Vapor Phase Deposition Patents (Class 977/891)
  • Patent number: 9040121
    Abstract: Vacuum deposited thin films of material are described to create an interface that non-preferentially interacts with different domains of an underlying block copolymer film. The non-preferential interface prevents formation of a wetting layer and influences the orientation of domains in the block copolymer. The purpose of the deposited polymer is to produce nanostructured features in a block copolymer film that can serve as lithographic patterns.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: May 26, 2015
    Assignee: Board of Regents The University of Texas System
    Inventors: C. Grant Willson, William Durand, Christopher John Ellison, Christopher Bates, Takehiro Seshimo, Julia Cushen, Logan Santos, Leon Dean, Erica Rausch
  • Patent number: 9011649
    Abstract: The subject of the invention is a process for obtaining a substrate coated on at least part of its surface with at least one film of oxide of a metal M the physical thickness of which is 30 nm or less, said oxide film not being part of a multilayer comprising at least one silver film, said process comprising the following steps: at least one intermediate film of a material chosen from the metal M, a nitride of the metal M, a carbide of the metal M and an oxygen-substoichiometric oxide of the metal M is deposited by sputtering, said intermediate film not being deposited above or beneath a titanium-oxide-based film, the physical thickness of said intermediate film being 30 nm or less; and at least part of the surface of said intermediate film is oxidized using a heat treatment, during which said intermediate film is in direct contact with an oxidizing atmosphere, especially air, the temperature of said substrate during said heat treatment not exceeding 150° C.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 21, 2015
    Assignee: Saint-Gobain Glass France
    Inventors: Andriy Kharchenko, Anne Durandeau, Nicolas Nadaud
  • Patent number: 8999458
    Abstract: A method and apparatus for fabricating or altering a microstructure use means for heating to facilitate a local chemical reaction that forms or alters the submicrostructure.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Hendrik F. Hamann, Herschel M. Marchman, Robert J. Von Gutfeld
  • Publication number: 20150069330
    Abstract: Provided are a nanowire field-effect transistor and a method for manufacturing the same. The nanowire field-effect transistor can enable a source region to be positioned, with respect to an asymmetrical nanowire channel, adjacent to a region in which the diameter of the nanowire channel is large, can enable a drain region to be positioned adjacent to a region in which the diameter of the nanowire channel is small, can enable an ON current to be increased in a state in which a threshold voltage level is kept the same, and can enable the current drivability of a gate electrode to be improved.
    Type: Application
    Filed: March 11, 2013
    Publication date: March 12, 2015
    Inventors: ChangKi Baek, TaiUk Rim, MyungDong Ko
  • Patent number: 8951444
    Abstract: In a method for functionalizing a carbon nanotube surface, the nanotube surface is exposed to at least one vapor including at least one functionalization species that non-covalently bonds to the nanotube surface, providing chemically functional groups at the nanotube surface, producing a functionalized nanotube surface. A functionalized nanotube surface can be exposed to at least one vapor stabilization species that reacts with the functionalization layer to form a stabilization layer that stabilizes the functionalization layer against desorption from the nanotube surface while providing chemically functional groups at the nanotube surface, producing a stabilized nanotube surface. The stabilized nanotube surface can be exposed to at least one material layer precursor species that deposits a material layer on the stabilized nanotube surface.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: February 10, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Damon B. Farmer
  • Patent number: 8906733
    Abstract: A method for creating a nanostructure according to one embodiment includes depositing material in a template for forming an array of nanocables; removing only a portion of the template such that the template forms an insulating layer between the nanocables; and forming at least one layer over the nanocables. A nanostructure according to one embodiment includes a nanocable having a roughened outer surface and a solid core. A nanostructure according to one embodiment includes an array of nanocables each having a roughened outer surface and a solid core, the roughened outer surface including reflective cavities; and at least one layer formed over the roughened outer surfaces of the nanocables, the at least one layer creating a photovoltaically active p-n junction. Additional systems and methods are also presented.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: December 9, 2014
    Assignees: Q1 Nanosystems, Inc., The Regents Of The University Of California
    Inventors: Ruxandra Vidu, Brian Argo, John Argo, Pieter Stroeve, Saif Islam, Jie-Ren Ku, Michael Chen
  • Patent number: 8895105
