Abstract: Semiconductor devices comprising fully and partially depleted SOI transistors with accurately defined monocrystalline or substantially completely monocrystalline silicon source/drain extensions are fabricated by selectively pre-amorphizing intended source/drain extensions, ion implanting dopants into the pre-amorphized regions and laser thermal annealing to effect crystallization and activation of the source/drain extensions. Embodiments include forming a gate electrode over an SOI substrate with a gate dielectric layer therebetween, forming silicon nitride sidewall spacers on the side surfaces of the gate electrode, forming source/drain regions, forming a thermal oxide layer on the gate electrode and on the source/drain regions, removing the silicon nitride sidewall spacers, pre-amorphizing the intended source/drain extension regions, ion implanting impurities into the pre-amorphized regions and laser thermal annealing to crystallize the pre-amorphized regions and to activate the source/drain extensions.
Type:
Grant
Filed:
January 14, 2003
Date of Patent:
June 1, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Eric N. Paton, Robert B. Ogle, Cyrus E. Tabery, Qi Xiang, Bin Yu
Abstract: A method and system of expediting issuance of a second request of a pair of ordered requests into a distributed coherent communication fabric. The first request of the ordered pair is issued into the coherent communication fabric and directed to a first target. Issuance of the second request into the coherent communication fabric is stalled until the first target receives and orders the first request and transmits a response acknowledging the same.
Type:
Grant
Filed:
April 4, 2001
Date of Patent:
June 1, 2004
Assignees:
Advanced Micro Devices, Inc., API Networks, Inc.
Inventors:
Jonathan M. Owen, Mark D. Hummel, Derrick R. Meyer, James B. Keller
Abstract: A network switch, configured for performing layer 2 and layer 3 switching in an Ethernet (IEEE 802.3) network without blocking of incoming data packets, includes a network switch port having a filter (i.e., a packet classifier module) configured for evaluating an incoming data packet on an instantaneous basis. The filter performs simultaneous comparisons between the incoming data stream of the data packet and multiple templates configured for identifying respective data protocols. The network switch uses the filter to detect the presence of an RFC 2205 compliant bandwidth reservation message from a host computer for reception by a router. The network switch is configured for selectively changing a requested quality of service specified in the bandwidth reservation message, based on a determined absence of available resources within the network switch.
Abstract: A memory circuit senses current in a target cell during a read operation. According to one exemplary embodiment, the memory circuit comprises the target cell, a first neighboring cell, and an operational amplifier. The first target cell has a first bit line connected to ground; the target cell also has a second bit line connected to a drain voltage. A sensing circuit is coupled at a first node to at least one of the first bit line or the second bit line. The first neighboring cell has a third bit line connected to a second node. The operational amplifier has an output terminal connected at the second node to the third bit line. The operational amplifier has a noninverting input terminal connected to said first node, and also has an inverting input terminal connected to the second node.
Type:
Grant
Filed:
March 13, 2003
Date of Patent:
June 1, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Binh Quang Le, Pauling Chen, Roger Tsao
Abstract: A flash memory formed by a process wherein at least two parallel stacked gate strips are formed on a silicon substrate such that the stacked gate strips are separated by field oxide islands. Asymmetrical first and second junctions are formed in each of a set of source/drain regions and a chemical etch is applied to form the field oxide islands into oxide spacers that align a dual-function control line to the first and second junctions. The resulting flash memory includes a plurality of stacked gate islands, one or more source/drain regions between at least a subset of the plurality of stacked gate islands, first junctions in each of the source/drain regions, second junctions in each of the source/drain regions and dual function control lines in the source/drain regions.
Abstract: A field effect transistor (FET) structure, and method for making the same, which further suppresses short-channel effects based on variations within the gate dielectric itself. The FET structure utilizes non-uniform gate dielectrics to alter the vertical electric field presented along the channel. The thickness and/or dielectric constant of the gate dielectric is varied along the length of the channel to present a vertical electric field which varies in a manner that tends to reduce the short-channel effects and gate capacitances.
