Abstract: A FinFET-type semiconductor device includes a fin structure on which a relatively thin amorphous silicon layer and then an undoped polysilicon layer is formed. The semiconductor device may be planarized using a chemical mechanical polishing (CMP) in which the amorphous silicon layer acts as a stop layer to prevent damage to the fin structure.
Type:
Grant
Filed:
June 12, 2003
Date of Patent:
June 29, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Krishnashree Achuthan, Shibly S. Ahmed, Haihong Wang, Bin Yu
Abstract: A method of determining the location of the breakdown in the gate oxide of a MOSFET is disclosed. Additionally, the method determines the location of the breakdown in a manner that is convenient to use and can be easily employed. The method will determine whether there is a breakdown in the gate oxide. If there is a breakdown, the method will enable determination of the location of the breakdown in the gate oxide.
Type:
Grant
Filed:
March 28, 2002
Date of Patent:
June 29, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Nian Yang, Zhigang Wang, Tien-Chun Yang
Abstract: A peripheral interface circuit for handling graphics responses in an I/O node of a computer system. A peripheral interface circuit includes a buffer circuit coupled to receive packet commands. The buffer circuit includes a plurality of buffers each corresponding to a respective virtual channel of a plurality of virtual channels for storing selected packet commands that belong to the respective virtual channel. The peripheral interface circuit may determine whether a given one of the received packet commands is a graphics response belonging to a particular respective virtual channel. In response to determining that the given packet command is a graphics response belonging to the particular respective virtual channel, the buffer circuit may cause the given packet command to bypass the plurality of buffers.
Abstract: A victim record table records victim blocks which have been returned from a cache to memory and which are not currently cached in any other caches. If a command affecting a block recorded in the victim record table is received, one or more probes corresponding to the command may be inhibited even if probes would ordinarily be transmitted for the command. System bandwidth which would be consumed by the probes may be conserved. Furthermore, since probes are inhibited, the latency of the command may be reduced since the command may be completed without waiting for any probe responses. Since probes are selectively inhibited if an affected block is recorded in the victim record table, the size of the victim record table may be flexible. If a particular block is not represented in the victim record table, probes are performed when the particular block is accessed (even if the particular block could have been represented in the victim record table but is not because of a limited number of records).
Abstract: A method and an apparatus for performing cascade control of processing of semiconductor wafers. A first semiconductor wafer for processing is received. A second semiconductor wafer for processing is received. A cascade processing operation upon the first and the second semiconductor wafers is performed, wherein the cascade processing operation comprises acquiring pre-process metrology data related to the second semiconductor wafer during at least a portion of a time period wherein the first semiconductor wafer is being processed.
Type:
Grant
Filed:
October 30, 2001
Date of Patent:
June 29, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Alexander J. Pasadyn, Christopher A. Bode
Abstract: An integrated apparatus and method for testing a very large scale integration (VLSI) device is implemented. An interface between automatic test equipment (ATE) and a device under test (DUT) includes a switch and associated control logic that mediates data transfer between high speed buses coupled to the DUT. Additionally, traffic may be switched to a port connected to a bus coupled to the ATE. This bus need not operate at the full speed of the I/O buses of the DUT. The switch also couples to a static random access memory (SRAM) data cache array which may be used for delayed echo of data between ports. Additionally a logic analyzer in the interface may be used in conjunction with the switch and cache to selectively capture data transferred between the DUT and ATE. The configuration of the switch is programmable depending on the testing performed on the DUT.
Abstract: A method is provided for forming a copper interconnect, the method including forming a sacrificial dielectric layer above a structure layer, forming an opening in the sacrificial dielectric layer and forming a copper layer above the sacrificial dielectric layer and in the opening. The method also includes forming the copper interconnect by removing portions of the copper layer above the sacrificial dielectric layer, leaving the copper interconnect in the opening. The method further includes removing the sacrificial dielectric layer above the structure and adjacent the copper interconnect, and forming a low dielectric constant dielectric layer above the structure and adjacent the copper interconnect.
