Electromagnetic Energy Patents (Class 977/950)

Cross-Reference Art Collections

Laser (Class 977/951)
  • Publication number: 20100264334
    Abstract: An embodiment of the invention is a device for photo-stimulated color emission having at least one plurally doped semiconducting nanoparticle comprising at least one semiconducting material and a plurality of at least one dopant coupled with an irradiation source such that the plurally doped semiconducting nanoparticle emit electromagnetic radiation at two or more wavelengths where the intensities of the emissions depend on the intensity of the irradiation. In an embodiment of the invention, the plurally doped semiconducting nanoparticle can be a doped core/shell nanoparticle where the plurality of dopants can reside in exclusively the core, exclusively the shell, or in both the core and shell.
    Type: Application
    Filed: April 7, 2010
    Publication date: October 21, 2010
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Y. CHARLES CAO, Ou Chen, Daniel Edward Shelby, Yongan Yang, Jiaqi Zhuang, Nicolo Omenetto
  • Publication number: 20100261445
    Abstract: The present invention relates to a display arrangement comprising a display means and receiving and/or transmitting means adapted to be arranged in association with said display means. An optically transparent and electrically conductive layer structure is adapted to be provided on the display means. Said optically transparent and electrically conductive layer structure is arranged or structured to form a plurality of receiving and/or transmitting elements constituting said receiving and/or transmitting means. Feeding and/or controlling means are provided to individually or groupwise feed and/or control said receiving and/or transmitting elements.
    Type: Application
    Filed: December 6, 2007
    Publication date: October 14, 2010
    Inventors: Fredrik Harrysson, Jonas Medbo
  • Publication number: 20100258784
    Abstract: A cavity free, broadband approach for engineering photon emitter interactions via sub-wavelength confinement of optical fields near metallic nanostructures. When a single CdSe quantum dot (QD) is optically excited in close proximity to a silver nanowire (NW), emission from the QD couples directly to guided surface plasmons in the NW, causing the wire's ends to light up. Nonclassical photon correlations between the emission from the QD and the ends of the NW demonstrate that the latter stems from the generation of single, quantized plasmons. Results from a large number of devices show that the efficient coupling is accompanied by more than 2.5-fold enhancement of the QD spontaneous emission, in a good agreement with theoretical predictions.
    Type: Application
    Filed: September 18, 2008
    Publication date: October 14, 2010
    Inventors: Mikhail D. Lukin, Alexander S. Zibrov, Alexey V. Akimov, Philip R. Hemmer, Hongkun Park, Aryesh Mukherjee, Darrick E. Chang, Chun Liang Yu
  • Publication number: 20100260321
    Abstract: A discretely addressable large-area X-ray system is provided. The large-area X-ray system can output a uniform flux of X-rays over a large area using discrete addressing operation of transistors connected to cathodes of electron emitters. Thus, when applied to a medical device, the system can minimize damage inflicted upon the human body because it enables effective imaging of only a desired specific portion of the body. Furthermore, the large-area X-ray system can be simply implemented by current switching using transistors. Thus, the system can be very easily applied to other applications.
    Type: Application
    Filed: November 13, 2008
    Publication date: October 14, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dae Jun Kim, Yoon Ho Song, Jin Woo Jeong
  • Patent number: 7811470
    Abstract: A water based colorant that includes a polymer emulsion and semiconductor crystals capable of emitting light. The colorants include paints, inks and/or dyes can be applied to various substrates.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: October 12, 2010
    Assignee: Evident Technologies
    Inventors: James Hayes, Luis Sanchez
  • Publication number: 20100244656
    Abstract: An antenna device is provided with a first connecting electrode, a first tunnel diode, a first antenna member and a fixed electrode. The first connecting electrode is configured to be connected to a fixed potential via a load. The first tunnel diode has a pair of electrodes. One of the electrodes of the first tunnel diode is connected to the first connecting electrode, and the other electrode of the first tunnel diode is connected to the first antenna member. The first antenna member has a conductive property and includes a first portion and a second portion. The first portion of the first antenna member is connected to the other electrode of the first tunnel diode. The fixed electrode is connected to the second portion of the first antenna member. The fixed electrode is configured to be connected to the fixed potential.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYODA GOSEI CO., LTD.
