Coating, Forming Or Etching By Sputtering Patents (Class 204/192.1)
  • Patent number: 8440327
    Abstract: A method of producing hard wear resistant layer with improved wear resistance. The method is a reactive arc-evaporation based process using a cathode including as main constituent at least one phase of a refractory compound Mn+1AXn (n=1, 2 or 3), wherein M is one or more metals selected from the groups IIIB, IVB, VB, VIB and VIIB of the periodic table of elements, A is one or more elements selected from the groups IIIA, IVA, VA and VIA of the periodic table of elements, and wherein X is carbon and/or nitrogen.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: May 14, 2013
    Assignee: Seco Tools AB
    Inventors: Jens-Petter Palmqvist, Jacob Sjolen, Lennart Karlsson
  • Patent number: 8440301
    Abstract: The invention is directed toward a method and apparatus which can be used to allow the sputter deposition of material onto at least one article to form a coating on the same. The new form of magnetron described herein allows an increase in sputter deposition rates to be achieved at higher powers and without causing damage to the coating being created. This can be achieved by improved cooling and use of a relatively high magnetic field in the magnetron while at the same time increasing the power to the magnetron by increasing the current at a rate faster than the voltage.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: May 14, 2013
    Assignee: Teer Coatings Limited
    Inventors: Dennis Teer, Alex Goruppa
  • Patent number: 8435638
    Abstract: A coated glass includes a substrate and a coating. The coating is deposited on the substrate by vacuum sputtering. The coating is a tin oxide layer co-doped with antimony and bismuth, the molar ratio of tin, antimony, and bismuth is 11-14:1.2-2:0.2-1.5, the coating has a thickness of about 300 nm to about 450 nm.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: May 7, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Jia Huang
  • Publication number: 20130106868
    Abstract: This disclosure provides systems, methods and apparatus for fabricating encapsulated devices, including electromechanical systems devices. In one aspect, a cover plate including one or more encapsulation lids releasably attached to a carrier substrate is provided. The one or more encapsulation lids can be joined to a device substrate to encapsulate one or more devices on the device substrate in a batch process. After joining, the encapsulation lids are released from the carrier substrate resulting in the formation of encapsulated devices on the device substrate. In another aspect, encapsulated devices are provided.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventor: Ravindra V. Shenoy
  • Publication number: 20130108789
    Abstract: Embodiments of the present invention include a method. The method includes producing a first vapor from a solid source material, reacting hydrogen telluride to form a second vapor comprising tellurium, and depositing on a support a coating material comprising tellurium within a deposition environment, the deposition environment comprising the first vapor and the second vapor. Another embodiment is a system. The system includes a deposition chamber disposed to contain a deposition environment in fluid communication with a support; a solid source material disposed in fluid communication with the deposition chamber; and a hydrogen telluride source in fluid communication in fluid communication with the deposition chamber.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Bastiaan Arie Korevaar, Roman Shuba
  • Publication number: 20130099345
    Abstract: A process is provided for contacting a nanostructured surface. In that process, a substrate is provided having a nanostructured material on a surface, the substrate being conductive and the nanostructured material being coated with an insulating material. A portion of the nanostructured material is at least partially removed. A conductor is deposited on the substrate in such a way that it is in electrical contact with the substrate through the area where the nanostructured material has been at least partially removed.
    Type: Application
    Filed: September 19, 2012
    Publication date: April 25, 2013
    Applicant: BANDGAP ENGINEERING, INC.
    Inventor: BANDGAP ENGINEERING, INC.
  • Publication number: 20130092526
    Abstract: An electrochemical glucose biosensor comprising two electrodes with at least one of electrodes having both a metallic layer and a non-metallic layer in direct contact with the metallic layer. The metallic layer is comprised of a noble metal element. A glucose reactive strip connects the first electrode and the second electrode.
    Type: Application
    Filed: October 3, 2012
    Publication date: April 18, 2013
    Applicant: CPFilms Inc.
    Inventor: CPFilms Inc.