Type:
Grant
Filed:
March 15, 2001
Date of Patent:
June 1, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Wei Long, Yowjuang William Liu, Don Wollesen
Abstract: A method includes processing workpieces in accordance with an operating recipe. Metrology data associated with at least one of the workpieces is received. A proposed control action is generated based on the metrology data. A defectivity metric is generated based on the proposed control action. The proposed control action is modified based on the defectivity metric. A manufacturing system includes a process tool, a metrology tool, and a process controller. The process tool is configured to process workpieces in accordance with an operating recipe. The metrology tool is configured to provide metrology data associated with at least one of the workpieces. The process controller is configured to generate a proposed control action based on the metrology data, generate a defectivity metric based on the proposed control action, and modify the proposed control action based on the defectivity metric.
Type:
Grant
Filed:
April 3, 2002
Date of Patent:
June 1, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Alexander J. Pasadyn, Thomas J. Sonderman, Christopher A. Bode
Abstract: A method of manufacturing an integrated circuit includes providing an amorphous semiconductor material including germanium, annealing the amorphous semiconductor material, and doping to form a source location and a drain location. The semiconductor material containing germanium can increase the charge mobility associated with the transistor.
Abstract: A semiconductor device having gate oxide with a first thickness and a second thickness is formed by initially implanting a portion of the gate area of the semiconductor substrate with nitrogen ions and then forming a gate oxide on the gate area. Preferably the gate oxide is grown by exposing the gate area to an environment of oxygen. A nitrogen implant inhibits the rate of SiO2 growth in an oxygen environment. Therefore, the portion of the gate area with implanted nitrogen atoms will grow or form a layer of gate oxide, such as SiO2, which is thinner than the portion of the gate area less heavily implanted or not implanted with nitrogen atoms. The gate oxide layer could be deposited rather than growing the gate oxide layer. After forming the gate oxide layer, polysilicon is deposited onto the gate oxide. The semiconductor substrate can then be implanted to form doped drain and source regions. Spacers can then be placed over the drain and source regions and adjacent the ends of the sidewalls of the gate.
Type:
Grant
Filed:
January 5, 1998
Date of Patent:
June 1, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Mark I. Gardner, H. James Fulford, Charles E. May
Abstract: A method is provided, the method including forming a gate dielectric above a surface of the substrate and forming a doped-poly gate structure above the gate dielectric, the doped-poly gate structure having an edge region. The method also includes forming a dopant-depleted-poly region in the cage region of the doped-poly gate structure adjacent the gate dielectric.
Type:
Grant
Filed:
February 15, 2001
Date of Patent:
June 1, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
David D. Wu, Michael P. Duane, Scott D. Luning
Abstract: A method of making a semiconductor device includes thickening source and drain regions. After a field effect device having a source region, a drain region, and a gate, is formed, a layer of semiconductor material is deposited on the device by a directional deposition method, such as collimated sputtering. Then the semiconductor material is selectively removed from side walls on either side of the gate, such as by isotropic back etching, leaving thickened semiconductor material in the source and drain regions, and on the gate.
Abstract: A novel method of servicing multiple data queues having different priorities is provided in a network switch. A dequeuing logic circuit services the data queues in a round-robin fashion. Programmable number of data packets is selected from each data queue in each cycle. The dequeuing logic circuit compares the number of data packets selected from a current data queue in a current cycle with the preprogrammed number of data packets set for the current queue, and selects a data packet from the current data queue only if the number of packets selected from the current data queue in the current cycle is less than the preprogrammed number. Selection of a data packet from the current data queue is bypassed, processing a next data queue, if the number of packets selected from the current data queue in the current cycle is not less than the preprogrammed number.
Type:
Grant
Filed:
October 18, 2000
Date of Patent:
June 1, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Mohan V. Kalkunte, Shashank Merchant, Phil Simons
Abstract: Embodiments of the present invention are directed to a method and system to minimize page programming time for page programmable memory devices. In one embodiment, the present invention comprises program logic that programs a page programmable memory device with a plurality of words during a page programming cycle and a detector coupled to the program logic that identifies a particular word in that plurality of words which does not require programming. When the detector identifies a particular word which does not require programming, it sends an indication to the program logic component which, in response to the signal, reduces the length of the page programming cycle.
Abstract: A cascode amplifier circuit which generates a fast, stable and accurate bit line voltage is disclosed. According to one exemplary embodiment, the cascode amplifier circuit comprises a transistor having a source connected to a bit line voltage and a drain connected to an output voltage. The cascode amplifier circuit also comprises a differential circuit having an inverting input connected to the bit line voltage, a non-inverting input connected to a reference voltage, and an output connected to a gate of the first transistor. The operation of the transistor and the differential circuit generate a fast, stable the accurate bit line voltage.
