Abstract: A stress enhanced MOS transistor and methods for its fabrication are provided. A semiconductor-on-insulator structure is provided which includes a semiconductor layer having a first surface. A strain-inducing epitaxial layer is blanket deposited over the first surface, and can then be used to create a source region and a drain region which overlie the first surface.
Abstract: Ultrafine patterns with dimensions smaller than the chemical and optical limits of lithography are formed by superimposing two photoresist patterns using a double exposure technique. Embodiments include forming a first resist pattern over a target layer to be patterned, forming a protective cover layer over the first resist pattern, forming a second resist pattern on the cover layer superimposed over the first resist pattern while the cover layer protects the first resist pattern, selectively etching the cover layer with high selectivity with respect to the first and second resist patterns leaving an ultrafine target pattern defined by the first and second resist patterns, and etching the underlying target layer using the superimposed first and second resist patterns as a mask.
Abstract: In one embodiment, a method is contemplated. An interrupt is received in a processor from an interrupt controller. Responsive to receiving the interrupt, the interrupt is masked in the interrupt controller to permit another interrupt to be transmitted by the interrupt controller to the processor. The other interrupt has a lower priority than the previously-received interrupt in the interrupt controller.
Type:
Grant
Filed:
February 25, 2005
Date of Patent:
April 27, 2010
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Alexander C. Klaiber, William Alexander Hughes
Abstract: A contact structure in a semiconductor device includes a layer of dielectric material and a via formed through the dielectric material. The contact structure further includes a spacer formed on sidewalls of the via using atomic layer deposition (ALD) and a metal deposited in the via.
Abstract: By controlling the flow rate of one or more gaseous components of an etch ambient during the formation of metal lines and vias on the basis of feedback measurement data from critical dimensions, process variations may be reduced, thereby enhancing performance and reliability of the respective metallization structure.
Abstract: An optimal assist feature rules set for an integrated circuit design layout is created using inverse lithography. The full chip layout is lithographically simulated, and printability failure areas are determined. The features are analyzed for feature layout patterns, and inverse lithography is performed on the unique feature layouts to form assist features. The resulting layout of assist features is analyzed to create an assist feature rules set. The rules can then be applied to a photomask patterned with the integrated circuit design layout to print optimal assist features. The resulting photomask may be used to form an integrated circuit on a semiconductor substrate.
Abstract: A system, computer program product and method for automatically restoring logon connectivity in a broadband network system. Upon establishing a connection between a client and Internet gateway (INTERNET GATEWAY), the status of the connection, i.e., connected or disconnected, may be checked by issuing a request to an INTERNET GATEWAY utilizing a protocol that is normally blocked when the client is disconnected. By issuing a request utilizing a protocol that is normally blocked when the client is disconnected, the status of the connection may be determined by whether the request may be serviced. If the request cannot be serviced, then a subsequent connection may be established automatically by terminating the logon procedure associated with the preceding connection, e.g., initial connection, and executing the logon procedure associated with the subsequent connection.
Abstract: An exemplary embodiment relates to a method for forming a metal oxide semiconductor field effect transistor (MOSFET). The method includes providing a substrate having a gate formed above the substrate and performing at least one of the following depositing steps: depositing a spacer layer and forming a spacer around a gate and gate insulator located above a layer of silicon above the substrate; depositing an etch stop layer above the spacer, the gate, and the layer of silicon; and depositing a dielectric layer above the etch stop layer. At least one of the depositing a spacer layer, depositing an etch stop layer, and depositing a dielectric layer comprises high compression deposition which increases in tensile strain in the layer of silicon.
Type:
Grant
Filed:
February 17, 2006
Date of Patent:
April 20, 2010
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Minh V. Ngo, Paul R. Besser, Ming Ren Lin, Haihong Wang
Abstract: By recessing drain and source regions, a highly stressed layer, such as a contact etch stop layer, may be formed in the recess in order to enhance the strain generation in the adjacent channel region of a field effect transistor. Moreover, a strained semiconductor material may be positioned in close proximity to the channel region by reducing or avoiding undue relaxation effects of metal silicides, thereby also providing enhanced efficiency for the strain generation. In some aspects, both effects may be combined to obtain an even more efficient strain-inducing mechanism.
Type:
Grant
Filed:
November 9, 2006
Date of Patent:
April 13, 2010
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Andy Wei, Thorsten Kammler, Jan Hoentschel, Manfred Horstmann, Peter Javorka, Joe Bloomquist
Abstract: A stressed MOS device is provided that includes a silicon substrate, a gate electrode and an epitaxial layer of stress inducing monocrystalline semiconductor material. The silicon substrate is characterized by a monocrystalline silicon lattice constant. The gate electrode overlies a silicon channel region at the surface of the silicon substrate. The epitaxial layer of stress inducing monocrystalline semiconductor material is grown in the silicon substrate. The epitaxial layer of stress inducing monocrystalline semiconductor material has a lattice constant greater than the monocrystalline silicon lattice constant, and extends under the silicon channel region.
Type:
Grant
Filed:
July 1, 2008
Date of Patent:
April 13, 2010
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Igor Peidous, Linda R. Black, Frank Wirbeleit
Abstract: Methods for forming copper interconnects for semiconductor devices are provided. In an exemplary embodiment, a method for forming a copper interconnect comprises depositing copper into a trench formed in a dielectric material overlying a semiconductor material. A force is applied to the semiconductor material and stress is induced within the copper deposited in the trench. Recrystallization and grain growth are effected within the copper and the stress is removed.