  • Publication number: 20130093288
    Abstract: A method for forming an electrical device having a {100}-textured platinum electrode comprising: depositing a textured metal thin film onto a substrate; thermally oxidizing the metal thin film by annealing to convert it to a rocksalt structure oxide with a {100}-texture; depositing a platinum film layer; depositing a ferroelectric film. An electrical device comprising a substrate; a textured layer formed on the substrate comprising metal oxide having a rocksalt structure; a first electrode film layer having a crystallographic texture acting as a template; and at least one ferroelectric material layer exhibiting spontaneous polarization epitaxially deposited on the first electrode film layer whereby the rocksalt structure of the textured layer facilitates the growth of the first electrode film layer with a {100} orientation which forms a template for the epitaxial deposition of the ferroelectric layer such that the ferroelectric layer is formed with an {001} orientation.
    Type: Application
    Filed: June 5, 2012
    Publication date: April 18, 2013
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Glen R. Fox, Ronald G. Polcawich, Daniel M. Potrepka
  • Patent number: 8420207
    Abstract: The invention relates to a substrate (10), provided with a thin-film multilayer comprising an alternation of n functional layers (40, 80) having reflection properties in the infrared and/or in solar radiation and (n+1) coatings (20, 60, 100), where n is an integer ?2, said coatings being composed of a plurality of dielectric layers (24, 26; 64, 66; 104), so that each functional layer (40, 80) is placed between two coatings (20, 60, 100), at least two functional layers (40, 80) each being deposited on a wetting layer (30, 70) itself deposited respectively directly onto a subjacent coating (20, 60), characterized in that two subjacent coatings (20, 60) each comprise at least one dielectric layer (24, 64) and at least one noncrystalline smoothing layer (26, 66) made from a material that is different from the material of said dielectric layer within each coating, said smoothing layer (26, 66) being in contact with said superjacent wetting layer (30, 70) and in that these two subjacent coatings (20, 60) being of d
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: April 16, 2013
    Assignee: Sanit-Gobain Glass France
    Inventors: Pascal Reutler, Nicolas Nadaud, Estelle Martin, Laurent Labrousse
  • Patent number: 8419905
    Abstract: A method for forming a diamond-like carbon (DLC) layer on air bearing surface (ABS) of a slider, comprises steps of: providing sliders arranged in arrays, each slider having an ABS; forming a mixing layer in the ABS of the slider by depositing a first DLC layer on the ABS, the mixing layer consisting of the slider material and the first DLC layer material; removing the first DLC layer to make the mixing layer exposed; forming a second DLC layer on the mixing layer.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: April 16, 2013
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Kunihiro Ueda, Hongxin Fang, Dong Wang
  • Publication number: 20130087801
    Abstract: A break on a video signal line is prevented during patterning on the video signal line. A video signal line, a drain electrode, and a source electrode are simultaneously formed in the same layer. The video signal line includes three layers: a base layer, an AlSi layer, and a cap layer. Conventionally, an alloy having a high etching rate is formed at the boundary between the AlSi layer and the cap layer, causing breakage during patterning on the video signal line. According to the present invention, in the formation of the video signal line, the AlSi layer is formed by sputtering, a TFT is exposed to the atmosphere to form an Al oxide layer on the surface of the AlSi layer, and then the cap layer is formed by sputtering. Thus, the formation of an alloy having a high etching rate on a part of the AlSi layer is prevented, precluding the occurrence of a break on the video signal line.
    Type: Application
    Filed: October 2, 2012
    Publication date: April 11, 2013
    Applicant: JAPAN DISPLAY EAST INC.
    Inventor: Japan Display East Inc.