    Abstract: A method of growing carbon nanomaterials on a substrate wherein the substrate is exposed to an oxidizing gas; a seed material is deposited on the substrate to form a receptor for a catalyst on the surface of said substrate; a catalyst is deposited on the seed material by exposing the receptor on the surface of the substrate to a vapor of the catalyst; and substrate is subjected to chemical vapor deposition in a carbon containing gas to grow carbon nanomaterial on the substrate.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: November 25, 2014
    Assignee: University of Dayton
    Inventors: Khalid Lafdi, Lingchuan Li, Matthew C. Boehle, Alexandre Lagounov
  • Patent number: 8895350
    Abstract: A method for forming a nanostructure according to one embodiment includes creating a hole in an insulating layer positioned over an electrically conductive layer; and forming a nanocable in the hole such that the nanocable extends through the hole in the insulating layer and protrudes therefrom, the nanocable being in communication with the electrically conductive layer. Additional systems and methods are also presented.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: November 25, 2014
    Assignees: Q1 Nanosystems, Inc, The Regents of the University of California
    Inventors: Brian Argo, Ruxandra Vidu, Pieter Stroeve, John Argo, Saif Islam, Jie-Ren Ku, Michael Chen
  • Patent number: 8889226
    Abstract: A method of bonding a metal to a substrate is disclosed herein. The method involves forming a nano-brush on a surface of the substrate, where the nano-brush includes a plurality of nano-wires extending above the substrate surface. In a molten state, the metal is introduced onto the substrate surface, and the metal surrounds the nano-wires. Upon cooling, the metal surrounding the nano-wires solidifies, and during the solidifying, at least a mechanical interlock is formed between the metal and the substrate.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: November 18, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael J. Walker, Bob R. Powell, Jr.
  • Patent number: 8877541
    Abstract: Nanostructures and photovoltaic structures are disclosed. A nanostructure according to one embodiment includes an array of nanocables extending from a substrate, the nanocables in the array being characterized as having a spacing and surface texture defined by inner surfaces of voids of a template; an electrically insulating layer extending along the substrate; and at least one layer overlaying the nanocables. A nanostructure according to another embodiment includes a substrate; a portion of a template extending along the substrate, the template being electrically insulative; an array of nanocables extending from the template, portions of the nanocables protruding from the template being characterized as having a spacing, shape, and surface texture defined by previously-present inner surface of voids of the template; and at least one layer overlaying the nanocables.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: November 4, 2014
    Assignees: Q1 Nanosystems, Inc., The Regents of the University of California
    Inventors: Brian Argo, Ruxandra Vidu, Pieter Stroeve, John Argo, Jie-Ren Ku
  • Patent number: 8871623
    Abstract: Methods are provided for forming a nanostructure array. An example method includes providing a first layer, providing nanostructures dispersed in a solution comprising a liquid form of a spin-on-dielectric, wherein the nanostructures comprise a silsesquioxane ligand coating, disposing the solution on the first layer, whereby the nanostructures form a monolayer array on the first layer, and curing the liquid form of the spin-on-dielectric to provide a solid form of the spin-on-dielectric. Numerous other aspects are provided.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: October 28, 2014
    Assignee: SanDisk Corporation
    Inventors: Jian Chen, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, J. Wallace Parce
  • Publication number: 20140302232
    Abstract: Apparatuses and methods for depositing materials on both side of a web while it passes a substantially vertical direction are provided. In particular embodiments, a web does not contact any hardware components during the deposition. A web may be supported before and after the deposition chamber but not inside the deposition chamber. At such support points, the web may be exposed to different conditions (e.g., temperature) than during the deposition.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 9, 2014
    Applicant: Amprius,Inc.
    Inventors: Ronald J. Mosso, Ghyrn E. Loveness
  • Patent number: 8846580
    Abstract: This invention relates generally to biosensor technology, and pertains more particularly to novel multifunctional biosensors based on ordered arrays of metallic, semiconductors and magnetic nano-islands for medical, biological, biochemical, chemical and environmental applications.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: September 30, 2014
    Assignee: Gilupi GmbH
    Inventors: Ulrich Pison, Michael Giersig, Alex Schaefer
  • Publication number: 20140287264
    Abstract: Provided is a nanostructure including ordered stacked sheets and processes for its preparation and use.
    Type: Application
    Filed: October 18, 2012
    Publication date: September 25, 2014
    Applicant: YEDA RESEARCH AND DEVELOPMENT CO. LTD.
