Processes Of Growth From Liquid Or Supercritical State Patents (Class 117/11)
  • Patent number: 7799130
    Abstract: A silicon single crystal ingot growing apparatus for growing a silicon single crystal ingot based on a Czochralski method The silicon single crystal ingot growing apparatus includes a chamber; a crucible provided in the chamber, and for containing a silicon melt; a heater provided at the outside of the crucible and for heating the silicon melt; a pulling unit for ascending a silicon single crystal grown from the silicon melt; and a plurality of magnetic members provided at the outside of the chamber and for asymmetrically applying a magnetic field to the silicon melt Such a structure can uniformly controls an oxygen concentration at a rear portion of a silicon single crystal ingot using asymmetric upper/lower magnetic fields without replacing a hot zone In addition, such a structure can controls a flower phenomenon generated on the growth of the single crystal by the asymmetric magnetic fields without a loss such as the additional hot zone (H/Z) replacement, P/S down, and SR variance.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: September 21, 2010
    Assignee: Siltron, Inc.
    Inventors: Young Ho Hong, Man Seok Kwak, Ill-Soo Choi, Hyon-Jong Cho, Hong Woo Lee
  • Patent number: 7780783
    Abstract: The invention provides an apparatus for producing a single crystal, and a method for producing a silicon single crystal using the same. An apparatus for producing a single crystal includes a heating device which heats polycrystalline silicon raw material held in a crucible to form silicon melt, and a pulling up device which grows a silicon single crystal while pulling it up from the silicon melt accompanied with rotation. By providing the apparatus with a magnetic field generation unit which applies to the silicon melt a cusp magnetic field a shape of neutral plane of which is symmetric around the rotation axis of the silicon single crystal and is curved in the upward direction, various conditions for producing a silicon single crystal having a defect free region is relaxed, and a silicon single crystal having a defect free region is produced at high efficiency.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: August 24, 2010
    Assignee: Sumco Corporation
    Inventors: Norihito Fukatsu, Kazuyuki Egashira, Senrin Fu
  • Publication number: 20100207029
    Abstract: A single crystal scintillator material according to the present invention includes a single crystal portion that is represented by the compositional formula (CexLu1-x)BO3 in which the mole fraction x of Ce satisfies 0.0001?x?0.05.
    Type: Application
    Filed: July 1, 2008
    Publication date: August 19, 2010
    Applicant: HITACHI METALS, LTD.
    Inventors: Hiroyuki Okuda, Naoyuki Okamoto
  • Patent number: 7744696
    Abstract: A borate-based crystal excellent in uniformity and reliability, which is useful as an optical wavelength conversion device, etc., and can be easily produced at low cost in a short period of time, by the steps of dissolving water-soluble starting materials in water to prepare an aqueous solution, evaporating water in the aqueous solution followed by sintering or evaporating the water and not sintering, thereby forming a crystal growth material, and melting the resultant material to grow a crystal. Further, a highly reliable laser oscillation apparatus can be achieved by using this crystal as an optical wavelength conversion device.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: June 29, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Takatomo Sasaki, Yusuke Mori, Masashi Yoshimura, Muneyuki Nishioka, Satoru Fukumoto, Tomoyo Matsui, Takashi Saji
  • Patent number: 7718003
    Abstract: A method and apparatus for growing a crystalline or poly-crystalline body from a melt is described, wherein the melt is retained by capillary attachment to edge features of a mesa crucible. The boundary profile of the resulting melt surface results in an effect which induces a ribbon grown from the surface of the melt to grow as a flat body. Further, the size of the melt pool is substantially reduced by bringing these edges close to the ribbon, thereby reducing the materials cost and electric power cost associated with the process.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: May 18, 2010
    Assignee: Evergreen Solar, Inc.
    Inventor: Emanuel Michael Sachs
  • Patent number: 7708829
    Abstract: A method and apparatus for growing a crystalline or poly-crystalline body from a melt is described, wherein the melt is retained by capillary attachment to edge features of a mesa crucible. The boundary profile of the resulting melt surface results in an effect which induces a ribbon grown from the surface of the melt to grow as a flat body. Further, the size of the melt pool is substantially reduced by bringing these edges close to the ribbon, thereby reducing the materials cost and electric power cost associated with the process.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: May 4, 2010
    Assignee: Evergreen Solar, Inc.