    Inventors: Tadashi Ito, Atsuto Okamoto, Tomoyoshi Motohiro, Tsuyoshi Nomura, Masahiro Hanazawa, Toshiyasu Ito, Takeshi Miyazaki, Yukihisa Ueno
  • Publication number: 20100245990
    Abstract: A semiconductor optical amplifier includes a semiconductor substrate; an optical waveguide that includes an active layer formed on the semiconductor substrate; and a wavelength selective reflection film that is formed on an end face where signal light is incident on the optical waveguide the wavelength selective reflection film allows transmission of the signal light, and reflects light of any wavelength other than the signal light.
    Type: Application
    Filed: December 11, 2009
    Publication date: September 30, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Shinsuke Tanaka, Shigeaki Sekiguchi
  • Publication number: 20100239268
    Abstract: An optical transmitter having a quantum-well (QW) modulator and a method of operating the same. The QW modulator is configurable to perform both amplitude and phase modulation. Using the disclosed methods, the length of the QW modulator, one or more drive voltages, and/or an operating wavelength can be selected to enable the optical transmitter to generate a modulated optical signal having a relatively high bit rate, e.g., an optical duobinary signal having a bit rate greater than about 80 Gb/s.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 23, 2010
    Applicant: ALCATEL-LUCENT USA INC.
    Inventor: Christopher R. Doerr
  • Publication number: 20100224856
    Abstract: Provided is an electroluminescent device which has a luminescent layer including quantum dots and which are excellent in life characteristics. An electroluminescent device (1) comprises a first electrode layer (3), a luminescent layer (4) formed on the first electrode layer, and a second electrode layer (5) formed on the luminescent layer. The luminescent layer uses quantum dots (12), each quantum dot being surrounded by silane coupling agent (11).
    Type: Application
    Filed: September 26, 2008
    Publication date: September 9, 2010
    Inventors: Yasuhiro Iizumi, Masaya Shimogawara
  • Publication number: 20100224853
    Abstract: A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.
    Type: Application
    Filed: March 20, 2009
    Publication date: September 9, 2010
    Inventors: Shimon Weiss, Marcel Bruchez, Paul Alivisatos
  • Patent number: 7791053
    Abstract: Plasmon-enable devices such as ultra-small resonant devices produce electromagnetic radiation at frequencies in excess of microwave frequencies when induced to resonate by a passing electron beam. The resonant devices are surrounded by one or more depressed anodes to recover energy from the passing electron beam as/after the beam couples its energy into the ultra-small resonant devices.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: September 7, 2010
    Assignee: Virgin Islands Microsystems, Inc.
    Inventor: Sidney E. Buttrill
  • Publication number: 20100213437
    Abstract: The present invention provides a light emitting device that comprises a luminescent layer formed of a monomolecular film of quantum dots and has enhanced brightness and luminescence efficiency. A light emitting device 1 comprises at least an anode 3, a hole transport luminescent layer 5 formed of a material containing a hole transport material and quantum dots 11, an electron transport layer 7, and a cathode 4 provided in that order. The light emitting device 1 is constructed so that the hole mobility of the electron transport layer 7 is smaller than that of tris(8-quinolinolato)aluminum complex (Alq3), and, in the hole transport luminescent layer 5, excitons generated in the electron transport layer 7 migrate into the luminescent layer to emit light.
    Type: Application
    Filed: September 29, 2008
    Publication date: August 26, 2010
    Applicant: Dai Nippon Printing Co., Ltd.
    Inventors: Tomonori Akai, Masaya Shimogawara
  • Publication number: 20100172122
    Abstract: An element for a solid state lighting device, such as a lamp or light fixture, includes one or more semiconductor nanophosphors dispersed in a light transmissive material in the element. The material is of a type and the nanophosphor(s) are dispersed therein in such a manner that the material bearing the semiconductor nanophosphor(s) is at least substantially color-neutral to the human observer, when the solid state lighting device is off. In some examples, the material appears relatively clear or transparent when the device is off. In other examples, the material appears translucent, e.g. white, when the device is off. When such an element is used to remotely deploy the nanophosphor, the nanophosphor is not readily perceptible to a person viewing the device when off. If a bubble is formed inside the container with a liquid type phosphor bearing material, the bubble may be configured to essentially disappear when the light transmissive liquid material reaches a nominal operating temperature.