Abstract: For forming a dual damascene opening within a dielectric material, a via mask material and a trench mask material are formed over the dielectric material. A trench opening is formed through the trench mask material, and a via opening is formed through a via mask patterning material disposed over the via and trench mask materials. The via and trench mask materials exposed through the via opening of the via mask patterning material are etched away, and the via mask patterning material is etched away. A portion of the dielectric material exposed through the via opening is etched down to the underlying interconnect structure, and a portion of the dielectric material exposed through the trench opening is etched, to form the dual damascene opening.
Type:
Grant
Filed:
December 18, 2002
Date of Patent:
June 29, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Fei Wang, Jerry Cheng, Lynne A. Okada, Minh Quoc Tran, Lu You
Abstract: A semiconductor device includes a first metallization level, a first diffusion barrier layer, a first etch stop layer, a dielectric layer and a via extending through the dielectric layer, the first etch stop layer, and the first diffusion barrier layer. The first diffusion barrier layer is disposed over the first metallization level. The first etch stop layer is disposed over the first diffusion barrier layer, and the dielectric layer is disposed over the first etch stop layer. The via can also have rounded corners. A sidewall diffusion barrier layer can be disposed on sidewalls of the via, and the sidewall diffusion barrier layer is formed from the same material as the first diffusion barrier layer. The first etch stop layer can be formed from silicon carbide. A method of manufacturing the semiconductor device is also disclosed.
Type:
Grant
Filed:
February 6, 2001
Date of Patent:
June 29, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Lu You, Dawn M. Hopper, Suzette K. Pangrle
Abstract: An n-type MOSFET (NMOS) is implemented on a substrate having an epitaxial layer of strained silicon formed on a layer of silicon germanium. The MOSFET includes first halo regions formed in the strained silicon layer that extent toward the channel region beyond the ends of shallow source and drain extensions. Second halo regions formed in the underlying silicon germanium layer extend toward the channel region beyond the ends of the shallow source and drain extensions and extend deeper into the silicon germanium layer than the shallow source and drain extensions. The p-type dopant of the first and second halo regions slows the high rate of diffusion of the n-type dopant of the shallow source and drain extensions through the silicon germanium toward the channel region. By counteracting the increased diffusion rate of the n-type dopant in this manner, the shallow source and drain extension profiles are maintained and the risk of degradation by short channel effects is reduced.
Abstract: A complementary metal oxide semiconductor (CMOS) fabrication process. The process comprises creating a polysilicon layer having a first thickness for a transistor gate area and a second thickness for a fuse area. The first thickness is greater than the second thickness, wherein most of the polysilicon in the fuse area will react with a metal layer to form polysilicide during a rapid thermal anneal (RTA) process.
Abstract: A method of manufacturing an integrated circuit utilizes solid phase epitaxy to form an elevated source region and an elevated drain region. The method includes providing a mask structure including spacers, removing the mask structure, providing an amorphous semiconductor material and crystallizing the amorphous semiconductor material without damaging a high-k gate dielectric layer. The semiconductor material can be silicided. A shallow source/drain implant can also be provided.
Abstract: A method for monitoring a manufacturing system includes defining a plurality of observed states associated with the manufacturing system. State estimates are generated for the observed states. An uncertainty value is generated for each of the state estimates. Measurement data associated with an entity in the manufacturing system is received. The state estimates are updated based on the measurement data and the uncertainty values associated with the state estimates. A system for monitoring a manufacturing system includes a controller configured to define a plurality of observed states associated with the manufacturing system, generate state estimates for the observed states, generate an uncertainty value for each of the state estimates, receive measurement data associated with an entity in the manufacturing system, and update the state estimates based on the measurement data and the uncertainty values associated with the state estimates.
Abstract: A conductive diffusion barrier surrounding a conductive element is enhanced by an implanted diffusion barrier enhancing material. The enhancing material is implanted using a low energy implant at an angle to the substrate, such that the portion of the diffusion barrier at the bottom of the conductive element is protected during implantation. This prevents the increased resistivity caused by the enhancing material from affecting the conductive path between the conductive element and another conductive element. The diffusion barrier is preferably titanium nitride (TiN) and the enhancing material is preferably silicon (Si).