    Inventor: Emanuel Michael Sachs
  • Patent number: 7682939
    Abstract: This invention relates to a method for producing group IB-IIA-VIA quaternary or higher alloy semiconductor films wherein the method comprises the steps of (i) providing a metal film comprising a mixture of group IB and group IIIA metals; (ii) heat treating the metal film in the presence of a source of a first group VIA element (said first group VIA element hereinafter being referred to as VIA1) under conditions to form a first film comprising a mixture of at least one binary alloy selected from the group consisting of a group IB-VIA1 alloy and a group IIIA-VIA1 alloy and at least one group IB-IIIA-VIA1 ternary alloy (iii) optionally heat treating the first film in the presence of a source of a second group VIA element (said second group VI element hereinafter being referred to as VIA2) under conditions to convert the first film into a second film comprising at least one alloy selected from the group consisting of a group IB-VIA1-VIA2 alloy and a group IIIA-VIA1-VIA2 alloy; and the at least one group IB-III-VI
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: March 23, 2010
    Assignee: University of Johannesburg
    Inventor: Vivian Alberts
  • Publication number: 20100066388
    Abstract: A soot sensor has a soot-sensitive noble-metal structure formed as strip conductor sections on an electrically insulating carrier, whose strip conductor sections are between 5 and 100 ?m wide and are spaced apart from each other between 5 and 100 ?m. The electrically insulating carrier may be a single crystal and the noble metal crystallized out on a surface of the single crystal, or the electrically insulating carrier may be polycrystalline and the noble metal crystallized out on the polycrystalline, electrically insulating carrier.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 18, 2010
    Applicant: HERAEUS SENSOR TECHNOLOGY GMBH
    Inventors: Karlheinz WIENAND, Karl-Heinz ULLRICH
  • Patent number: 7655089
    Abstract: A process for producing a single crystal of semiconductor material, in which fractions of a melt, are kept in liquid form by a pulling coil, solidify on a seed crystal to form the growing single crystal, and granules are melted in order to maintain the growth of the single crystal. The melting granules are passed to the melt after a delay. There is also an apparatus which Is suitable for carrying out the process and has a device which delays mixing of the molten granules and of the melt.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: February 2, 2010
    Assignee: Siltronic AG
    Inventor: Wilfried von Ammon
  • Patent number: 7651566
    Abstract: Techniques for controlling resistivity in the formation of a silicon ingot from compensated feedstock silicon material prepares a compensated, upgraded metallurgical silicon feedstock for being melted to form a silicon melt. The compensated, upgraded metallurgical silicon feedstock provides a predominantly p-type semiconductor for which the process assesses the concentrations of boron and phosphorus and adds a predetermined amount of aluminum or/and gallium. The process further melts the silicon feedstock together with a predetermined amount of aluminum or/and gallium to form a molten silicon solution from which to perform directional solidification and, by virtue of adding aluminum or/and gallium, maintains the homogeneity the resistivity of the silicon ingot throughout the silicon ingot. In the case of feedstock silicon leading to low resistivity in respective ingots, typically below 0.4 ?cm, a balanced amount of phosphorus can be optionally added to aluminum or/and gallium.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: January 26, 2010
    Inventors: Fritz Kirscht, Vera Abrosimova, Matthias Heuer, Dieter Linke, Jean Patrice Rakotoniana, Kamel Ounadjela
  • Patent number: 7651861
    Abstract: There is provided a method of forming a fluorite crystal and an exposure apparatus including this fluorite crystal. A method of manufacturing a device using the exposure apparatus is also provided.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: January 26, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kenji Ookubo
  • Patent number: 7637998
    Abstract: Single crystal SiC, having no fine grain boundaries, a micropipe defect density of 1/cm2 or less and a crystal terrace of 10 micrometer or more is obtained by a high-temperature liquid phase growth method using a very thin Si melt layer. The method does not require temperature difference control between the growing crystal surface and a raw material supply polycrystal and preparation of a doped single crystal SiC is possible.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: December 29, 2009
    Assignee: Kwansei Gakuin Educational Foundation
    Inventors: Tadaaki Kaneko, Yasushi Asaoka, Naokatsu Sano
  • Publication number: 20090301388
    Abstract: An improved capsule for processing materials or growing crystals in supercritical fluids. The capsule is scalable up to very large volumes and is cost effective according to a preferred embodiment. In conjunction with suitable high pressure apparatus, the capsule is capable of processing materials at pressures and temperatures of 0.2-8 GPa and 400-1500° C., respectively. Of course, there can be other variations, modifications, and alternatives.