  • Patent number: 8415885
    Abstract: A plasma processing apparatus includes a vacuum evacuable processing chamber, at least a portion of which is formed of a dielectric window; a substrate supporting unit for supporting a target substrate in the processing chamber; and a processing gas supply unit for supplying a desired processing gas into the processing chamber. Further, the plasma processing apparatus includes an RF antenna provided outside the dielectric window; a high frequency power supply unit for supplying to the RF antenna a high frequency power; and a switching network switched among a parallel mode, a multiplication series mode, and a minimization series mode.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: April 9, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Yohei Yamazawa
  • Publication number: 20130081942
    Abstract: A thin film formation method is provided, by which needless film formation due to trial film formation is omitted and film formation efficiency can be improved. This invention is a method for sputtering targets to form a film A having an intended film thickness of T1 as the first thin film on a substrate and monitor substrate held and rotated by a rotation drum and, subsequently, furthermore sputtering the targets used in forming the film A to form a film C having an intended film thickness of T3 as the second thin film, which is another thin film having the same composition as the film A; comprising film thickness monitoring steps S4 and S5, a stopping step S7, an actual time acquisition step S8, an actual rate calculating step S9 and a necessary time calculating step S24.
    Type: Application
    Filed: June 13, 2011
    Publication date: April 4, 2013
    Applicant: SHINCRON CO., LTD.
    Inventors: Yohei Hinata, Kyokuyo Sai, Yoshiyuki Otaki, Ichiro Shiono, Yousong Jiang
  • Publication number: 20130081937
    Abstract: A method for manufacturing a bit patterned magnetic media for magnetic data recording. The method includes patterning a topography that includes an array of raised regions separated by a recessed portion. The array can be patterned by micro-printing using a stamp that has raised islands. The raised regions can have a height of 1 to 5 nm as measured from the recessed region. A magnetic alloy and a non-magnetic segregant are then co-sputtered. The magnetic alloy preferentially grows over the raised portions and the non-magnetic segregant grow preferentially over the recessed region between the raised portions.
    Type: Application
    Filed: February 9, 2012
    Publication date: April 4, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Thomas R. Albrecht
  • Publication number: 20130068611
    Abstract: A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
    Type: Application
    Filed: September 19, 2011
    Publication date: March 21, 2013
    Applicant: FEI Company
    Inventors: Aurelien Philippe Jean Maclou Botman, Milos Toth, Steven Randolph, David H. Narum
  • Publication number: 20130071694
    Abstract: Embodiments of the present invention include a recording medium comprising: a hard magnetic recording layer and an interlayer disposed under the hard magnetic recording layer, wherein the interlayer comprises an upper layer of Ru-based alloy and a lower layer of RuCo or ReCo alloy. Generally for embodiments of the present invention, the lower layer of RuCo or ReCo alloy is formed over a seed layer using a low-pressure sputter process, and the upper layer of Ru-based alloy is formed over the lower layer using a high-pressure sputter process.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: WD Media, Inc.
    Inventors: Kumar Srinivasan, B. Ramamurthy Acharya
  • Patent number: 8399110
    Abstract: The invention is directed to single crystal alkaline earth metal fluoride optical elements having an adhesive, hermetic coating thereon, the coating being chemically bonded to the surface of the metal fluoride optical element with a bonding energy ?4 eV and not merely bonded by van der Walls forces. The materials that can be used for coating the optical elements are selected from the group consisting of SiO2, F—SiO2, Al2O3, F—Al2O3, SiON, HfO2, Si3N4, TiO2 and ZrO2, and mixtures (of any composition) of the foregoing, for example, SiO2; HfO2 and F—SiO2/ZrO2. The preferred alkali earth metal fluoride used for the optical elements is CaF2. Preferred coatings are SiO2, F—SiO2, SiO2/ZrO2 and F—SiO2/ZrO2.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: March 19, 2013
    Assignee: Corning Incorporated
    Inventors: Michael J Cangemi, Horst Schreiber, Jue Wang
  • Patent number: 8398872
    Abstract: A novel method of forming large atomically flat areas is described in which a crystalline substrate having a stepped surface is exposed to a vapor of another material to deposit a material onto the substrate, which material under appropriate conditions self arranges to form 3D islands across the substrate surface. These islands are atomically flat at their top surface, and conform to the stepped surface of the substrate below at the island-substrate interface. Thereafter, the deposited materials are etched away, in the etch process the atomically flat surface areas of the islands transferred to the underlying substrate. Thereafter the substrate may be cleaned and annealed to remove any remaining unwanted contaminants, and eliminate any residual defects that may have remained in the substrate surface as a result of pre-existing imperfections of the substrate.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: March 19, 2013
    Assignee: The Regents of the University of California
    Inventors: Farid El Gabaly, Andreas K. Schmid
  • Patent number: 8398833
    Abstract: Field-enhanced sputtering targets are disclosed that include: a core material; and a surface material, wherein at least one of the core material or the surface material has a field strength design profile and wherein the sputtering target comprises a substantially uniform erosion profile. Target assembly systems are also disclosed that include a field-enhanced sputtering target; and an anodic shield. Additionally, methods of producing a substantially uniform erosion on a sputtering target are described that include: providing an anodic shield; providing a cathodic field-enhanced target; and initiating a plasma ignition arc, whereby the arc is located at the point of least resistance between the anodic shield and the cathodic field-enhanced target.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: March 19, 2013
    Assignee: Honeywell International Inc.
