-N is grown on the Ge clusters or quantum dots and any portions of the first layer of III-N exposed between the Ge clusters or quantum dots. Additional alternating Ge clusters or quantum dots and layers of III-N are grown on the second layer of III-N forming an upper surface of III-N. Generally, the additional alternating layers of Ge clusters or quantum dots and layers of III-N are continued until dislocations in the III-N adjacent the upper surface are substantially eliminated.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Inventors: Erdem Arkun, Andrew Clark
  • Publication number: 20130069523
    Abstract: An organic electroluminescence device having a layer of an organic light emitting medium which comprises (A) a specific arylamine compound and (B) at least one compound selected from specific anthracene derivatives, spirofluorene derivatives, compounds having condensed rings and metal complex compounds and is disposed between a pair of electrodes and an organic light emitting medium comprising the above components (A) and (B) are provided. The organic electroluminescence device exhibits a high purity of color, has excellent heat resistance and a long life and efficiently emits bluish to yellowish light. The organic light emitting medium can be advantageously used for the organic electroluminescence device.
    Type: Application
    Filed: November 13, 2012
    Publication date: March 21, 2013
    Inventors: Masahide MATSUURA, Masakazu Funahashi, Kenichi Fukuoka, Chishio Hosokawa
  • Publication number: 20130071777
    Abstract: Provided are a phase shift mask blank that is improved in the irradiation durability of a light-semitransmissive film (phase shift film), made of a material containing mainly a transition metal, silicon, and nitrogen, to exposure light having a wavelength of 200 nm or less and thus can improve the mask lifetime, a method of manufacturing such a phase shift mask blank, and a phase shift mask. The phase shift mask blank is used for manufacturing a phase shift mask adapted to be applied with ArF excimer laser exposure light. The phase shift mask blank has a light-semitransmissive film on a transparent substrate. The light-semitransmissive film is an incomplete nitride film containing mainly a transition metal, silicon, and nitrogen. The content ratio of the transition metal to the transition metal and the silicon in the light-semitransmissive film is less than 9%.
    Type: Application
    Filed: April 8, 2011
    Publication date: March 21, 2013
    Applicant: HOYA CORPORATION
    Inventors: Osamu Nozawa, Hiroaki Shishido, Kazuya Sakai
  • Publication number: 20130062108
    Abstract: A wiring board includes: a first wiring layer; a first insulating layer formed on the first wiring layer and including a reinforcing material therein, the first insulating layer having a first opening; a contact layer formed on the first insulating layer and having a second opening communicated with the first opening; and a second wiring layer comprising a second via and a second wiring pattern connected to the second via. The second wiring pattern is formed on the contact layer, and the second via is filled in the first and second openings. An adhesion property between the contact layer and the second wiring pattern is higher than that between the first insulating layer and the second wiring pattern, and a thickness of the contact layer is smaller than that of the first insulating layer.
    Type: Application
    Filed: September 6, 2012
    Publication date: March 14, 2013
    Applicant: Shinko Electric Industries Co., Ltd.
    Inventor: Hitoshi KONDO
  • Publication number: 20130064750
    Abstract: Methods and apparatus for producing chemical nanostructures having multiple elements, such as boron and nitride, e.g. boron nitride nanotubes, are disclosed. The method comprises creating a plasma jet, or plume, such as by an arc discharge. The plasma plume is elongated and has a temperature gradient along its length. It extends along its length into a port connector area having ports for introduction of feed materials. The feed materials include the multiple elements, which are introduced separately as fluids or powders at multiple ports along the length of the plasma plume, said ports entering the plasma plume at different temperatures. The method further comprises modifying a temperature at a distal portion of or immediately downstream of said plasma plume; and collecting said chemical nanostructures after said modifying.