    Type: Application
    Filed: March 23, 2010
    Publication date: July 8, 2010
    Inventors: David P. RAMER, Jack C. Rains, JR.
  • Publication number: 20100157406
    Abstract: Systems and methods for illuminating interferometric modulator reflective displays are disclosed. One embodiment includes a display including a plurality of interferometric modulators configured to reflect a spectrum of radiation having a reflectance response peak at one or more wavelengths. A plurality of quantum dots are configured to emit radiation having a peak wavelength substantially at said one or more wavelengths, and the display is configured such that light emitted from the quantum dots irradiates the plurality of interferometric modulators.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 24, 2010
    Applicant: QUALCOMM MEMS Technologies, Inc.
    Inventors: Russell Wayne Gruhlke, Ion Bita, Kollengode S. Narayanan, Lai Wang, John Joseph Hannan, Gang Xu, Chong Lee
  • Publication number: 20100148149
    Abstract: The present invention relates to light emitting diodes comprising at least one nanowire. The LED according to the invention is an upstanding nanostructure with the nanowire protruding from a substrate. A bulb with a larger diameter than the nanowire is arranged in connection to the nanowire and at an elevated position with regards to the substrate. A pn-junction is formed by the combination of the bulb and the nanowire resulting in an active region to produce light.
    Type: Application
    Filed: December 22, 2007
    Publication date: June 17, 2010
    Inventors: Bo Pedersen, Lars Samuelson, Jonas Ohlsson, Patrik Svensson
  • Patent number: 7737414
    Abstract: A method for preparing an iridium tip with atomic sharpness. The method includes tapering an iridium wire to a needle shape and heating the iridium needle in an oxygen atmosphere. Also disclosed is an iridium needle having a pyramidal structure which terminates with a small number of atoms prepared by the methods.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 15, 2010
    Assignee: Academia Sinica
    Inventors: Hong-Shi Kuo, Ing-Shouh Hwang, Tien T. Tsong, Tsu-Yi Fu
  • Patent number: 7727786
    Abstract: An optical memory cell having a material layer associated with a pixel capable of emitting and receiving light. The material layer has phosphorescent material formed therein for storing data as light received from and emitted to the pixel.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: June 1, 2010
    Inventor: Terry L. Gilton
  • Publication number: 20100127238
    Abstract: Example embodiments provide a light emitting diode (LED) having improved polarization characteristics. The LED may include wire grid polarizers on and below a light emitting unit. The wire grid polarizers may be arranged at an angle to each other. Thus, because the LED may emit a light beam in a given polarization direction, an expensive component, e.g., a dual brightness enhanced film (DBEF), is not required. Thus, manufacturing costs of a backlight unit including the LED and a display apparatus including the backlight unit may be reduced.
    Type: Application
    Filed: June 2, 2009
    Publication date: May 27, 2010
    Inventors: Jun-youn Kim, Taek Kim, Kyoung-kook Kim
  • Patent number: 7714351
    Abstract: The invention provides a nanowire light emitting device and a manufacturing method thereof. In the light emitting device, first and second conductivity type clad layers are formed and an active layer is interposed therebetween. At least one of the first and second conductivity type clad layers and the active layer is a semiconductor nanowire layer obtained by preparing a layer of a mixture composed of a semiconductor nanowire and an organic binder and removing the organic binder therefrom.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: May 11, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Won Ha Moon, Dong Woohn Kim, Jong Pa Hong
  • Publication number: 20100102245
    Abstract: Optical beam modulation is accomplished with the aid of a semiconductive nanomembrane, such as a silicon nanomembrane. A photocathode modulates a beam of charged particles that flow between the carbon nanotube emitter and the anode. A light source, or other source of electromagnetic radiation, supplies electromagnetic radiation that modulates the beam of charged particles. The beam of charged particles may be electrons, ions, or other charged particles. The electromagnetic radiation penetrates a silicon dioxide layer to reach the nanomembrane and varies the amount of available charge carriers within the nanomembrane, thereby changing the resistance of the nanomembrane. As the resistance of the nanomembrane changes, the amount of current flowing through the beam may also change.