    Inventors: Reshef Tenne, Gal Radovsky, Ronit Popovitz-Biro
  • Publication number: 20140272291
    Abstract: A method for fabricating a hydrophilic aluminum surface includes: an activation step of preparing doped aluminum having an activated surface through doping treatment on a part or whole of an aluminum surface with applying reactive gas thereto; and a structure forming step of preparing a hydrophilic aluminum surface through oxidizing treatment on the doped aluminum to have nano-patterns comprising nano-protrusion structures on the aluminum surface. Hydrophobic aluminum can be fabricated into artificially hydrophilic or super-hydrophilic aluminum, and the hydrophilic aluminum surface body that does not have an aging effect and has long-lasting hydrophilicity can be provided.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myoung Woon MOON, Seong Jin KIM, Heon Ju LEE, Eu Sun YU, Tae Jun KO, Kyu Hwan OH, Kwang Ryeol LEE
  • Publication number: 20140268490
    Abstract: The invention provides a super capacitor, comprising: a bottom electrode, made of metal that has a sponge-like porous bicontinuous structure wherein the porous bicontinuous structure comprises a plurality of continuous nano pores; a dielectric layer, made of material with high dielectric constant and disposed on the bottom electrode wherein the dielectric layer has a thickness of 0.5˜15 nm; and a top electrode, comprising single layer or multiple layers of conductive layers and having a thickness more than 10 nm.
    Type: Application
    Filed: April 12, 2013
    Publication date: September 18, 2014
    Applicant: National Taiwan University
    Inventor: National Taiwan University
  • Publication number: 20140264196
    Abstract: Disclosed herein are coated beads made of a primary matrix material and containing a population of quantum dot nanoparticles. Each bead has a multi-layer surface coating. The layers can be two or more distinct surface coating materials. The surface coating materials may be inorganic materials and/or polymeric materials. A method of preparing such particles is also described. The coated beads are useful for composite materials for applications such as light-emitting devices.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Nanoco Technologies, Ltd.
    Inventors: Matthew Werner, Nathalie Gresty, Nigel Pickett, Paul Chalker, James Harris, Imad Naasani
  • Patent number: 8815341
    Abstract: Processes for growing carbon nanotubes on carbon fiber substrates are described herein. The processes can include depositing a catalyst precursor on a carbon fiber substrate, optionally depositing a non-catalytic material on the carbon fiber substrate, and after depositing the catalyst precursor and the optional non-catalytic material, exposing the carbon fiber substrate to carbon nanotube growth conditions so as to grow carbon nanotubes thereon. The carbon nanotube growth conditions can convert the catalyst precursor into a catalyst that is operable for growing carbon nanotubes. The carbon fiber substrate can remain stationary or be transported while the carbon nanotubes are being grown. Optionally, the carbon fiber substrates can include a barrier coating and/or be free of a sizing agent. Carbon fiber substrates having carbon nanotubes grown thereon are also described.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: August 26, 2014
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Brandon K. Malet, Tushar K. Shah
  • Patent number: 8790863
    Abstract: In a method for imaging a solid state substrate, a vapor is condensed to an amorphous solid water condensate layer on a surface of a solid state substrate. Then an image of at least a portion of the substrate surface is produced by scanning an electron beam along the substrate surface through the water condensate layer. The water condensate layer integrity is maintained during electron beam scanning to prevent electron-beam contamination from reaching the substrate during electron beam scanning. Then one or more regions of the layer can be locally removed by directing an electron beam at the regions. A material layer can be deposited on top of the water condensate layer and any substrate surface exposed at the one or more regions, and the water condensate layer and regions of the material layer on top of the layer can be removed, leaving a patterned material layer on the substrate.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: July 29, 2014
    Assignee: President and Fellows of Harvard College
    Inventors: Daniel Branton, Anpan Han, Jene A. Golovchenko
  • Publication number: 20140202378
    Abstract: A method of forming an organized network of ZnO nanowires including the steps of obtaining, on a substrate, a ZnO layer of Zn polarity, by epitaxial growth at low temperature, advantageously in the range from 400° C. to 650° C., and advantageously in the presence of dioxygen (O2); forming, on this layer, a mask provided with openings for the subsequent growth of nanorods; epitaxially growing ZnO nanorods.