    Type: Application
    Filed: March 21, 2011
    Publication date: March 14, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Alexander K. Zettl
  • Publication number: 20130065128
    Abstract: A battery includes an anode, a cathode, and an electrolyte disposed between the anode and the cathode. The cathode includes a hollow structure defining an internal volume and a sulfur-based material disposed within the internal volume. A characteristic dimension of the internal volume is at least 20 nm, and the sulfur-based material occupies less than 100% of the internal volume to define a void.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 14, 2013
    Inventors: Weiyang Li, Yi Cui, Zhi Wei Seh, Guangyuan Zheng, Yuan Yang
  • Publication number: 20130065165
    Abstract: A mask blank is used for manufacturing a binary mask adapted to be applied with ArF excimer laser exposure light and has a light-shielding film for forming a transfer pattern on a transparent substrate. The light-shielding film has a laminated structure of a lower layer and an upper layer and has an optical density of 2.8 or more for the exposure light. The lower layer is made of a material containing tantalum and nitrogen and has a thickness of 33 nm or more. The upper layer is made of a material containing tantalum and oxygen and has a thickness of 3 nm or more. The phase difference between the exposure light transmitted through the light-shielding film and the exposure light transmitted in air for a distance equal to the thickness of the light-shielding film is 60 degrees or less.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 14, 2013
    Applicant: HOYA CORPORATION
    Inventors: Noriyuki SAKAYA, Osamu NOZAWA
  • Publication number: 20130059235
    Abstract: In a photomask blank comprising a transparent substrate, an optical film of material containing a transition metal and silicon, and a hard mask film, the hard mask film is a multilayer film including a first layer of a chromium-based material containing 20-60 atom % of oxygen and a second layer of a chromium-based material containing at least 50 atom % of chromium and less than 20 atom % of oxygen. The hard mask film having a thickness of 2.0 nm to less than 10 nm is resistant to fluorine dry etching.
    Type: Application
    Filed: August 21, 2012
    Publication date: March 7, 2013
    Inventors: Yukio INAZUKI, Shinichi IGARASHI, Kazuhiro NISHIKAWA, Hiroki YOSHIKAWA
  • Publication number: 20130059209
    Abstract: Provided is a positive-electrode body for a nonaqueous-electrolyte battery in which formation of high-resistance layers at the contact interfaces between positive-electrode active-material particles and solid-electrolyte particles is suppressed so that an increase in the interface resistance is suppressed. A positive-electrode body 1 for a nonaqueous-electrolyte battery according to the present invention includes a mixture of sulfide-solid-electrolyte particles 11 and covered positive-electrode active-material particles 10 in which surfaces of positive-electrode active-material particles 10a are covered with cover layers 10b having Li-ion conductivity. The cover layers 10b are formed of an amorphous oxide having oxygen deficiency. The cover layers 10b have oxygen deficiency and, as a result, Li-ion conductivity and electron conductivity that are sufficient for charge and discharge of the battery can be stably ensured in the cover layers 10b.
    Type: Application
    Filed: May 7, 2011
    Publication date: March 7, 2013
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Nobuhiro Ota, Mitsuyasu Ogawa, Ryoko Kanda
  • Publication number: 20130056702
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices, such as a ReRAM cells, and methods for manufacturing such memory devices, which includes optimized, atomic layer deposition (ALD) processes for forming metal oxide film stacks. The metal oxide film stacks contain a metal oxide coupling layer disposed on a metal oxide host layer, each layer having different grain structures/sizes. The interface disposed between the metal oxide layers facilitates oxygen vacancy movement. In many examples, the interface is a misaligned grain interface containing numerous grain boundaries extending parallel to the electrode interfaces, in contrast to the grains in the bulk film extending perpendicular to the electrode interfaces. As a result, oxygen vacancies are trapped and released during switching without significant loss of vacancies.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 7, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Yun Wang, Vidyut Gopal, Imran Hashim, Dipankar Pramanik, Tony Chiang
  • Publication number: 20130048339
    Abstract: In some embodiments, the present invention provides transparent electrodes that comprise: (1) a grid structure; and (2) a graphene film associated with the grid structure. In additional embodiments, the transparent electrodes of the present invention further comprise a substrate, such as glass. Additional embodiments of the present invention pertain to methods of making the above-described transparent electrodes. Such methods generally comprise: (1) providing a grid structure; (2) providing a graphene film; and (3) associating the graphene film with the grid structure. In further embodiments, the methods of the present invention also comprise associating the transparent electrode with a substrate.