    Type: Application
    Filed: September 11, 2009
    Publication date: April 29, 2010
    Applicant: Applied Nanotech Holdings, Inc.
    Inventors: Nan Jiang, Richard Lee Fink
  • Publication number: 20100097273
    Abstract: A method of fabricating an antenna. In one embodiment, the method includes the steps of providing a substrate treated with a plasma treatment, providing a nanoparticle ink comprising nanoparticles, painting the nanoparticle ink on the substrate to form an antenna member in which the nanoparticles are connected, determining a feed point of the antenna member, and attaching an feeding port onto the substrate at the feed point to establish a contact between the feeding port and the antenna member.
    Type: Application
    Filed: February 16, 2009
    Publication date: April 22, 2010
    Applicant: Board of Trustees of the University of Arkansas
    Inventors: Alexandru S. Biris, Hussain Al-Rizzo, Taha Elwi, Daniel Rucker
  • Patent number: 7700937
    Abstract: A single-photon generating device is configured to have a solid substrate including abase portion, and a pillar portion which is formed on the surface side of the base portion with a localized level existent in the vicinity of the tip of the base portion. The above pillar portion is formed to have a larger cross section on the base portion side than the cross section on the tip side, so that the light generated from the localized level is reflected on the surface, propagated inside the pillar portion, and output from the back face side of the base portion.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: April 20, 2010
    Assignees: Fujitsu Limited, The University of Tokyo
    Inventors: Shinichi Hirose, Motomu Takatsu, Tatsuya Usuki, Yasuhiko Arakawa
  • Publication number: 20100032552
    Abstract: An optical semiconductor device includes a lower electrode layer formed over a semiconductor substrate, an infrared absorption layer formed over the lower electrode layer 26, and an upper electrode layer 38 formed over the infrared absorption layer 36. The infrared absorption layer includes a quantum dot having dimensions different among directions stacked, and is sensitive to infrared radiation of wavelengths different corresponding to polarization directions.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 11, 2010
    Applicants: TECHNICAL RESEARCH & DEVELOPMENT INSTITUTE MINISTRY OF DEFENSE OF JAPAN, FUJITSU LIMITED
    Inventors: Minoru Doshida, Mitsuhiro Nagashima, Michiya Kibe, Hiroyasu Yamashita, Hironori Nishino, Yusuke Matsukura, Yasuhito Uchiyama
  • Patent number: 7655934
    Abstract: A light-emitting device includes a plurality of ultra-small resonant structures, each of said structures constructed and adapted to emit electromagnetic radiation (EMR) at a particular wavelength when a beam of charged particles is passed nearby. A combiner mechanism constructed and adapted to combine data from a data source with the EMR emitted by at least one of the ultra-small resonant structures.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: February 2, 2010
    Assignee: Virgin Island Microsystems, Inc.
    Inventors: Jonathan Gorrell, Henry Davis
  • Publication number: 20100019252
    Abstract: Embodiments of the present invention are directed to nanowire (100) devices having concentric and coaxial doped regions and nanocrystals (108, 110) disposed on the outer surfaces. In certain embodiments, the nanowire devices can include a light-emitting region (120) and be operated as a light-emitting diode (“LED”) (200), while in other embodiments, the nanowire devices can be operated as a light-detection device (600). The nanocrystals (108, 110) disposed on the outer surfaces provide electron-conduction paths and include spaces that allow light to penetrate and be emitted from nanowire regions.
    Type: Application
    Filed: September 30, 2008
    Publication date: January 28, 2010
    Inventors: Alexandre Bratkovski, Theodore I. Kamins
  • Publication number: 20100021104
    Abstract: It is made possible to provide an optical waveguide system that has a coupling mechanism capable of selecting a wavelength and has the highest possible conversion efficiency, and that is capable of providing directivity in the light propagation direction. An optical waveguide system includes: a three-dimensional photonic crystalline structure including crystal pillars and having a hollow structure inside thereof; an optical waveguide in which a plurality of metal nanoparticles are dispersed in a dielectric material, the optical waveguide having an end portion inserted between the crystal pillars of the three-dimensional photonic crystalline structure, and containing semiconductor quantum dots that are located adjacent to the metal nanoparticles and emit near-field light when receiving excitation light, the metal nanoparticles exciting surface plasmon when receiving the near-field light; and an excitation light source that emits the excitation light for exciting the semiconductor quantum dots.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 28, 2010
    Inventors: Masakazu YAMAGIWA, Kenji TODORI, Reiko YOSHIMURA, Miho MARUYAMA, Kou YAMADA, Yasuyuki HOTTA, Tsukasa TADA
  • Publication number: 20100006152
    Abstract: A method of producing a photo-voltaic device comprising the steps of: synthesising carbon nanotubes; adapting the synthesised carbon nanotubes to provide a surface defect such as to create an effective band gap; selecting an organic semiconductor material which facilitates the efficient energy transfer between carbon nanotubes and the organic material, wherein the organic material is selected such that the energy band gap formed between the HOMO and LUMO energy levels lies within the effective band gap of the adapted carbon nanotubes; combining the adapted carbon nanotubes and the selected organic material to form a composite material.