Abstract: A method for forming a semiconductor device may include forming a silicon oxynitride mask layer over a first layer. The first layer may be etched using the silicon oxynitride mask layer, to form a pattern in the first layer. The pattern may be filled with a dielectric material. The dielectric material may be planarized using a ceria-based slurry and using the silicon oxynitride mask layer as a stop layer.
Type:
Grant
Filed:
December 27, 2006
Date of Patent:
April 13, 2010
Assignees:
Spansion LLC, Advanced Micro Devices, Inc.
Inventors:
David Matsumoto, Michael Brennan, Vidyut Gopal, Jean Yang
Abstract: A method of distributing audio and video processing tasks among devices interconnected to a display device via a local network is disclosed. In one embodiment, the display device offloads some processing tasks to a computing device on the local network to achieve improved processing performance. The computing device receives audiovisual data, decodes, processes, encodes and transmits the encoded data to the display device in a suitable data format. The processing in the computing device is complementary to any processing to be performed in the display device. In another embodiment, the display device utilizes a plurality of devices on the local network to perform particular signal processing tasks. The other devices in network perform the processing tasks indicated by the display, and send processed data back to the display device for presentation, which helps improve the overall audiovisual data processing performance.
Abstract: Capacitive decoupling circuits and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes providing a semiconductor chip with a first power rail for a first no-load bias level and a ground rail. A first voltage divider is electrically coupled between the first power rail and the ground rail and has a midpoint node. A first pair of capacitors is electrically coupled between the first power rail, the midpoint node and the ground rail to provide capacitive decoupling for power delivered to the first power rail. A second power rail has a second no-load bias less than the first no-load bias. A second pair of capacitors is electrically coupled between the ground rail and the second power rail to provide capacitive decoupling for power delivered to the second power rail.
Abstract: An audio codec control technique is provided with improved multichannel data ordering capabilities. An audio codec controller comprises a first interface unit for performing data transfer to and from an audio codec, a second interface unit for performing data transfer from an external memory, and a data buffer for buffering data received from the external memory via the second interface unit. The controller further comprises a capture register for receiving from the data buffer data requested by the audio codec, and temporarily storing the received data. The first interface unit is connected to receive temporarily stored data from the capture register. The operation of the audio codec controller may be done in several operational modes including 2, 4, and 6-channel full-rate and half-rate modes.
Abstract: An integrated chip architecture is provided which allows for efficiently testing multiple cores included in the integrated chip architecture. In particular, the provided approach enables the test time and the number of required Input/Output test pins is nearly independent from the number of cores included in the multicore chip. The presented embodiments provide a multicore chip architecture which allows for providing input data to the multiple cores in parallel for simultaneously testing the multiple cores, and analyzing the resulting multiple test outputs on chip. As a result of this analysis embodiments may store on chip an indication for those cores that have not successfully passed the test.
Abstract: Nickel silicide is formed on the basis of a gaseous precursor, such as nickel tetra carbonyl, wherein the equilibrium of the decomposition of this gas may be controlled to obtain a highly selective nickel silicide formation rate. Moreover, any etch step for removing excess nickel may be avoided, since only minute amounts of nickel may form on exposed surfaces, which may then be effectively removed by correspondingly shifting the equilibrium. Consequently, reduced process complexity, enhanced controllability and enhanced tool lifetime may be obtained.
Type:
Grant
Filed:
April 25, 2006
Date of Patent:
March 30, 2010
Assignee:
Advanced Micro Devices, Inc.
Inventors:
Christof Streck, Volker Kahlert, Alexander Hanke
Abstract: Methods and systems are provided for reducing partial cache writes in transferring incoming data status entries from a peripheral device to a host. The methods comprise determining a lower limit on a number of available incoming data status entry positions in an incoming data status ring in the host system memory, and selectively transferring a current incoming data status entry to the host system memory using a full cache line write if the lower limit is greater than or equal to a first value. Peripheral systems are provided for providing an interface between a host computer and an external device or network, which comprise a descriptor management system adapted to determine a lower limit on a number of available incoming data status entry positions in an incoming data status ring in a host system memory, and to selectively transfer a current incoming data status entry to the host system memory using a full cache line write if the lower limit is greater than or equal to a first value.
Abstract: Methods for fabricating a FinFET structure are provided. One method comprises forming a hard mask layer on a gate-forming material layer having a first portion and a second portion. A plurality of mandrels are fabricated on the hard mask layer and overlying the first portion and the second portion of the gate-forming material layer. A sidewall spacer material layer is deposited overlying the plurality of mandrels. The sidewall spacer material layer overlying the first portion of the gate-forming material layer is partially etched. Sidewall spacers are fabricated from the sidewall spacer material layer, the sidewall spacers being adjacent sidewalls of the plurality of mandrels. The plurality of mandrels are removed, the hard mask layer is etched using the sidewall spacers as an etch mask, and the gate-forming material layer is etched using the etched hard mask layer as an etch mask.
Abstract: A system comprises a master processor and at least one slave processor. A state of the master processor comprises a first plurality of variables and a state of the slave processor comprises a second plurality of variables. The system comprises a parallel mode of operation wherein data are processed by the master processor and the slave processor and a serial mode of operation wherein data are processed by the master processor. In case of an interrupt or exception occurring in the parallel mode of operation, the system performs the steps of saving at least a portion of the first plurality of variables and the second plurality of variables to a buffer memory and switching the system to the serial mode of operation. If the interrupt or exception is occurring in the slave processor, at least one of the first plurality of variables is set to a value of at least one of the second plurality of variables.