    Type: Application
    Filed: March 26, 2014
    Publication date: July 24, 2014
    Applicant: Commissariat A L'Energie Atomique Et Aux Energies Alternatives
    Inventors: Robin THIERRY, Pierre FERRET, Matthieu LAFOSSAS, Guillaume PERILLAT-MERCEROZ
  • Patent number: 8784937
    Abstract: Methods for growing carbon nanotubes on glass substrates, particularly glass fiber substrates, are described herein. The methods can include depositing a catalytic material or a catalyst precursor on a glass substrate; depositing a non-catalytic material on the glass substrate prior to, after, or concurrently with the catalytic material or catalyst precursor; and exposing the glass substrate to carbon nanotube growth conditions so as to grow carbon nanotubes thereon. The glass substrate, particularly a glass fiber substrate, can be transported while the carbon nanotubes are being grown thereon. Catalyst precursors can be converted into a catalyst when exposed to carbon nanotube growth conditions. The catalytic material or catalyst precursor and the non-catalytic material can be deposited from a solution containing water as a solvent. Illustrative deposition techniques include, for example, spray coating and dip coating.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: July 22, 2014
    Assignee: Applied NanoStructured Solutions, LLC
    Inventors: Brandon K. Malet, Tushar K. Shah
  • Patent number: 8768501
    Abstract: Methods and systems for the fabrication and application of Magnetically Actuated Propellers (MAPs) are described. MAPs are structures with typical feature sizes in the range of 20 nanometers up to 100 microns in one spatial dimension. MAPs are propellers that can be obtained from nano-structured surfaces and that can be produced in large numbers. MAPs are propelled and controlled by magnetic fields. The MAPs are optimized for low Reynolds number propulsion and can be moved in fluids and biological tissues. MAPs are useful for measurements, quantification, imaging and sensing purposes e.g. detecting biomolecules and for the controlled transportation of (drug- and bio-) molecules and the delivery of microscopic and nanoscale objects and/or materials or systems of therapeutic value. The MAPs are formed on a substrate and the released from the substrate using sonication, vibration, agitation, dissolution or etching which allows the MAPs to be produced in large numbers.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: July 1, 2014
    Assignee: Max-Planck-Gesellschaft zur Foerderung der Wissenscaften e.V. (MPG)
    Inventors: Peer Fischer, Ambarish Ghosh
  • Publication number: 20140138620
    Abstract: A LED structure includes a support and a plurality of nanowires located on the support, where each nanowire includes a tip and a sidewall. A method of making the LED structure includes reducing or eliminating the conductivity of the tips of the nanowires compared to the conductivity of the sidewalls during or after creation of the nanowires.
    Type: Application
    Filed: October 22, 2013
    Publication date: May 22, 2014
    Applicant: Glo AB
    Inventors: Carl Patrik Theodor Svensson, Nathan Gardner
  • Publication number: 20140065055
    Abstract: The present invention relates to a method for producing carbon micro- and nano-coils using sulfur hexafluoride gas, wherein the carbon micro- and nano-coils are synthesized and grown on a ceramic substrate and sulfur hexafluoride is introduced during the synthesis of the carbon coils to control the geometry of the carbon coils. The invention also discloses a method of producing carbon micro- and nano-coils by synthesizing and growing the carbon coils on a substrate using a chemical vapor deposition system, wherein sulfur hexafluoride (SF6), acetylene (C2H2) and hydrogen (H2) gases are introduced into a chamber during synthesis of the carbon coil, and wherein the sulfur hexafluoride and acetylene gases are introduced alternately for predetermined amounts of time, or any one or more of the flow rate, time or time point of introduction of the sulfur hexafluoride, thereby controlling the shape, length and geometry of the carbon coils.