    Type: Application
    Filed: June 5, 2008
    Publication date: December 10, 2009
    Applicant: Soraa Inc.
    Inventor: MARK P. D'EVELYN
  • Publication number: 20090293803
    Abstract: By providing a length of not less than 100 mm to a tail portion to be formed following the cylindrical body portion in growing silicon single crystals having a cylindrical body portion with a diameter of 450 mm using the CZ method, it becomes possible to inhibit the occurrence of dislocations in the tail portion and thus achieve improvements in yield and productivity. A transverse magnetic field having an intensity of not less than 0.1 T is preferably applied on the occasion of formation of that tail portion.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 3, 2009
    Inventors: Takanori Tsurumaru, Hideki Hara, Ryoichi Kaito
  • Patent number: 7625446
    Abstract: A capsule for containing at least one reactant and a supercritical fluid in a substantially air-free environment under high pressure, high temperature processing conditions. The capsule includes a closed end, at least one wall adjoining the closed end and extending from the closed end; and a sealed end adjoining the at least one wall opposite the closed end. The at least one wall, closed end, and sealed end define a chamber therein for containing the reactant and a solvent that becomes a supercritical fluid at high temperatures and high pressures. The capsule is formed from a deformable material and is fluid impermeable and chemically inert with respect to the reactant and the supercritical fluid under processing conditions, which are generally above 5 kbar and 550° C. and, preferably, at pressures between 5 kbar and 80 kbar and temperatures between 550 ° C. and about 1500° C.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: December 1, 2009
    Assignee: Momentive Performance Materials Inc.
    Inventors: Mark Philip D'Evelyn, Kristi Jean Narang, Robert Arthur Giddings, Steven Alfred Tysoe, John William Lucek, Suresh Shankarappa Vagarali, Robert Vincent Leonelli, Jr., Joel Rice Dysart
  • Patent number: 7618491
    Abstract: A scintillator single crystal of a specific cerium-doped silicate compound that contains 0.00005 to 0.1 wt % of one or more types of element selected from the group consisting of elements belonging to group 2 of the periodic table based on the total weight of the single crystal.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: November 17, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Yasushi Kurata, Naoaki Shimura, Tatsuya Usui, Kazuhisa Kurashige
  • Publication number: 20090266294
    Abstract: A feed assembly and method of use thereof of the present invention is used for the addition of a high pressure dopant such as arsenic into a silicon melt for CZ growth of semiconductor silicon crystals. The feed assembly includes a vessel-and-valve assembly for holding dopant, and a feed tube assembly, attached to the vessel-and-valve assembly for delivering dopant to a silicon melt. An actuator is connected to the feed tube assembly and a receiving tube for advancing and retracting the feed tube assembly to and from the surface of the silicon melt. A brake assembly is attached to the actuator and the receiving tube for restricting movement of the feed tube assembly and locking the feed tube assembly at a selected position.
    Type: Application
    Filed: April 24, 2008
    Publication date: October 29, 2009
    Applicant: MEMC ELECTRONIC MATERIALS, INC.
    Inventors: Massoud Javidi, Steve Garner
  • Patent number: 7591895
    Abstract: A method and an apparatus for producing crystals wherein crystal quality can be kept and a crystal composition is uniformed from a growth early stage to a growth last stage are provided. In an apparatus for producing crystals wherein the crystals 13 are grown from a liquefying raw material 12 in a crucible retained in a furnace and slowly cooling the raw material 12 in the crucible 11 from below upward, the apparatus comprises a raw material supply apparatus 18 which supplies a resupply raw material, and a reflection plate 20 placed above the crucible 11, which liquefies the resupply raw material 19 supplied from the raw material supply apparatus 18 and drops it as a liquid into the crucible.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: September 22, 2009
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Masahiro Sasaura, Hiroki Kohda, Kazuo Fujiura, Takashi Kobayashi, Tadayuki Imai, Takashi Kurihara
  • Publication number: 20090223439
    Abstract: In some embodiments, an apparatus configured to grow a single crystal includes a support configured to carry the single crystal. The support includes an end portion having variable widths along a length of the support. The apparatus can be used to grow, for example, large, high quality single crystals of ice in a short amount of time.