    Type: Application
    Filed: December 22, 2006
    Publication date: January 14, 2010
    Inventors: Ross Andrew Hatton, Sembukutiarachilage Ravi Silva, John Simon Henley
  • Patent number: 7635603
    Abstract: The present invention provides a method for making a light emitting diode (LED) through a silica film growth, an annealing treatment and a surface treatment so that the LED whose spectrum covers the whole red-light zone of a white-light spectrum is obtained with stability, economy, environmental protection and high efficiency.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: December 22, 2009
    Assignee: Atomic Energy Council - Institute of Nuclear Energy Research
    Inventors: Tsun-Neng Yang, Shan-Ming Lan
  • Patent number: 7622314
    Abstract: A method of making a carbon nanotube structure includes forming a plurality of carbon nanotubes and contacting the carbon nanotubes with a polymer. A solid composition is formed from the carbon nanotubes and polymer and then shaped. For example, the solid composition can be shaped into an elongated structure such as a filament, wire, rope, cable, and the like. In at least some instances, at least some, or all, of the polymer is removed from the solid composition after it is shaped.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: November 24, 2009
    Assignee: Brother International Corporation
    Inventor: Kangning Liang
  • Publication number: 20090278141
    Abstract: Light-emitting devices and displays with improved performance are disclosed. A light-emitting device includes an emissive material disposed between a first electrode, and a second electrode. Various embodiments include a device having a peak external quantum efficiency of at least about 2.2%; a device that emits light having a CIE color coordinate of x greater than 0.63; a device having an external quantum efficiency of at least about 2.2 percent when measured at a current density of 5 mA/cm2. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting red light upon excitation, wherein the device has a peak luminescent efficiency of at least about 1.5 lumens per watt. Also disclosed is a light-emitting device comprising a plurality of semiconductor nanocrystals capable of emitting red light upon excitation, wherein the device has a luminescent efficiency of at least about 1.
    Type: Application
    Filed: November 24, 2008
    Publication date: November 12, 2009
    Inventors: Seth Coe-Sullivan, Dorai Ramprasad, Ioannis Kymissis, Vladimir Bulovic, Marshall Cox, Caroline J. Roush, Peter T. Kazlas, Jonathan S. Steckel
  • Patent number: 7615800
    Abstract: An inorganic light emitting layer having a plurality of light emitting cores, each core having a semiconductor material that emits light in response to recombination of holes and electrons, each such light emitting core defining a first bandgap; a plurality of semiconductor shells formed respectively about the light emitting cores to form core/shell quantum dots, each such semiconductor shell having a second bandgap wider than the first bandgap; and a semiconductor matrix connected to the semiconductor shells to provide a conductive path through the semiconductor matrix and to each such semiconductor shell and its corresponding light emitting core so as to permit the recombination of holes and electrons.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: November 10, 2009
    Assignee: Eastman Kodak Company
    Inventor: Keith B. Kahen
  • Publication number: 20090251371
    Abstract: Communication to or from a nanodevice is provided with a nanostructure-based antenna, preferably formed from, but not limited to, a single wall nanotube (SWNT). Other nanostructure-based antennas include double walled nanotubes, semiconducting nanowires, metal nanowires and the like. The use of a nanostructure-based antenna eliminates the need to provide a physical communicative connection to the nanodevice, while at the same time allowing communication between the nanodevice and other nanodevices or outside systems, i.e., systems larger than nanoscale such as those formed from semiconductor fabrication processes such as CMOS, GaAs, bipolar processes and the like.