    Type: Application
    Filed: October 17, 2012
    Publication date: March 6, 2014
    Applicant: SILLA UNIVERSITY
    Inventor: Sunghoon KIM
  • Publication number: 20140060726
    Abstract: Aspects of the invention are directed to a method of forming a thin film adhered to a target substrate. The method comprises the steps of: (i) forming the thin film on a deposition substrate; (ii) depositing a support layer on the thin film; (iii) removing the deposition substrate without substantially removing the thin film and the support layer; (iv) drying the thin film and the support layer while the thin film is only adhered to the support layer; (v) placing the dried thin film and the dried support layer on the target substrate such that the thin film adheres to the target substrate; and (vi) removing the support layer without substantially removing the thin film and the target substrate.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 6, 2014
    Applicant: BLUESTONE GLOBAL TECH LIMITED
    Inventors: Yijing Yin Stehle, Xuesong Li, Yu-Ming Lin, Chun-Yung Sung
  • Patent number: 8641976
    Abstract: Disclosed herein is an apparatus for synthesizing nano particles. The apparatus for synthesizing nano particles is configured to include: a plasma generator that generates plasma; a recovery device that recovers the synthesized nano particles; and a cooler that is disposed between the plasma generator and the recovery device and includes a cooling path where the nano particles are synthesized, while material supplied from the plasma generator is cooled, wherein the cooling path is set to have lower cooling temperatures for each section as going to the moving direction of the nano particles.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: February 4, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Soon Mo Song, Hyo Sub Kim, Gun Woo Kim, Sang Hyuk Kim, Sang Hoon Kwon, Kang Heon Hur
  • Patent number: 8641873
    Abstract: A method for synthesizing nano particles, including: moving material in a plasma generating space in a first direction; and synthesizing nano particles by cooling the material moved along the first direction, wherein the synthesizing the nano particles may be performed by cooling the material at gradually lower temperatures during the moving thereof in the first direction.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: February 4, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Soon Mo Song, Hyo Sub Kim, Gun Woo Kim, Sang Hyuk Kim, Sang Hoon Kwon, Kang Heon Hur
  • Patent number: 8634146
    Abstract: A method of making a nanostructure is provided that includes applying a thin, random discontinuous masking layer (105) to a major surface (103) of a substrate (101) by plasma chemical vapor deposition. The substrate (101) can be a polymer, an inorganic material, an alloy, or a solid solution. The masking layer (105) can include the reaction product of plasma chemical vapor deposition using a reactant gas comprising a compound selected from the group consisting of organosilicon compounds, metal alkyls, metal isopropoxides, metal acetylacetonates, and metal halides. Portions (107) of the substrate (101) not protected by the masking layer (105) are then etched away by reactive ion etching to make the nanostructures.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: January 21, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Moses M. David, Ta-Hua Yu, Andrew K. Hartzell
  • Patent number: 8617503
    Abstract: Disclosed is a process for producing spheroidized boron nitride which enable the further improvement in the heat conductivity of a heat dissipative member. Specifically disclosed is a process for producing spheroidized boron nitride, which is characterized by using spheroidized graphite as a raw material and reacting the spheroidized graphite with a boron oxide and nitrogen at a high temperature ranging from 1600 to 2100° C. to produce the spheroidized boron nitride. The boron oxide to be used in the reaction is preferably boron oxide (B2O3), boric acid (H3BO3), or a substance capable of generating a boron oxide at a higher temperature. A gas to be used in the reaction is preferably nitrogen or ammonia.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: December 31, 2013
    Assignee: Kaneka Corporation
    Inventors: Shusuke Yoshihara, Kazuaki Matsumoto
  • Publication number: 20130337157
    Abstract: The present invention relates to a method for synthesizing metal or metal oxide nanoparticles by liquid-phase deposition on a surface layer of a substrate, comprising the following successive steps:—a step of thermally pretreating the conductor or semiconductor surface layer of a substrate, comprising the application of a specified temperature;—a step of impregnating the pretreated surface layer of the substrate with an organometallic complex in solution in an aprotic solvent;—a step of annealing under controlled atmosphere, and wherein the specified temperature is selected to obtain a predefined size of nanoparticles between 4 and 60 nm with a dispersion less than or equal to 30%. The invention is adapted to applications of nanoparticles in the field of microelectronics, optics or catalysis.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 19, 2013
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Arthur ROUSSEY, Vincent Jousseaume, Chloe Thieuleux, Christophe Coperet
  • Publication number: 20130327894
    Abstract: A spacecraft carbon nanotube shield is disclosed. Shield segments are produced in a facility in space. The segments are transported from the facility to a vicinity of a spacecraft hull. The segments are assembled over the hull to substantially cover an area of the hull.