Type:
Application
Filed:
November 22, 2002
Publication date:
May 27, 2004
Applicant:
Advanced Micro Devices, Inc.
Inventors:
Binh Q. Le, Lee Cleveland, Pauling Chen
Abstract: The present invention is generally directed to a method and a structure for calibrating a scatterometry-based metrology tool used to measure dimensions of features on a semiconductor device. In one illustrative embodiment, the method comprises measuring a critical dimension of at least one production feature formed above a wafer using a scatterometry tool, measuring at least one of a plurality of grating structures formed above the wafer using the scatterometry tool, each of the grating structures having a different critical dimension, and correcting the measured critical dimension of the at least one production feature based upon the measurement of the at least one grating structure.
Abstract: In one embodiment, the present invention relates to a method of forming a shallow trench, involving the steps of providing a semiconductor substrate comprising a barrier oxide layer over at the semiconductor substrate and a nitride layer over the barrier oxide layer; depositing an ultra-thin photoresist over the nitride layer, the ultra-thin photoresist having a thickness of about 2,000 Å or less; patterning the ultra-thin photoresist to expose a portion of the nitride layer and to define a pattern for the shallow trench; etching the exposed portion of the nitride layer with an etchant having a nitride:photoresist selectivity of at least about 10:1 to expose a portion of the barrier oxide layer; etching the exposed portion of the barrier oxide layer to expose a portion of the semiconductor substrate; and etching the exposed portion of the semiconductor substrate to provide the shallow trench.
Type:
Grant
Filed:
September 17, 1999
Date of Patent:
May 25, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Christopher F. Lyons, Scott A. Bell, Harry J. Levinson, Khanh B. Nguyen, Fei Wang, Chih Yuh Yang
Abstract: A method and an apparatus for the determination of a process flow based upon fault detection. A process step upon a workpiece is performed. Fault detection analysis based upon the process step performed upon the workpiece is performed. A workpiece routing process is performed based upon the fault detection analysis. The wafer routing process includes using a controller to perform one or a rework process routing, a non-standard process routing, a fault verification process routing, a normal process routing, or a termination process routing, based upon the fault detection analysis.
Type:
Grant
Filed:
September 18, 2002
Date of Patent:
May 25, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Ernest D. Adams, III, Matthew A. Purdy, Gregory A. Cherry, Eric O. Green, Elfido Coss, Jr., Brian K. Cusson, Naomi M. Jenkins, Patrick M. Cowan
Abstract: A planar transistor structure is disclosed that minimizes resistance in the source region and simplifies fabrication of the semiconductor device. The device includes a row of transistors where each transistor includes a stack gate structure and a drain, and a layer of type-2 polysilicon is used to interconnect the transistors in each row. A source region is provided adjacent to the layer of type-2 polysilicon that includes a contact and a N-type junction extending across the source region that provides a planar electrical path between the drains of the transistors and the contact, thereby reducing resistance of the source region.
Abstract: A system and method for carrying out a two-dimensional forward and/or inverse discrete cosine transform is disclosed herein. In one embodiment, the method comprises: (1) receiving multiple data blocks; (2) grouping together one respective element from each of the multiple data blocks to provide full data vectors for single-instruction-multiple-data (SIMD) floating point instructions; and (3) operating on the full data vectors with SIMD instructions to carry out the two dimensional transform on the multiple data blocks. Preferably the two dimensional transform is carried out by performing a linear transform on each row of the grouped elements, and then performing a linear transform on each column of the grouped elements. The method may further include isolating and arranging the two dimensional transform coefficients to form transform coefficient blocks that correspond to the originally received multiple data blocks. The multiple data blocks may consist of exactly two data blocks.
Abstract: A system and methodology is provided for monitoring and controlling static charge during wafer and mask fabrication. The static charge on a target device is monitored. If the static charge becomes too high, corrective actions are taken to reduce the static charge. An antistatic solution is dispensed on the target device. The system and methodology provided reduce damage resulting from electrostatic discharge during fabrication. The system and methodology also reduce delays during fabrication by automatically controlling static charge without the need for manual intervention.
Type:
Grant
Filed:
January 16, 2002
Date of Patent:
May 25, 2004
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Khoi A. Phan, Bhanwar Singh, Bharath Rangarajan, Ramkumar Subramanian