    Type: Application
    Filed: March 8, 2011
    Publication date: February 28, 2013
    Applicant: William Marsh Rice University
    Inventors: James M. Tour, Yu Zhu
  • Publication number: 20130043143
    Abstract: The present invention concerns a device for detecting gases or volatile organic compounds (VOC) comprising an electrically conducting or semiconducting zone f unctionalized with an organic film resulting from the polymerization of aromatic diazonium salt derived monomer.
    Type: Application
    Filed: September 24, 2010
    Publication date: February 21, 2013
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Guillaume Delapierre, Yanxia Hou-Broutin, Heather McCaig, Edward Myers, Michael L. Roukes
  • Publication number: 20130045361
    Abstract: The present invention relates to a method the synthesis and utilization of random, cross-linked, substituted polystyrene copolymers as polymeric cross-linked surface treatments (PXSTs) to control the orientation of physical features of a block copolymer deposited over the first copolymer. Such methods have many uses including multiple applications in the semi-conductor industry including production of templates for nanoimprint lithography.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 21, 2013
    Inventors: C. Grant Willson, Christopher M. Bates, Jeffrey Strahan, Christopher John Ellison
  • Publication number: 20130045427
    Abstract: The present invention provides a battery or supercapacitor current collector which is prelithiated. The prelithiated current collector comprises: (a) an electrically conductive substrate having two opposed primary surfaces, and (b) a mixture layer of carbon (and/or other stabilizing element, such as B, Al, Ga, In, C, Si, Ge, Sn, Pb, As, Sb, Bi, Te, or a combination thereof) and lithium or lithium alloy coated on at least one of the primary surfaces, wherein lithium element is present in an amount of 1% to 99% by weight of the mixture layer. This current collector serves as an effective and safe lithium source for a wide variety of electrochemical energy storage cells, including the rechargeable lithium cell (e.g. lithium-metal, lithium-ion, lithium-sulfur, lithium-air, lithium-graphene, lithium-carbon, and lithium-carbon nanotube cell) and the lithium ion based supercapacitor cell (e.g, symmetric ultracapacitor, asymmetric ultracapacitor, hybrid supercapacitor-battery, or lithium-ion capacitor).
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Inventors: Aruna Zhamu, Yanbo Wang, Bor Z. Jang
  • Patent number: 8377243
    Abstract: The invention relates to a method for transferring a nano-layer (1) from a first substrate (5, 105) to a second substrate (30, 130), wherein the nano-layer (1) comprises a self-aggregating monolayer with cross-linked phenyl units and/or a mono-atomic graphite layer (graphene), wherein the method comprises the following steps: a. applying a transfer medium (20, 120) onto nano-layer (1), wherein in this step or afterwards the transfer medium (20, 120) is transformed from a liquid or gaseous phase in a solid phase; b. separating the transfer medium (20, 120) and the nano-layer (1) from the first substrate (5, 105); and c. applying the transfer medium (20, 120) and the nano-layer (1) onto the second substrate (30, 130); and d. removing the transfer medium (20, 120).