    Type: Application
    Filed: June 11, 2012
    Publication date: December 12, 2013
    Inventor: Robert T. Bigelow
  • Publication number: 20130330523
    Abstract: This disclosure provides systems, methods, and apparatus related to graphene nanoribbons. In one aspect, a device includes a substrate and a first graphene nanoribbon overlying the substrate. The first graphene nanoribbon is less than about 20 nanometers wide.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 12, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventor: Yuegang Zhang
  • Patent number: 8603195
    Abstract: Methods and apparatus for forming energy storage devices are provided. In one embodiment a method of producing an energy storage device is provided. The method comprises positioning an anodic current collector into a processing region, depositing one or more three-dimensional electrodes separated by a finite distance on a surface of the anodic current collector such that portions of the surface of the anodic current collector remain exposed, depositing a conformal polymeric layer over the anodic current collector and the one or more three-dimensional electrodes using iCVD techniques comprising flowing a gaseous monomer into the processing region, flowing a gaseous initiator into the processing region through a heated filament to form a reactive gas mixture of the gaseous monomer and the gaseous initiator, wherein the heated filament is heated to a temperature between about 300° C. and about 600° C., and depositing a conformal layer of cathodic material over the conformal polymeric layer.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: December 10, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Victor L. Pushparaj, Pravin K. Narwankar, Omkaram Nalamasu
  • Patent number: 8596466
    Abstract: A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: December 3, 2013
    Assignee: William Marsh Rice University
    Inventors: Robert H. Hauge, Ya-Qiong Xu, Sean Pheasant
  • Publication number: 20130313944
    Abstract: A nanogenerator and a method of manufacturing the same are provided. The nanogenerator includes a boron nitride atomic layer, and a first electrode and a second electrode disposed on the boron nitride atomic layer.
    Type: Application
    Filed: July 31, 2013
    Publication date: November 28, 2013
    Applicant: RESEARCH & BUSINESS FOUNDATION SUNGKYNKWAN UNIVERSITY
    Inventors: Sang Woo KIM, Ju Hyuck LEE, Kang Hyuck LEE, Keun Young LEE, Jin Yeong Lee, Wan Chul SEUNG
  • Patent number: 8591858
    Abstract: Methods and processes for synthesizing high quality carbon single-walled nanotubes (SWNTs) are provided. The method provides the means for optimization of amount of carbon precursor and transport gas per unit weight of catalyst. In certain aspects, methods are provided wherein a supported metal catalyst is contacted with a carbon precursor gas at about one atmosphere pressure, wherein SWNTs are synthesized at a growth rate of about 0.002 ?m/sec to about 0.003 ?m/sec and the SWNTs have a ratio of G-band to D-band in Raman spectra (IG:ID) of greater than about 4. Efficiencies of about 20% can be achieved when contacting the catalyst deposited on a support with a carbon precursor gas with a flow rates of about 4.2×10?3 mol CH4/sec·g (Fe) at 780° C. Hydrocarbon flow rates of about 1.7 10?2 mol CH4/sec·g (Fe) and higher result in faster carbon SWNTs growth with improved quality. Slower rates of carbon atoms supply (˜4.5×1020 C atoms/s·g Fe or 6.
    Type: Grant
    Filed: May 1, 2008
    Date of Patent: November 26, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventors: Avetik R. Harutyunyan, Elena Mora
  • Publication number: 20130307136
    Abstract: A sheet structure has: a bundle structure including a plurality of linear structures made of carbon which are oriented in a predetermined direction; a covering layer covering the plurality of linear structures made of carbon; and a filling layer provided between the plurality of linear structures made of carbon covered with the covering layer. The thickness of the covering layer is not uniform in a direction crossing the predetermined direction.