    Type: Application
    Filed: March 7, 2008
    Publication date: September 10, 2009
    Applicant: TUFTS UNIVERSITY
    Inventors: Mary Jane Shultz, Irene Li, Klaus Henning Groenzin
  • Patent number: 7582160
    Abstract: In silicon single crystal growth by the Czochralski method using a quartz crucible, a silicon single crystals with a uniform distribution of oxygen concentration can be produced in high yield without being affected by changes of crystal diameter and initial amount of melt feedstock. The oxygen concentration is adjusted by estimating oxygen concentration during growth on the basis of a relationship among three parameters: crucible rotation rate (?), crucible temperature (T), and the ratio (?) of contact area of molten silicon with the inner wall of the crucible and with atmospheric gas, and by associating the temperature (T) with the ratio (?) by the function 1/?×Exp(?E/T) where E is the dissolution energy (E) of quartz into molten silicon to control at least one of the rotation rate (?) and temperature (T) to conform the estimated oxygen concentration to a target concentration.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: September 1, 2009
    Assignee: Siltronic AG
    Inventors: Yutaka Kishida, Seiki Takebayashi, Teruyuki Tamaki
  • Patent number: 7582159
    Abstract: A method for producing a single crystal by Czochralski method with pulling a seed crystal from a raw material melt, wherein in which a range of a pulling rate of pulling a single crystal, a temperature gradient at a solid-liquid interface and a highest temperature at an interface between a crucible and a raw material melt are defined. The single crystal is pulled with controlling the pulling rate and/or the temperature gradient at a solid-liquid interface within the determined range. The method produces a single crystal in which a desired defect region and/or a desired defect-free region can be determined more precisely and a single crystal with desired quality can be more surely pulled.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: September 1, 2009
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventor: Makoto Iida
  • Patent number: 7544245
    Abstract: Disclosed is a method for producing a barium titanium oxide single crystal piece with a given structure using a containerless solidification process, which comprises the steps of preparing a material made of a barium titanium oxide, controlling the material to be in a levitated state within a levitation furnace, melting the levitated material using a laser, and solidifying the molten material while maintaining the levitated state. In a specific embodiment, a spherical sample having a composition of BaTiO3 and a weight of about 20 mg is subjected to a rapid solidification and melting process (temperature gradient: about 700 K/sec) 3 times while levitating the sample in 4.5 atm of air atmosphere using an electrostatic levitation furnace. Then, the re-molten sample is maintained at a temperature just below the melting point of the sample for a given time, and then rapidly cooled at a cooling rate of 300 K/sec to obtain a transparent blue barium titanium oxide single crystal.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 9, 2009
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Kentei Yono, Paul-Francois Paradis, Takehiko Ishikawa, Shinichi Yoda
  • Patent number: 7531036
    Abstract: The present invention provides a single crystal heat treatment method, having a step of heating a single crystal of a cerium-doped silicate compound represented by any of general formulas (1) to (4) below in an oxygen-containing atmosphere Y2?(x+y)LnxCeySiO5??(1) (wherein Ln represents at least one elemental species selected from a group consisting of elements belonging to the rare earth elements, x represents a numerical value from 0 to 2, and y represents a numerical value greater than 0 but less than or equal to 0.2) Gd2?(z+w)LnzCewSiO5??(2) (wherein Ln represents at least one elemental species selected from a group consisting of elements belonging to the rare earth elements, z represents a numerical value greater than 0 but less than or equal to 2, and w represents a numerical value greater than 0 but less than or equal to 0.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: May 12, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Naoaki Shimura, Yasushi Kurata, Tatsuya Usui, Kazuhisa Kurashige
  • Patent number: 7527773
    Abstract: A method of forming rare earth oxide nanocrystals include the steps of dissolving a rare earth including compound in a solution containing at least one organic solvent, heating the solution to a temperature of at least 160° C., wherein a concentration of the rare earth including compound provided upon decomposition is sufficient to provide critical supersaturation of at least one active intermediate in the solution to nucleate a plurality of rare earth oxide nanocrystals. The plurality of rare earth nanocrystals are then grown, wherein the growing step proceeds at least in part in the absence of critical supersaturation of the active intermediate. The rare earth nanocrystals can assemble into at least one close-packed, ordered nanocrystal superlattice.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: May 5, 2009
    Assignee: University of Florida Research Foundation, Inc.