    Type: Application
    Filed: August 12, 2005
    Publication date: October 8, 2009
    Inventor: Peter J. Burke
  • Publication number: 20090242871
    Abstract: An inorganic EL device is provided with a substrate, a first electrode, a first insulating layer, a light emitting layer, a second insulating layer and a second electrode. The inorganic EL light emitting device is characterized in that the light emitting layer contains a quantum dot and is arranged between the first insulating layer and the second insulating layer by being brought into contact with each of the insulating layers.
    Type: Application
    Filed: June 4, 2007
    Publication date: October 1, 2009
    Applicant: HOYA CORPORATION
    Inventors: Satoshi Kobayashi, Yuki Iguchi
  • Patent number: 7592618
    Abstract: The nanoparticle electroluminescence device includes: a front electrode formed of a transparent conductive material; a rear electrode formed of a conductive material; and an emitting layer interposed between the front electrode and the rear electrode and comprising a plurality of nanoparticles having a core/shell structure comprising a core formed of silicon and a shell formed of silicon oxide or silicon nitride on the surface of the core.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: September 22, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-ho Khang, Eun-hyu Lee, Kyo-yeol Lee, Joo-hyun Lee, Seong-il Im
  • Publication number: 20090212282
    Abstract: Luminescent nanostructures (e.g., nanowires) and devices are provided which are capable of emitting bright visible light. The luminescent nanowires are most preferably in the form of a doped ZnO having a spectrally integrated ratio of visible to UV light of at least about 1000 or greater. The dopant for the ZnO luminescent nanowires may be at least one of sulfur, selenium, oxygen, zinc, magnesium, aluminum, with sulfur being especially preferred. The doped ZnO luminescent nanowires may be provided in devices for emitting visible light whereby visible light is emitted by the doped ZnO luminescent nanowires in response to excitation by UV light provided by a UV light source. The device may preferably comprise a transparent or translucent lens covering the UV light source, wherein the doped ZnO luminescent nanowires are present as a coating on a surface of the lens. In some embodiments, the device will comprise multiple UV light sources.
    Type: Application
    Filed: April 13, 2006
    Publication date: August 27, 2009
    Applicant: DUKE UNIVERSITY
    Inventors: Jie Lui, Jianye Li, Henry O. Everitt, Hongying Peng, John V. Foreman
  • Patent number: 7579609
    Abstract: A waveguide conduit is constructed and adapted to capture the light emitted by the at least one nano-resonant structure. The nano-resonant structure emits light in response to excitation by a beam of charged particles, The source of charged particles may be an ion gun, a thermionic filament, a tungsten filament, a cathode, a field-emission cathode, a planar vacuum triode, an electron-impact ionizer, a laser ionizer, a chemical ionizer, a thermal ionizer, or an ion-impact ionizer.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: August 25, 2009
    Assignee: Virgin Islands Microsystems, Inc.
    Inventors: Jonathan Gorrell, Mark Davidson, Michael E. Maines
  • Publication number: 20090201462
    Abstract: This disclosure relates to the application of a photoluminescent material with a plurality of nanocrystals, such as quantum dots or Cornell dots, each capable of absorbing electromagnetic energy at a first wavelength and emitting the absorbed energy as a desired wavelength in the direction of a human retina. Preferably, the emitted wavelength is chosen for its ability to suppress naturally occurring melatonin, i.e., blue light. The disclosure also contemplates the placement of the photoluminescent material over the entire surface of a lens or on a portion of the lens to optimize the exposure to the desired wavelength while reducing the overall luminescence. Finally, the photoluminescent material can be applied as a coating, as part of a material applied to the lens, either superficially or in/within the lens, as part of eyewear, or even as an optical treatment system.