    Inventors: Eal H. Lee, Jaeyeon Kim
  • Patent number: 8394243
    Abstract: Method of incorporating atomic oxygen into a magnetic recording layer by sputtering a target containing an oxide of cobalt. The oxide of cobalt may be sputtered to provide a readily dissociable source of oxygen which may increase the concentration of free cobalt atoms (Co) in the magnetic recording layer and also increase oxide content in the magnetic recording layer.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: March 12, 2013
    Assignee: WD Media, Inc.
    Inventors: Hong-Sik Jung, Donald Stafford, B. Ramamurthy Acharya, Sudhir S. Malhotra, Gerardo A. Bertero
  • Publication number: 20130060340
    Abstract: A coating for a CoCrMo substrate including a first layer located directly on the substrate and including Ta(CoCrMo)0.5-2.0, a second layer located directly on the first layer and including tantalum, a third layer located directly on the second layer and including tantalum carbide, and a fourth layer located directly on the third layer and including diamond-like carbon (DLC).
    Type: Application
    Filed: October 19, 2012
    Publication date: March 7, 2013
    Applicant: SYNTHES USA, LLC
    Inventor: Synthes USA, LLC
  • Patent number: 8387220
    Abstract: Providing a manufacturing method of a piezoelectric element which contains at least a substrate, a piezoelectric film and an electrode provided between the substrate and the piezoelectric film. The method includes providing an electrode on a substrate, and baking a piezoelectric film after forming the piezoelectric film on the electrode. The electrode includes a mixture layer having an electroconductive oxide and a metal mixed therein. The concentration of the electroconductive oxide in the substrate side of the mixture layer is higher than that in the piezoelectric film side of the mixture layer, and the concentration of the metal in the piezoelectric film side of the mixture layer is higher than that in the substrate side of the mixture layer.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: March 5, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Junri Ishikura, Naoari Shibata, Katsumi Aoki, Yasuyuki Saito
  • Publication number: 20130052421
    Abstract: A method for fabricating a nanostructure utilizes a templated monocrystalline substrate. The templated monocrystalline substrate is energetically (i.e., preferably thermally) treated, with an optional precleaning and an optional amorphous material layer located thereupon, to form a template structured monocrystalline substrate that includes the monocrystalline substrate with a plurality of epitaxially aligned contiguous monocrystalline pillars extending therefrom. The monocrystalline substrate and the plurality of epitaxially aligned contiguous monocrystalline pillars may comprise the same or different monocrystalline materials.