    Inventor: Yunwei Charles Cao
  • Patent number: 7520932
    Abstract: A method of analyzing carbon concentration in crystalline silicon includes providing a section from a zoned and annealed silicon core. The zoned and annealed core is extracted from a polycrystalline silicon composition and has a columnar shape. The zoned and annealed core includes a single crystalline silicon region and a freeze-out melt region. The freeze-out melt region is disposed adjacent to the single crystalline silicon region, and the regions are spaced along a length of the columnar shape. Specifically, the section is provided from the freeze-out melt region, with the entire freeze-out melt region in the section. A carbon concentration of the section is determined. By providing the section from the freeze-out melt region, as opposed to the polycrystalline silicon composition, determination of carbon concentration in the crystalline silicon is enabled with a sensitivity at less than or equal to 10 parts per billion atomic.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 21, 2009
    Assignee: Dow Corning Corporation
    Inventor: Doug Kreszowski
  • Patent number: 7517406
    Abstract: Proposed is a technique of producing a magnetic garnet material of which the light absorption characteristics worsen little even though it is produced through LPE. The crucible for LPE is formed of a material containing Au. The amount of Au to be taken in single crystal formed in an Au crucible is smaller than that of Pt to be taken therein formed in a Pt crucible. As compared with Pt, the influence of Au on magnetic garnet film that increases the insertion loss in the film is small.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: April 14, 2009
    Assignee: TDK Corporation
    Inventors: Atsushi Ohido, Tamotsu Sugawara, Kazuhito Yamasawa, Shinichiro Kakei, Kazuya Shimakawa, Katsunori Hosoya
  • Publication number: 20090084307
    Abstract: A method of forming monodisperse metal chalcogenide nanocrystals without precursor injection, comprising the steps of: combining a metal source, a chalcogen oxide or a chalcogen oxide equivalent, and a fluid comprising a reducing agent in a reaction pot at a first temperature to form a liquid comprising assembly; increasing the temperature of the assembly to a sufficient-temperature to initiate nucleation to form a plurality of metal chalcogenide nanocrystals; and growing the plurality of metal chalcogenide nanocrystals without injection of either the metal source or the chalcogen oxide at a temperature equal to or greater than the sufficient-temperature, wherein crystal growth proceeds substantially without nucleation to form a plurality of monodisperse metal chalcogenide nanocrystals. Well controlled monodispersed CdSe nanocrystals of various sizes can be prepared by choice of the metal source and solvent system.
    Type: Application
    Filed: October 10, 2008
    Publication date: April 2, 2009
    Applicant: University of Florida Research Foundation, Inc.
    Inventors: Yunwei Charles Cao, Ou Chen
  • Publication number: 20090050050
    Abstract: Single-crystal materials are fabricated from a melt at temperatures below their melting points.
    Type: Application
    Filed: May 23, 2008
    Publication date: February 26, 2009
    Applicant: Crystal IS, Inc.
    Inventors: Glen A. Slack, Sandra B. Schujman
  • Patent number: 7452419
    Abstract: A method is provided for operating a crystallization system comprising identifying a screen storage plate from among the plurality of screen storage plates stored in a screen storage station, each screen storage plate having a plurality of wells that contain a screen solution and at least a portion of the screen storage plates having a selection of screen solutions that is different from the selection of screen solutions held in other screen storage plates; having a transport mechanism transport the identified screen storage plate to a screen replicator; transporting a plurality of crystallization plates to the screen replicators; and having the screen replicator transfer the screen solutions from the identified screen storage plate to the plurality of crystallization plates.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: November 18, 2008
    Assignee: Takeda San Diego, Inc.
    Inventors: Laurent Martin, John W. Palan
  • Publication number: 20080168942
    Abstract: A device for transporting liquids and supporting crystal growth comprises a hollow space (20) in a body (1) with a first side. The hollow space comprises at least a first orifice (9) and is being adapted for generating a directed capillary ascension effect towards the at least first orifice (9).