Abstract: In some embodiments, present invention describes a system and method of dynamically programming HT tables in multiprocessor systems. HT tables are dynamically reprogrammed to modify the topology of the multiprocessor system for fault adjustment, diagnostic, performance analysis, processor hot plugging and the like. HT links can be isolated by reconfiguring the HT tables which allows diagnostics on the isolated HT links. HT links can be reconfigured to route packet traffic on certain links which allows the performance measurement for the HT links. HT tables can be reconfigure to isolate a processor so that the processor can be replaced without taking the entire system down.
Abstract: In the present method of programming a selected flash EEPROM memory cell of a pair thereof in series, a positive voltage is applied to the drain of the selected cell to be programmed, a voltage lower than the voltage applied to the drain is applied to the source of the selected cell, a negative voltage is applied to the substrate, and a positive voltage is applied to the control gate sufficient to induce hot electron injection from the drain to the floating gate of the selected cell.
Type:
Grant
Filed:
October 29, 2002
Date of Patent:
June 22, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Richard Fastow, Sameer Haddad, Zhigang Wang, Sheung-Hee Park
Abstract: A load circuit for compensating for source side loading effects in a non-volatile memory. Specifically, embodiments of the present invention describe a reference cell that is coupled to a plurality of load circuits. At least one of the plurality of load circuits, an mth load circuit, comprises a select transistor coupled to m resistors that are coupled in series. The mth load circuit matches a source side loading effect of a corresponding mth memory cell located m memory cells away from a source line node on a source line coupling source regions in memory cells of a row of memory cells.
Abstract: A non-volatile memory device includes insulators between floating gates. The insulators each include both a lower trench-fill insulator portion in a trench in the substrate, and an upper protruding portion that protrudes from the substrate. Floating gates extend between the protruding portions of adjacent insulators, and are in contact with the protruding portions of the adjacent insulators. An interpoly dielectric overlies the floating gates, and a control gate overlies the interpoly dielectric. The insulators and the floating gates may make a substantially planar surface for the interpoly dielectric, which may themselves be planar.
Type:
Grant
Filed:
August 20, 2002
Date of Patent:
June 22, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Nicholas H. Tripsas, Kuo-Tung Chang, Mark T. Ramsbey
Abstract: A methodology for forming a memory cell is disclosed, wherein an organic polymer layer is formed over a conductive layer and an electrode layer is formed over the organic polymer layer. A first via is etched into the electrode and organic polymer layers, and a dielectric material is applied over the stack to at least fill in the first via. A second via is then etched into the dielectric material so as to expose and make the electrode layer available as a top electrode. A wordline is then formed over the dielectric material such that the top electrode is connected to the wordline by way of the second via. A memory device formed in accordance with the disclosed methodology includes a top electrode formed over an organic polymer layer, a conductive layer under the organic polymer layer, a via defined by a dielectric material and located above the top electrode, and a wordline formed over the dielectric material such that the top electrode is connected to the wordline by way of the via.
Type:
Grant
Filed:
October 31, 2002
Date of Patent:
June 22, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Uzodinma Okoroanyanwu, Suzette K. Pangrle, Matthew S. Buynoski, Nicholas H. Tripsas, Mark S. Chang, Ramkumar Subramanian, Angela T. Hui
Abstract: An exemplary method of fabricating an integrated circuit can include depositing a reflective metal material layer over a layer of polysilicon, depositing an anti-reflective coating over the reflective metal material layer, trim etching the anti-reflective coating to form a pattern, etching the reflective metal material layer according to the pattern, and removing portions of the polysilicon layer using the pattern formed from the removed portions of anti-reflective coating.
Type:
Grant
Filed:
April 30, 2001
Date of Patent:
June 22, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Todd P. Lukanc, Scott A. Bell, Christopher F. Lyons, Marina V. Plat, Ramkumar Subramanian