    Type: Application
    Filed: May 6, 2008
    Publication date: August 13, 2009
    Inventor: Jake Gruber
  • Publication number: 20090190095
    Abstract: A 2D/3D switchable display system having a selector for selecting a two-dimensional (2D) or a three-dimensional (3D) image processing path; a first processor for processing image data through the two-dimensional image processing path; a second processor, independent of the first processor, for processing image data through the three dimensional image processing path; a first set of at least three emitters having corresponding first wavelengths; a second set of at least three emitters having corresponding second wavelengths; and a controller that during a 2D operation activates both first and second sets of emitters to present a single image, while during a 3D operation activates the first set of emitters to present a first image having one half of stereo image information and activates the second set of emitters to present a second image having a second half of stereo image information.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 30, 2009
    Inventors: Carolyn R. Ellinger, Paul J. Kane
  • Publication number: 20090189144
    Abstract: A device disclosed herein includes a first layer, a second layer, and a first plurality of nanowires established between the first layer and the second layer. The first plurality of nanowires is formed of a first semiconductor material. The device further includes a third layer, and a second plurality of nanowires established between the second and third layers. The second plurality of nanowires is formed of a second semiconductor material having a bandgap that is the same as or different from a bandgap of the first semiconductor material.
    Type: Application
    Filed: October 1, 2008
    Publication date: July 30, 2009
    Inventors: Nathaniel Quitoriano, Theodore I. Kamins
  • Publication number: 20090152664
    Abstract: A photodetector is described along with corresponding materials, systems, and methods. The photodetector comprises an integrated circuit and at least two optically sensitive layers. A first optically sensitive layer is over at least a portion of the integrated circuit, and a second optically sensitive layer is over the first optically sensitive layer. Each optically sensitive layer is interposed between two electrodes. The two electrodes include a respective first electrode and a respective second electrode. The integrated circuit selectively applies a bias to the electrodes and reads signals from the optically sensitive layers. The signal is related to the number of photons received by the respective optically sensitive layer.
    Type: Application
    Filed: April 18, 2008
    Publication date: June 18, 2009
    Inventors: Ethan Jacob Dukenfield Klem, Dean Delehanty MacNeil, Gerasimos Konstantatos, Jiang Tang, Michael Charles Brading, Hui Tian, Edward Hartley Sargent
  • Publication number: 20090140275
    Abstract: A nanoparticle is able to emit single photons. A waveguide is coupled to the nanoparticle and able to receive the single photons. A backreflector is optically coupled to the waveguide and configured to reflect the single photons toward the waveguide.
    Type: Application
    Filed: May 31, 2006
    Publication date: June 4, 2009
    Inventors: Charles Santori, Sean Spillane, Raymond G. Beausoleil, Marco Fiorentino
  • Publication number: 20090121243
    Abstract: Light-emitting devices, and related components, systems and methods are disclosed.
    Type: Application
    Filed: October 9, 2008
    Publication date: May 14, 2009
    Applicant: Luminus Devices, Inc.
    Inventors: Alexei A. Erchak, Elefterios Lidorikis, Chiyan Luo
  • Publication number: 20090091239
    Abstract: A light-emitting chip includes a light-emitting part, a first color-converting part and a second color-converting part. The light-emitting part includes a first electrode and a second electrode, and generates first light of a first wavelength. The first color-converting part is formed on a light-emitting surface of the light-emitting part. The first color-converting part converts at least a portion of the first light into second light of a second wavelength. The second color-converting part is formed on the first color-converting part. The second color-converting part converts at least a portion of the first light into third light of a third wavelength that is shorter than the second wavelength. Thus, a fluorescent substance of a long wavelength and a fluorescent substance of a short wavelength are sequentially formed on a light-emitting surface of a light-emitting part, so that the color reproducibility of a light-emitting chip may be enhanced.
    Type: Application
    Filed: May 1, 2008
    Publication date: April 9, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Don-Chan CHO, Jae-Byung PARK, Hae-Il PARK, Jin-Seob BYUN, Sung-Jin HONG, Seul LEE
  • Publication number: 20090008628
    Abstract: Disclosed is a light-emitting device using a transistor structure, including a substrate, a first gate electrode, a first insulating layer, a source electrode, a drain electrode, and a light-emitting layer formed between the source electrode and the drain electrode in a direction parallel to these electrodes. In the light-emitting device using the transistor structure, it is possible to adjust the mobility of electrons or holes and to selectively set a light-emitting region through the control of the magnitude of voltage applied to the gate electrode, thus increasing the lifespan of the light-emitting device, facilitating the manufacturing process thereof, and realizing light-emitting or light-receiving properties having high efficiency and high purity.