    Type: Application
    Filed: March 4, 2011
    Publication date: February 28, 2013
    Applicant: Cornell University- Cornell Center for Technology
    Inventors: Ulrich Wiesner, Michael Thompson, Hitesh Arora
  • Publication number: 20130049555
    Abstract: Disclosed in this specification is selectively plated lead frame assembly and a method for the production thereof. A nickel-plated substrate is selectively masked to protect the bottom surface and a central portion of the top surface of the substrate. Gold is then plated on the unmasked portions. A preformed solder ring is soldered to the exposed gold.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 28, 2013
    Inventors: Kothandapani RAMESH, Thomas deGUEHERY, Chee Kong Lee
  • Publication number: 20130048488
    Abstract: A method of making a sputtering target includes forming a sputtering target containing a relatively porous sputtering material. The sputtering material may be initially formed to be substantially free of water or treated to remove substantially all of absorbed or adsorbed water from the sputtering material. The method also includes forming a water impermeable barrier layer over the substantially water free sputtering material to completely or substantially prevent re-absorption or re-adsorption of water in the sputtering material.
    Type: Application
    Filed: August 29, 2011
    Publication date: February 28, 2013
    Inventor: Paul Shufflebotham
  • Patent number: 8383001
    Abstract: There is provided a plasma etching method capable of achieving a sufficient organic film modifying effect by high-velocity electrons. In forming a hole in an etching target film by plasma etching, a first condition of generating plasma within a processing chamber by way of turning on a plasma-generating high frequency power application unit and a second condition of not generating the plasma within the processing chamber by way of turning off the plasma-generating high frequency power application unit are repeated alternately. Further, a negative DC voltage is applied from a first DC power supply such that an absolute value of the applied negative DC voltage during a period of the second condition is greater than an absolute value of the applied negative DC voltage during a period of the first condition.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: February 26, 2013
    Assignee: Tokyo Electron Limited
    Inventors: Hiromasa Mochiki, Yoshinobu Ooya, Fumio Yamazaki, Toshio Haga
  • Patent number: 8377506
    Abstract: A substrate structure is provided. The substrate structure includes a substrate, a first insulation layer, a conductive part, a second insulation layer, a seed layer and a conductive layer. The substrate has a first circuit pattern layer and a second circuit pattern layer, which are located on two opposite surfaces of the substrate respectively. The first insulation layer formed on the first circuit pattern layer has a first insulation hole, which exposes a first opening in the outer surface of the first insulation layer. The conductive part formed on the first insulation hole for electrically connecting with a chip is enclosed by the edge of the first opening. The second insulation layer formed on the second circuit pattern layer has a second insulation hole in which the seed layer is formed. The conductive layer is formed on the seed layer for electrically connecting with a circuit board.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: February 19, 2013
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Chih-Cheng Lee
  • Publication number: 20130037090
    Abstract: Techniques for fabrication of kesterite Cu—Zn—Sn—(Se,S) films and improved photovoltaic devices based on these films are provided. In one aspect, a method of fabricating a kesterite film having a formula Cu2?xZn1+ySn(S1?zSez)4+q, wherein 0?x?1; 0?y?1; 0?z?1; and ?1?q?1 is provided. The method includes the following steps. A substrate is provided. A bulk precursor layer is formed on the substrate, the bulk precursor layer comprising Cu, Zn, Sn and at least one of S and Se. A capping layer is formed on the bulk precursor layer, the capping layer comprising at least one of Sn, S and Se. The bulk precursor layer and the capping layer are annealed under conditions sufficient to produce the kesterite film having values of x, y, z and q for any given part of the film that deviate from average values of x, y, z and q throughout the film by less than 20 percent.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: Santanu Bag, David Aaron Randolph Barkhouse, David Brian Mitzi, Teodor Krassimirov Todorov
  • Publication number: 20130033671
    Abstract: A method of conditioning a liquid crystal polymer (LCP) substrate for enhanced surface adhesion accomplished by exposing an LCP substrate to oxygen plasma. The plasma will chemically alter and modify the LCP substrate surface to promote increased adhesion of metal and subsequent LCP layers during lamination. Lamination is accomplished while dwelling under the melt temperature of the LCP substrate itself. A further method is disclosed of detecting impurities modified or deposited onto the LCP surface during plasma treatment.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: ENDICOTT INTERCONNECT TECHNOLOGIES, INC.