    Type: Application
    Filed: January 16, 2007
    Publication date: July 17, 2008
    Inventor: Bernhard Dehmer
  • Patent number: 7393409
    Abstract: The method provides CaF2 single crystals with low scattering, small refractive index differences and few small angle grain boundaries, which can be tempered at elevated temperatures. In the method a CaF2 starting material is heat-treated for at least five hours at temperatures between 1000° C. and 1250° C. and then sublimed at a sublimation temperature of at least 1100° C. in a vacuum of at most 5*10?4 mbar to form a vapor. The vapor is condensed at a condensation temperature of at least 500° C., which is at least 20° C. below the sublimitation temperature, to form a condensate. Then a melt formed from the condensate is cooled in a controlled manner to obtain the single crystal, which is subsequently tempered. The method is preferably performed with a CaF2 starting material including waste material and cuttings from previously used melts.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: July 1, 2008
    Assignee: Schott AG
    Inventors: Lars Ortmann, Joerg Kandler, Andreas Menzel, Matthias Mueller, Lutz Parthier, Gordon Von der Goenna
  • Patent number: 7387677
    Abstract: The substrate is used for opto-electric or electrical devices and comprises a layer of nitride grown by means of vapor phase epitaxy growth wherein both main surfaces of the nitride substrate are substantially consisting of non N-polar face and N-polar face respectively and the dislocation density of the substrate is 5×105/cm2 or less. Therefore, the template type substrate has a good dislocation density and a good value of FWHM of the X-ray rocking curve from (0002) plane less than 80, so that the resulting template type substrate is very useful for the epitaxy substrate from gaseous phase such as MOCVD, MBE and HVPE, resulting in possibility of making good opto-electric devices such as Laser Diode and large-output LED and good electric devices such as MOSFET.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: June 17, 2008
    Assignees: AMMONO Sp. z o.o., Nichia Corporation
    Inventors: Robert Dwilinski, Roman Doradzinski, Jerzy Garczynski, Leszek Sierzputowski, Yasuo Kanbara
  • Publication number: 20080134957
    Abstract: A crucible for growing III-nitride (e.g., aluminum nitride) single crystals is provided. The crucible includes an elongated wall structure defining an interior crystal growth cavity. Embodiments include a plurality of grains and a wall thickness of at least about 1.5 times the average grain size. In particular embodiments, the crucible includes first and second layers of grains the first layer including grains forming an inside surface thereof and the second layer being superposed with the first layer. The crucible may be fabricated from tungsten-rhenium (W—Re) alloys; rhenium (Re); tantalum monocarbide (TaC); tantalum nitride (Ta2N); hafnium nitride (HfN); a mixture of tungsten and tantalum (W—Ta); tungsten (W); and combinations thereof.
    Type: Application
    Filed: March 23, 2007
    Publication date: June 12, 2008
    Applicant: Crystal IS, Inc.
    Inventors: Leo J. Schowalter, Glen A. Slack
  • Patent number: 7371280
    Abstract: High pressure synthesis of various crystals such as diamond, cBN and the like can be carried out using reaction assemblies suitable for use in methods such as temperature gradient methods. The reaction assembly can be oriented substantially perpendicular to gravity during application of high pressure. Orienting the reaction assembly in this manner can avoid detrimental effects of gravity on the molten catalyst, e.g., convection, hence increasing available volumes for growing high quality crystals. Multiple reaction assemblies can be oriented in series or parallel, each reaction assembly having one or more growth cells suitable for growth of high quality crystals. Additionally, various high pressure apparatuses can be used. A split die design allows for particularly effective results and control of temperature and growth conditions for individual crystals.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: May 13, 2008
    Inventor: Chien-Min Sung
  • Publication number: 20080090072
    Abstract: A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750° C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.