    Type: Application
    Filed: February 14, 2008
    Publication date: January 8, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byoung Lyong CHOI, Kyung Sang CHO, Eun Kyung LEE, O Gweon SEO
  • Patent number: 7470920
    Abstract: A display of wavelength elements can be produced from resonant structures that emit light (and other electromagnetic radiation having a dominant frequency higher than that of microwave) when exposed to a beam of charged particles, such as electrons from an electron beam. An exemplary display with three wavelengths per pixel utilizes three resonant structures per pixel. The spacings and lengths of the fingers of the resonant structures control the light emitted from the wavelength elements. Alternatively, multiple resonant structures per wavelength can be used as well.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: December 30, 2008
    Assignee: Virgin Islands Microsystems, Inc.
    Inventors: Jonathan Gorrell, Mark Davidson, Michael E Maines
  • Publication number: 20080315229
    Abstract: Disclosed herein is an electrical light-emitting device including a transparent conductive nanorod type electrode, in which transparent conductive nanorods grown perpendicular to a light-emitting layer are used as the electrode. Hence, light is not absorbed by the electrode, and tunneling easily occurs due to nanocontact of the nanorods, thus increasing current injection efficiency, and also, total internal reflections decrease. Thereby, the light-emitting device according to this invention has light-emitting properties and luminous efficiency superior to conventional light-emitting devices, including metal electrodes or thin film type transparent electrodes.
    Type: Application
    Filed: August 19, 2005
    Publication date: December 25, 2008
    Applicant: POSTECH FOUNDATION
    Inventors: Gyu-chul Yi, Sung-Jin An
  • Patent number: 7465954
    Abstract: A radiation-emitting device includes a nanowire that is structurally and electrically coupled to a first electrode and a second electrode. The nanowire includes a double-heterostructure semiconductor device configured to emit electromagnetic radiation when a voltage is applied between the electrodes. A device includes a nanowire having an active longitudinal segment selectively disposed at a predetermined location within a resonant cavity that is configured to resonate at least one wavelength of electromagnetic radiation emitted by the segment within a range extending from about 300 nanometers to about 2,000 nanometers. Active nanoparticles are precisely positioned in resonant cavities by growing segments of nanowires at known growth rates for selected amounts of time.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: December 16, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Theodore I Kamins, Philip J Kuekes, Stanley Williams
  • Publication number: 20080305568
    Abstract: Method for the light emitting diode (LED) having the nanorods-like structure is provided. The LED employs the nanorods are subsequently formed in a longitudinal direction by the etching method and the PEC method. In addition, the plurality of the nanorods is arranged in an array so that provide the LED having much greater brightness and higher light emission efficiency than the conventional LED.
    Type: Application
    Filed: November 15, 2007
    Publication date: December 11, 2008
    Applicant: National Chiao Tung University
    Inventors: Hung-Wen Huang, Tien-Chang Lu, Ching-Hua Chiu, Hao-Chung Kuo, Shing-Chung Wang
  • Patent number: 7443577
    Abstract: A filter for use with an array of ultra-small resonant structures that are producing encoded EMR wherein the filter is designed to either reflect encoded EMR beams or to permit certain frequencies to pass there through so that the encoded EMR beam and its encoded data can be transmitted out of the device and to another receiver where the data can be used.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: October 28, 2008
    Assignee: Virgin Islands Microsystems, Inc.
    Inventors: Jonathan Gorrell, Mark Davidson
  • Publication number: 20080231445
    Abstract: This invention assigns differing chose in action categories, such as banknote, check and stock certificate. Each category reflects electro magnetic signals through a nano size silicon integrated circuit package known as an RFID transponder. As an example, a unique identifier number, serial number, denomination amount, will be written onto each RFID transponder. A specific frequency can be assigned to each category. Each category is divided by at least 2 MHz with all transmissions taking place within the 24 to 40 GHz frequency range. The chose in action can be interrogated at specially shielded stations, such as cash registers or bank teller windows or at stock brokerage firms, to verify the authenticity of the chose in action. The interrogators will be connected to a centralized host system comprised of computer server and middleware to trace and track the progress of the chose in action through the economy in real time.
    Type: Application
    Filed: March 21, 2007
    Publication date: September 25, 2008
    Inventor: James Neil Rodgers