    Inventors: Mark Schadt, Frank D. Egitto, Luis J. Matienzo
  • Patent number: 8365554
    Abstract: This invention provides a molding die in which increase of the surface roughness due to crystal growth of chromium oxide is restrained, and thereby allowing long term use without deteriorating surface roughness of a glass gob or a molded glass article. The invention also provides a method for manufacturing the molding die, a glass gob, and a molded glass article. A molding die is provided with a substrate having a molding surface and protective film containing chromium formed thereon, and the protective film has the X-ray diffraction peak intensity of (110) plane of chromium higher than the X-ray diffraction peak intensity of (200) plane.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: February 5, 2013
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Naoyuki Fukumoto, Shunichi Hayamizu
  • Patent number: 8367225
    Abstract: A coating includes a deposited layer. The deposited layer is a nickel-titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 5, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Publication number: 20130025783
    Abstract: Certain example embodiments relate to robust semi-transparent coatings that are suitable for use in a wide variety of display-on-demand mirror applications, and methods of making the same. In certain example embodiments, a coated article includes a coating supported by a glass substrate. A reflective metal-inclusive layer is formed, directly or indirectly, on the glass substrate. A silicon oxide inclusive layer is formed, directly or indirectly, on the reflective metallic layer. A titanium oxide inclusive layer is formed, directly or indirectly, on the silicon oxide inclusive layer. The metal-inclusive layer is formed so as to reflect incoming light away from the glass substrate such that substantially less incoming light would be reflected away from the glass substrate if lighting were provided on a side of the glass substrate opposite the coating than if no lighting were provided. The surface of the coated article need not necessarily be conductive.
    Type: Application
    Filed: October 9, 2012
    Publication date: January 31, 2013
    Applicant: GUARDIAN INDUSTRIES CORP.
    Inventor: Guardian Industries Corp.
  • Patent number: 8361639
    Abstract: A coating includes a nano-composite base comprising a number of films, the films stacked together one after another. Each film includes a nickel-titanium carbonitride layer and a titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 29, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Patent number: 8361283
    Abstract: The arrangement and method for sputtering material onto a workpiece and cleaning a target of the sputtering chamber includes exposing a target to an electromagnetic field of a strength sufficient to remove particles from the target. The electromagnetic field is generated by an electromagnetic device that is positioned in proximity to the target and generates a strength greater than a strength of a cathode magnetic field behind the target to safely remove the contaminating particulates from the target, which may be made of a strong magnetic material.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: January 29, 2013
    Assignee: Seagate Technology LLC
    Inventor: Jeffrey S. Reiter
  • Patent number: 8357452
    Abstract: An article includes a substrate; and a color layer deposited on the substrate, wherein the color layer is a chromium oxide-carbon layer; the color layer has an L* value between about 28 to about 32, an a* value between about ?1 to about 1, and a b* value between about ?1 to about 1 in the CIE L*a*b* color space.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 22, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Juan Zhang
  • Publication number: 20130016022
    Abstract: Disclosed and claimed herein is a hollow core coaxial cable, having a dielectric capillary with an inside wall and an outside wall, an inner conductive layer on the inside wall of the hollow core coaxial cable and an outer conductive layer on the outside wall of the hollow core coaxial cable, the conductive layers may be patterned. Further disclosed is a method of making the hollow core coaxial cable. Further disclosed are holey fiber coaxial cables, having a holey fiber capillary having an inside wall and an outside wall, an inner conductive layer on the inside wall of the hollow core coaxial cable and an outer conductive layer on the outside wall of the hollow core coaxial cable, the conductive layers may be patterned.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventors: Noel Heiks, David Sherrer
  • Publication number: 20130015054
    Abstract: A method and apparatus for providing uniform coatings of lithium on a substrate are provided. In one aspect of the present invention is a method of selectively controlling the uniformity and/or rate of deposition of a metal or lithium in a sputter process by introducing a quantity of reactive gas over a specified area in the sputter chamber. This method is applicable to planar and rotating targets.