    Type: Application
    Filed: April 10, 2013
    Publication date: November 21, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Yoshitaka YAMAGUCHI, Seiki SAKUYAMA, Yoshihiro MIZUNO, Taisuke IWAI, Yukie SAKITA, Masaaki NORIMATSU, Koji ASANO, Shinichi HIROSE, Yohei YAGISHITA
  • Patent number: 8574419
    Abstract: The invention relates to a chemical reactor with a nanometric superstructure, comprising at least one member wherein at least one reaction chamber is arranged, and said reaction chamber being filled at least partially with a high specific surface area material having a specific surface area greater than 5 m2/g, and characterized in that said high specific surface area material is selected from nanotubes or nanofibers. These nanotubes or nanofibers are preferably selected in the group consisting of carbon nanofibers or nanotubes, ?-SiC nanofibers or nanotubes, TiO2 nanofibers or nanotubes. They may be deposited on an intermediate structure selected in the group consisting of glass fibers, carbon fibers, SiC foams, carbon foams, alveolar ?-SiC foams, said intermediate structure filling the reaction chamber of said reactor at least partially.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 5, 2013
    Assignees: Centre National de la Recherche Scientifique, Universite de Strasbourg
    Inventors: Cuong Phamhuu, Nicolas Keller, Jacques M. Ledoux, Izabella Janowska, David Edouard, Valérie Keller-Spitzer, Thierry Romero, Liu Yu
  • Patent number: 8568876
    Abstract: Techniques for making nanowires with a desired diameter are provided. The nanowires can be grown from catalytic nanoparticles, wherein the nanowires can have substantially same diameter as the catalytic nanoparticles. Since the size or the diameter of the catalytic nanoparticles can be controlled in production of the nanoparticles, the diameter of the nanowires can be subsequently controlled as well. The catalytic nanoparticles are melted and provided with a gaseous precursor of the nanowires. When supersaturation of the catalytic nanoparticles with the gaseous precursor is reached, the gaseous precursor starts to solidify and form nanowires. The nanowires are separate from each other and not bind with each other to form a plurality of nanowires having the substantially uniform diameter.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 29, 2013
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Publication number: 20130273363
    Abstract: The present invention relates to a freestanding network of carbon nanofibers. The present invention further relates to a method of fabricating a freestanding network of carbon nanofibers. Carbon nanofibers are synthesized glass microballoons that are self-assembled on a silicon wafer.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 17, 2013
    Inventors: Eyassu Woldensenbet, Ephraim Zegeye, Yoonyoung Jin
  • Patent number: 8558304
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). Methods for protecting nanostructures from fusion during high temperature processing are also provided.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: October 15, 2013
    Assignee: SanDisk Corporation
    Inventors: Jian Chen, Xiangfeng Duan, Chao Liu, Madhuri Nallabolu, J. Wallace Parce, Srikanth Ranganathan
  • Patent number: 8551558
    Abstract: Photovoltaic devices and techniques for enhancing efficiency thereof are provided. In one aspect, a photovoltaic device is provided. The photovoltaic device comprises a photocell having a photoactive layer and a non-photoactive layer adjacent to the photoactive layer so as to form a heterojunction between the photoactive layer and the non-photoactive layer; and a plurality of high-aspect-ratio nanostructures on one or more surfaces of the photoactive layer. The plurality of high-aspect-ratio nanostructures are configured to act as a scattering media for incident light. The plurality of high-aspect-ratio nanostructures can also be configured to create an optical resonance effect in the incident light.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: October 8, 2013
    Assignee: International Business Machines Corporation
    Inventors: Supratik Guha, Oki Gunawan
  • Publication number: 20130234025
    Abstract: A field-emission electron gun including an electron emission tip, an extractor anode, and a mechanism creating an electric-potential difference between the emission tip and the extractor anode. The emission tip includes a metal tip and an end cone produced by chemical vapor deposition on a nanofilament, the cone being aligned and welded onto the metal tip. The electron gun can be used for a transmission electron microscope.
    Type: Application
    Filed: September 16, 2011
    Publication date: September 12, 2013
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Marc Monthioux, Florent Houdellier
  • Publication number: 20130236632
    Abstract: A method for optimizing graphene synthesis is provided. The method includes providing a substrate having a plurality of site isolated regions defined thereon and depositing a metal layer within each region of the plurality of site isolated regions. The metal layer is combinatorially deposited among the plurality of site isolated regions. The method includes synthesizing a graphene layer over each metal layer within each region of the plurality of site isolated regions and evaluating grain boundary profiles in the synthesized graphene layer over each metal layer within each region of the plurality of site isolated regions.
    Type: Application
    Filed: September 19, 2012
    Publication date: September 12, 2013
    Applicant: Intermolecular, Inc.
    Inventors: Sandip Niyogi, Sean Barstow, Dipankar Pramanik
  • Publication number: 20130189446
    Abstract: The present invention provides a low-pressure very high frequency pulsed plasma reactor system for synthesis of nanoparticles. The system includes a chamber configured to receive at least one substrate and capable of being evacuated to a selected pressure. The system also includes a plasma source for generating a plasma from at least one precursor gas and a very high frequency radio frequency power source for providing continuous or pulsed radio frequency power to the plasma at a selected frequency. The frequency is selected based on a coupling efficiency between the pulsed radio frequency power and the plasma. Parameters of the VHF discharge and gas precursors are selected based on nanoparticle properties. The nanoparticle average size and particle size distribution are manipulated by controlling the residence time of the glow discharge (pulsing plasma) relative to the gas molecular residence time through the discharge and the mass flow rates of the nanoparticle precursor gas (or gases).