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 19, 2013
    Inventors: Armin Gölzhäuser, Christoph Nottbohm, André Beyer
  • Publication number: 20130037865
    Abstract: A semiconductor structure which includes a semiconductor substrate and a metal gate structure formed in a trench or via on the semiconductor substrate. The metal gate structure includes a gate dielectric; a wetting layer selected from the group consisting of cobalt and nickel on the gate dielectric lining the trench or via and having an oxygen content of no more than about 200 ppm (parts per million) oxygen; and an aluminum layer to fill the remainder of the trench or via. There is also disclosed a method of forming a semiconductor structure in which a wetting layer is formed from cobalt amidinate or nickel amidinate deposited by a chemical vapor deposition process.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Takeshi Nogami, Keich Kwong Hon Wong, Chih-Chao Yang
  • Publication number: 20130040193
    Abstract: A composite positive electrode active material includes: a positive electrode active material which includes a transition metal; and a reaction suppressor which is formed so as to cover a surface of the positive electrode active material, and which is made of a polyanion structure-containing compound having a cation moiety composed of a metal atom that becomes a conducting ion and having a polyanion structural moiety composed of a center atom that is covalently bonded to a plurality of oxygen atoms. A transition metal-reducing layer which has self-assembled on the surface of the positive electrode active material in contact with the reaction suppressor owing to reaction of the transition metal with the polyanion structure-containing compound, has a thickness of 10 nm or less.
    Type: Application
    Filed: April 21, 2011
    Publication date: February 14, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasushi Tsuchida, Toshihiro Seguchi
  • Publication number: 20130040119
    Abstract: A coated article includes a substrate, and a plurality of aluminum nitride layers and a plurality of titanium boride layers formed on the substrate. Each aluminum nitride layer interleaves with one titanium boride layer. One of the aluminum nitride layers is directly formed on the substrate. A method for making the coated article is also described.
    Type: Application
    Filed: September 28, 2011
    Publication date: February 14, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, CONG LI
  • Publication number: 20130032901
    Abstract: Semiconductor devices are formed without full silicidation of the gates and with independent adjustment of silicides in the gates and source/drain regions. Embodiments include forming a gate on a substrate, forming a nitride cap on the gate, forming a source/drain region on each side of the gate, forming a first silicide in each source/drain region, removing the nitride cap subsequent to the formation of the first silicide, and forming a second silicide in the source/drain regions and in the gate, subsequent to removing the nitride cap. Embodiments include forming the first silicide by forming a first metal layer on the source/drain regions and performing a first RTA, and forming the second silicide by forming a second metal layer on the source/drain regions and on the gate and performing a second RTA.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Peter Javorka, Stefan Flachowsky, Thilo Scheiper
  • Publication number: 20130032190
    Abstract: A thermoelectric material including a thermoelectric semiconductor; and a nanosheet disposed in the thermoelectric semiconductor, the nanosheet having a layered structure and a thickness from about 0.1 to about 10 nanometers. Also a thermoelectric element and thermoelectric module including the thermoelectric material.
    Type: Application
    Filed: July 31, 2012
    Publication date: February 7, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung-woo HWANG, Kyu-hyoung LEE, Sang-mock LEE
  • Publication number: 20130032846
    Abstract: A eutectic metal layer (e.g., gold/tin) bonds a carrier wafer structure to a device wafer structure. In one example, the device wafer structure includes a silicon substrate upon which an epitaxial LED structure is disposed. A layer of silver is disposed on the epitaxial LED structure. The carrier wafer structure includes a conductive silicon substrate covered with an adhesion layer. A layer of non-reactive barrier metal (e.g., titanium) is provided between the silver layer and the eutectic metal to prevent metal from the eutectic layer (e.g., tin) from diffusing into the silver during wafer bonding. During wafer bonding, the wafer structures are pressed together and maintained at more than 280° C. for more than one minute. Use of the non-reactive barrier metal layer allows the total amount of expensive platinum used in the manufacture of a vertical blue LED manufactured on silicon to be reduced, thereby reducing LED manufacturing cost.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Applicant: Bridgelux, Inc.
    Inventor: Chao-Kun Lin
  • Publication number: 20130034947
    Abstract: Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
    Type: Application
    Filed: August 5, 2011
    Publication date: February 7, 2013
    Applicant: INTERMOLECULAR, INC.
    Inventors: Zhendong Hong, Hieu Pham, Randall Higuchi, Vidyut Gopal, Imran Hashim