    Type: Application
    Filed: October 17, 2006
    Publication date: April 17, 2008
    Inventor: Alp T. Findikoglu
  • Patent number: 7335257
    Abstract: An apparatus is provided for manufacturing a single crystal rod from a poly crystal feed rod including a closed chamber at which chamber the feed rod is located. The chamber has an annular energy supply arranged around the feed rod for melting off the one end of the rod for providing single crystals. Actuators are provided, for axial movement of the feed rod and for a rotating relative movement between the feed rod and the annular energy supply The apparatus further includes components for recording and regulating the distance between the surface of the feed rod and an annular inwardly radially facing reference face associated with the energy supply The resulting apparatus and method that enable use of irregular feed rods that assume other shapes than the optimal cylindrical shape and also enable use of curved cylindrical and elliptical rods with irregular surfaces.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: February 26, 2008
    Assignee: Topsil Semiconductor Materials A/S
    Inventors: Leif Jensen, Jan Eyving Petersen, Per Vabengard
  • Publication number: 20070289491
    Abstract: A semiconductor nanocrystal composition comprising a Group V to VI semiconductor material and a method of making same. The method includes synthesizing a semiconductor nanocrystal core, where the synthesizing includes dissolving a Group V to VI anion gas in a first solvent to produce a Group V to VI anion precursor, preparing a cation precursor, and reacting the Group V to VI anion precursor with the cation precursor in the presence of a second solvent. The reacting may occur in a high pressure vessel.
    Type: Application
    Filed: February 28, 2007
    Publication date: December 20, 2007
    Applicant: EVIDENT TECHNOLOGIES, INC.
    Inventors: Adam Peng, Margaret Hines, Susanthri Perera
  • Patent number: 7306670
    Abstract: In the case of the epitaxial growth according to the prior art, a number o strips often have to be produced in a plane in order to restore an area to be repaired. This leads to overlapping and misorientation of the crystalline structures. In the case of the method according to the invention, the strip is of such a width that no overlapping occurs, since the width is adapted to the contour of the area to be repaired.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: December 11, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Beck, Georg Bostanjoglo, Nigel-Philip Cox, Rolf Wilkenhöner
  • Patent number: 7294198
    Abstract: A process for producing single-crystal gallium nitride comprising the steps of performing congruent melting of gallium nitride at a high pressure between 6×104 atm. and 10×104 atm. and at a high temperature between 2,200° C. and 2,500° C. and then slowly cooling the obtained gallium nitride melt at the stated high pressure.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: November 13, 2007
    Assignee: Japan Atomic Energy Research Institute
    Inventors: Wataru Utsumi, Hiroyuki Saitoh, Katsutoshi Aoki
  • Publication number: 20070234946
    Abstract: A method for growing gallium nitride (GaN) crystals in supercritical ammonia using an autoclave is disclosed. Large surface area GaN crystals are created, which may include calcium, magnesium or vanadium or less than 1% indium.
    Type: Application
    Filed: April 6, 2007
    Publication date: October 11, 2007
    Inventors: Tadao Hashimoto, Makoto Saito, Shuji Nakamura
  • Patent number: 7229497
    Abstract: A population of nanocrystals having a narrow and controllable size distribution and can be prepared by a continuous flow method.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: June 12, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Nathan E. Stott, Klavs F. Jensen, Moungi G. Bawendi, Brian K. H. Yen
  • Patent number: 7223303
    Abstract: A cleaning method cleans silicon for semiconductor materials using pure water treated by a reverse osmosis treatment and by ion exchange treatment and reduces the aluminum and iron remaining on the silicon surface.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: May 29, 2007
    Assignees: Mitsubishi Materials Corporation, Mitsubishi Polycrystalline Silicon America Corporation
    Inventor: Hirotake Ohta
  • Patent number: 7214266
    Abstract: The present invention provides an automated method of optimising crystallisation conditions for macromolecules comprising forming a trial comprising a sample comprising a gel forming component and the macromelecule to be crystallized, wherein at least one component of the trial is dispensed using an automatic liquid dispensing system.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: May 8, 2007
    Assignee: Imperial Innovations Limited
    Inventor: Naomi E. Chayen
  • Patent number: 7198672
    Abstract: A drop tube type particulate crystalline body producing device is a device for creating a substantially spherical crystalline body by solidifying a particulate melt of an inorganic material while allowing it to free-fall inside a drop tube. This device 1 has a melt formation device 2, drop tube 3, gas flow formation means for forming inside the drop tube 3 a gas flow of cooling gas, and recovery mechanism 5 for recovering a crystalline body 25a from the lower end of the drop tube 3. The drop tube 3 comprises an introducing tube 30, cooling tube 31, and solidification tube 32, where the cooling tube 31 is configured such that the cross sectional area thereof becomes smaller toward the bottom such that the cooling gas flow speed becomes substantially equal to the free fall speed of the particulate melt, and the solidification tube 32 is connected to the lower end of the cooling tube 31 and has a cross sectional area enlarged discontinuously from the lower end of the cooling tube 31.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: April 3, 2007