    Type: Application
    Filed: September 18, 2012
    Publication date: January 17, 2013
    Applicant: SAGE Electrochromics, Inc.
    Inventor: SAGE Electrochromics, Inc.
  • Patent number: 8354008
    Abstract: An article includes a substrate; and a color layer deposited on the substrate, wherein the color layer is a zirconium carbon-nitride layer; the color layer has an L* value between about 28 to about 32, an a* value between about ?1 to about 1, and a b* value between about ?1 to about 1 in the CIE L*a*b* color space.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: January 15, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Juan Zhang
  • Publication number: 20130011962
    Abstract: There have been cases where transistors formed using oxide semiconductors are inferior in reliability to transistors formed using amorphous silicon. Thus, in the present invention, a semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
    Type: Application
    Filed: September 5, 2012
    Publication date: January 10, 2013
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Tetsunori MARUYAMA, Yuki IMOTO, Hitomi SATO, Masahiro WATANABE, Mitsuo MASHIYAMA, Kenichi OKAZAKI, Motoki NAKASHIMA, Takashi SHIMAZU
  • Patent number: 8349445
    Abstract: The invention relates to a substrate comprising at least one photocatalytic compound active under the conditions of illuminating an interior of a building or transport vehicle, intended to neutralize the microorganisms with which it comes into contact, and also to its preparation processes and its uses as glazing or another substrate for disinfection, filtration, ventilation, etc.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: January 8, 2013
    Assignee: Saint-Gobain Glass France
    Inventors: Catherine Jacquiod, Léthicia Gueneau, Sophie Vanpoulle, Ronan Garrec, Jean-Gérard Leconte
  • Publication number: 20130001708
    Abstract: A MOS transistor having a gate insulator including a dielectric of high permittivity and a conductive layer including a TiN layer, wherein the nitrogen composition in the TiN layer is sub-stoichiometric in its lower portion and progressively increases to a stoichiometric composition in its upper portion.
    Type: Application
    Filed: June 22, 2012
    Publication date: January 3, 2013
    Inventors: Pierre Caubet, Sylvain Baudot
  • Publication number: 20130003254
    Abstract: A crystalline perovskite crystalline composite paraelectric material includes nano-regions containing rich N3? anions dispersed in a nano-grain sized matrix of crystalline oxide perovskite material, wherein (ABO3-?)?-(ABO3-?-?N?)1-?. A represents a divalent element, B represents a tetravalent element, ? satisfies 0.005???1.0, 1-? satisfies 0.05?1-??0.9, and 1-? is an area ratio between the regions containing rich N3? anions and the matrix of remaining oxide perovskite material.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Ivoyl KOUTSAROFF, Shinichi HIGAI, Akira ANDO
  • Patent number: 8343589
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability including providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 1, 2013
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, John Frederick Ackerman
  • Publication number: 20120325774
    Abstract: Scaffold-supported metal or pseudometallic film covers suitable for use as medical devices are disclosed together with methods of fabricating the devices. Methods for making the medical devices consist of either providing or forming a scaffold, then depositing a metallic or pseudometallic film cover onto the scaffold in such a manner as to form an integral, substantially monolithic junction between the deposited cover material and the scaffold.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 27, 2012
    Applicant: Advanced Bio Prosthetic Surfaces, Ltd., a wholly owned subsidiary of Palmaz Scientific, Inc.
    Inventors: Daniel D. Sims, Jeffrey N. STEINMETZ, Conor P. MULLENS, Andrew Parker WOOD, Christopher E. BANAS
  • Publication number: 20120324956
    Abstract: A press molding glass material including: a core portion composed of optical glass; and a surface layer covering the core portion, wherein the surface layer includes an outermost layer contacting with a molding surface of a molding die in press molding and an intermediate layer adjacent to the outermost layer, the outermost layer is a silicon oxide film having a surface free energy measured by a three-solution method of equal to or less than 75 mJ/m2 and having a film thickness of less than 15 nm, and the intermediate layer is a film composed of a film material having a bond-radius difference from a silicon oxide based on a stoichiometric composition of more than 0.10 ?, wherein, in a case in which the bond-radius difference is more than 0.10 ? and equal to or less than 0.40 ?, a film thickness of the intermediate layer is equal to or less than 5 nm.