    Type: Application
    Filed: September 1, 2009
    Publication date: July 25, 2013
    Inventors: James A. Casey, Vasgen Shamamian
  • Publication number: 20130189810
    Abstract: Nanostructures and photovoltaic structures are disclosed. A nanostructure according to one embodiment includes an array of nanocables extending from a substrate, the nanocables in the array being characterized as having a spacing and surface texture defined by inner surfaces of voids of a template; an electrically insulating layer extending along the substrate; and at least one layer overlaying the nanocables. A nanostructure according to another embodiment includes a substrate; a portion of a template extending along the substrate, the template being electrically insulative; an array of nanocables extending from the template, portions of the nanocables protruding from the template being characterized as having a spacing, shape, and surface texture defined by previously-present inner surface of voids of the template; and at least one layer overlaying the nanocables.
    Type: Application
    Filed: December 19, 2012
    Publication date: July 25, 2013
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, Q1 NANOSYSTEMS, INC.
    Inventors: Q1 Nanosystems, Inc., THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
  • Publication number: 20130168641
    Abstract: A new devices structure of nano tunneling field effect transistor based on nano metal particles is introduced. The nano semiconductor device, comprising a source and a drain, wherein each of the source and drain comprise an implanted nano cluster of metal atoms, wherein the implanted nano cluster of metal atoms forming the source has an average radius in the range from about 1 to about 2 nanometers, and the implanted nano cluster of metal atoms forming the drain has an average radius in the range from about 2 to about 4 nanometers. Processes for producing the nano semiconductor device are detailed.
    Type: Application
    Filed: December 30, 2011
    Publication date: July 4, 2013
    Inventor: Moh'd Rezeq
  • Patent number: 8461060
    Abstract: A semiconductor device and a method of forming it are disclosed in which at least two adjacent conductors have an air-gap insulator between them which is covered by nanoparticles of insulating material being a size which prevent the nanoparticles from substantially entering into the air-gap.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 11, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, Gurtej Sandhu, Neil Greeley, John Smythe
  • Publication number: 20130087071
    Abstract: A method of forming boron nitride nanoparticles. A plurality of precursor molecules comprising boron, nitrogen and hydrogen may be decomposed in a first heating zone to form a plurality of gaseous molecules that contain bonded boron and nitrogen, followed by heating to a second, higher temperature thereby causing the gaseous molecules to react and nucleate to form a plurality of boron nitride nanoparticles. Depending on processing temperatures, the boron nitride nanoparticles may include amorphous forms, crystalline forms, or combinations thereof. Precursor molecules may include ammonia borane, borazine, cycloborazanes, polyaminoborane, polyiminoborane, and mixtures thereof. The boron nitride nanoparticles may be incorporated into a variety of dispersions, composites, and coatings; and in one embodiment, may be a component of a propellant, wherein the boron nitride nanoparticles may confer a range of advantages to gun barrels in which such propellants may be fired.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 11, 2013
    Inventors: Paul H. Matter, Christopher T. Holt, Michael G. Beachy
  • Patent number: 8415546
    Abstract: Disclosed is a fabrication method of a metal nanoplate using metal, metal halide or a mixture thereof as a precursor. The single crystalline metal nanoplate is fabricated on a single crystalline substrate by performing heat treatment on a precursor including metal, metal halide or a mixture thereof and placed at a front portion of a reactor and the single crystalline substrate placed at a rear portion of the reactor under an inert gas flowing condition. A noble metal nanoplate of several micrometers in size can be fabricated using a vapor-phase transport process without any catalyst. The fabricated nanoplate is a single crystalline metal nanoplate having high crystallinity, high purity and not having a two-dimensional defect. Morphology and orientation of the metal nanoplate with respect to the substrate can be controlled by controlling a surface direction of the single crystalline substrate. The metal nanoplate of several micrometer size is mass-producible.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: April 9, 2013
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Bongsoo Kim, Youngdong Yoo