    Inventor: Josuke Nakata
  • Patent number: 7192850
    Abstract: A doping method for forming quantum dots is disclosed, which includes following steps: providing a first precursor solution for a group II element and a second precursor solution for a group VI element; heating and mixing the first precursor solution and the second precursor solution for forming a plurality of II–VI compound cores of the quantum dots dispersing in a melting mixed solution; and injecting a third precursor solution for a group VI element and a forth precursor solution with at least one dopant to the mixed solution in turn at a fixed time interval in order to form quantum dots with multi-shell dopant; wherein the dopant described here is selected from a group consisting of transitional metal and halogen elements. This method of the invention can dope the dopants in the inner quantum dot and enhance the emission intensity efficiently.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: March 20, 2007
    Assignee: Industrial Technology Research Institute
    Inventors: Hsueh-Shih Chen, Dai-Luon Lo, Chien-Ming Chen, Gwo-Yang Chang
  • Patent number: 7160388
    Abstract: The present invention refers to an ammonobasic method for preparing a gallium-containing nitride crystal, in which gallium-containing feedstock is crystallized on at least one crystallization seed in the presence of an alkali metal-containing component in a supercritical nitrogen-containing solvent. The method can provide monocrystalline gallium-containing nitride crystals having a very high quality.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: January 9, 2007
    Assignees: Nichia Corporation, Ammono Sp. z o.o.
    Inventors: Robert Tomasz Dwiliński, Roman Marek Doradziński, Jerzy Garczyński, Leszek Piotr Sierzputowski, Yasuo Kanbara
  • Patent number: 7141114
    Abstract: An improved process for producing a crystalline silicon ingot, a crystalline silicon wafer and a photovoltaic cell using the directional solidification process, and more particularly to loading and preparing a mold for the process of directional solidification. At least one rod polysilicon section and at least one chunk polysilicon, chip polysilicon or granular polysilicon is loaded into the mold, increasing packing density and thermal conductivity of the polysilicon contents while reducing contamination and resources expended to process a production cycle.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: November 28, 2006
    Assignee: REC Silicon Inc
    Inventors: Michael V. Spangler, Carl D. Seburn
  • Patent number: 7118625
    Abstract: With respect to a liquid phase growth method for a silicon crystal in which the silicon crystal is grown on a substrate by immersing the substrate in a solvent or allowing the substrate to contact the solvent, a gas containing a raw material and/or a dopant is supplied to the solvent after at least a part of the gas is decomposed by application of energy thereto. In this manner, a liquid phase growth method for a silicon crystal, the method capable of achieving continuous growth and suitable for mass production, a manufacturing method for a solar cell and a liquid phase growth apparatus for a silicon crystal are provided.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: October 10, 2006
    Assignee: Canon Kabushiki Kaisha
    Inventors: Shoji Nishida, Takehito Yoshino, Masaaki Iwane, Masaki Mizutani
  • Patent number: 7105051
    Abstract: The present invention provides substantially monodisperse colloidal nanocrystals and new preparative methods for the synthesis of substantially monodisperse colloidal nanocrystals. These synthetic methods afford the ability to tune nanocrystal size and size distribution. By using non-coordinating solvents in the synthetic process, these procedures constitute easier, less expensive, safer, and more environmentally “green” methods than those currently in use. This invention is generally applicable to any II–VI or III–V semiconductor material, and may be useful in generating metal-nonmetal compounds involving transition metals as well.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: September 12, 2006
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Weiyong Yu, David Battaglia
  • Patent number: 7090724
    Abstract: The contents by weight ratio of lanthanum oxide, gallium oxide, and silicon oxide, which are components, in the longitudinal cross-section and transverse cross-section of the straight part, excluding the shoulder part, of a Langasite single crystal ingot grown by pulling-up Langasite is within a range of ±0.05% with respect to the target amounts at all measured locations, and because of having a superior homogeneity in the content of components over the entire ingot, when used, for example, in a piezoelectric device such as an surface acoustic wave filter, has properties for industrial application that contribute to the stabilization of characteristics as well as reducing the costs.
    Type: Grant
    Filed: December 21, 2000
    Date of Patent: August 15, 2006
    Assignee: Mitsubishi Materials Corporation
    Inventors: Shouqi Wang, Satoshi Uda