    Type: Application
    Filed: June 26, 2012
    Publication date: December 27, 2012
    Applicant: HOYA CORPORATION
    Inventors: Takashi IGARI, Kenya ABIKO
  • Publication number: 20120325650
    Abstract: There have been cases where transistors formed using oxide semiconductors are inferior in reliability to transistors formed using amorphous silicon. Thus, in the present invention, a semiconductor device including a highly reliable transistor formed using an oxide semiconductor is manufactured. An oxide semiconductor film is deposited by a sputtering method, using a sputtering target including an oxide semiconductor having crystallinity, and in which the direction of the c-axis of a crystal is parallel to a normal vector of the top surface of the oxide semiconductor. The target is formed by mixing raw materials so that its composition ratio can obtain a crystal structure.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 27, 2012
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei Yamazaki, Tetsunori Maruyama, Yuki Imoto, Hitomi Sato, Masahiro Watanabe, Mitsuo Mashiyama, Kenichi Okazaki, Motoki Nakashima, Takashi Shimazu
  • Publication number: 20120325649
    Abstract: Methods and related apparatus support a work piece during a physical vapour deposition. An aluminium support having a support surface coated with a heat absorbent coating is provided. The support is cooled to around 100° C. and a PVD process is performed such that, with cooling, the work piece temperature is between 350° C. and 450° C. The coating is inert and/or ultra-high voltage compatible.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 27, 2012
    Applicant: SPTS TECHNOLOGIES LIMITED
    Inventor: STEPHEN R. BURGESS
  • Patent number: 8338002
    Abstract: A sputtering composite target includes: an oxide based component containing indium oxide; and a carbon based component.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: December 25, 2012
    Assignee: Dexerials Corporation
    Inventors: Hayato Hommura, Kenji Katori, Go Sudo
  • Patent number: 8336193
    Abstract: Provided is a process for making a magnetic recording medium having a magnetically partitioned magnetic recording patterns, which comprises the following three steps (1), (2) and (3), conducted in this order: (1) a step of forming a magnetic layer on a non-magnetic substrate; (2) a step of removing surface layer portions of regions for magnetically partitioning the magnetic layer; and (3) a step of exposing the thus-exposed regions of the magnetic layer, from which the surface layer portions have been removed, to a reactive plasma or a reactive ion, to modify the magnetic characteristics of the regions of magnetic layer, whereby a magnetic recording pattern is formed which are magnetically partitioned by the regions of magnetic layer having the modified characteristics. Thus, a magnetic recording medium having an enhanced recording density and minimizing letter bleeding at writing can be made with a high efficiency.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: December 25, 2012
    Assignee: Showa Denko K.K.
    Inventors: Masato Fukushima, Akira Sakawaki, Akira Yamane
  • Publication number: 20120318664
    Abstract: A method of depositing a dielectric thin film may include: depositing a thin layer of dielectric; stopping deposition of the dielectric layer, and modifying the gas in the chamber if desired; inducing and maintaining a plasma in the vicinity of the substrate to provide ion bombardment of the deposited layer of dielectric; and repeating the depositing, stopping and inducing and maintaining steps until a desired thickness of dielectric is deposited. A variation on this method may include, in place of the repeating step: depositing a thick layer of lower quality dielectric; depositing a thin layer of high quality dielectric; stopping deposition of the dielectric layer, and modifying the gas in the chamber if desired; and inducing and maintaining a plasma in the vicinity of the substrate to provide ion bombardment of the deposited layer of dielectric. The thick layer of dielectric may be deposited more rapidly than the thin layers.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 20, 2012
    Applicant: Applied Materials, Inc.
    Inventors: Chong Jiang, Byung-Sung Leo Kwak