Patents Assigned to Advanced Micro Devices
  • Patent number: 7441446
    Abstract: By digitizing the UFM signal without using a lock-in amplifier, substantially all of the information initially contained in the UFM output signal may be maintained and may then be used for further data processing. Consequently, any type of model or evaluation algorithm may be used without being restricted to a very narrow bandwidth, as is the case in lock-in based techniques. The digitizing is performed on a real-time basis, wherein a complete UFM curve is digitized and stored for each scan position. In this way, quantitative meaningful values for specific surface-related characteristics with a nanometer resolution may be obtained.
    Type: Grant
    Filed: May 25, 2008
    Date of Patent: October 28, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Dmytro Chumakov, Holm Geisler, Ehrenfried Zschech
  • Patent number: 7442601
    Abstract: A stress enhanced CMOS circuit and methods for its fabrication are provided. One fabrication method comprises the steps of forming an NMOS transistor and a PMOS transistor adjacent the NMOS transistor in a channel width direction, the PMOS transistor and the NMOS transistor separated by an isolation region. A compressive stress liner is deposited overlying the transistors and the isolation region and is etched to remove the compressive stress liner from the NMOS transistor and from a portion of the isolation region. A tensile stress liner is deposited overlying the transistors, the isolation region, and the compressive stress liner and is etched to remove a portion of the tensile stress liner overlying a portion of the compressive stress liner and to leave the tensile stress liner overlying the NMOS transistor, the isolation region, and a portion of the compressive stress liner.
    Type: Grant
    Filed: September 18, 2006
    Date of Patent: October 28, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Gen Pei, Scott D. Luning, Johannes van Meer
  • Patent number: 7442638
    Abstract: By performing a re-sputter process during the formation of a barrier layer for a contact opening in a tungsten-based process, the reliability of the tungsten deposition, as well as the performance of the resulting contact plug, may be enhanced. During the re-sputtering process, a thickness of the titanium-based barrier layer may be reduced at the contact bottom, while at the same time the material is re-condensed on critical lower sidewall portions of the contact opening.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: October 28, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Kai Frohberg, Katja Huy, Volker Kahlert
  • Patent number: 7442971
    Abstract: By providing a self-biasing semiconductor switch, an SRAM cell having a reduced number of individual active components may be realized. In particular embodiments, the self-biasing semiconductor device may be provided in the form of a double channel field effect transistor that allows the formation of an SRAM cell with less than six transistor elements and, in preferred embodiments, with as few as two individual transistor elements.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: October 28, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frank Wirbeleit, Manfred Horstmann, Christian Hobert
  • Patent number: 7439120
    Abstract: A stress enhanced MOS circuit and methods for its fabrication are provided. The stress enhanced MOS circuit comprises a semiconductor substrate and a gate insulator overlying the semiconductor substrate. A gate electrode overlies the gate insulator; the gate electrode has side walls and comprising a layer of polycrystalline silicon having a first thickness in contact with the gate insulator and a layer of electrically conductive stressed material having a second thickness greater than the first thickness overlying the layer of polycrystalline silicon. A stress liner overlies the side walls of the gate electrode.
    Type: Grant
    Filed: August 11, 2006
    Date of Patent: October 21, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Gen Pei
  • Patent number: 7439127
    Abstract: A method is provided for fabricating a semiconductor component that includes a capacitor having a high capacitance per unit area. The component is formed in and on a semiconductor on insulator (SOI) substrate having a first semiconductor layer, a layer of insulator on the first semiconductor layer, and a second semiconductor layer overlying the layer of insulator. The method comprises forming a first capacitor electrode in the first semiconductor layer and depositing a dielectric layer comprising Ba1-xCaxTi1-yZryO3 overlying the first capacitor electrode. A conductive material is deposited and patterned to form a second capacitor electrode overlying the dielectric layer, thus forming a capacitor having a high dielectric constant dielectric. An MOS transistor in then formed in a portion of the second semiconductor layer, the MOS transistor, and especially the gate dielectric of the MOS transistor, formed independently of forming the capacitor and electrically isolated from the capacitor.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: October 21, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Mario M. Pelella
  • Patent number: 7441136
    Abstract: An instruction cycle is determined from instructions stored in a cache, where the instruction cycle represents the sequence of instructions predicted to be executed by the processing device that are resident in the cache. The duration of the instruction cycle is estimated and one or more components of the processing device that are not expected to be used during the instruction cycle may be suspended for a portion or all of the duration. The components may be suspended by, for example, clock gating or by isolating the components from one or more power domains.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: October 21, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Dan Gerrit Feekes, Jr.
  • Patent number: 7440392
    Abstract: A deinterleaver module in an OFDM wireless transceiver includes partitioned memory banks for storage of code word fragments from an interleaved data stream, each code word fragment associated with a prescribed subcarrier frequency. Each code word fragment includes a prescribed number of code word bits based on a prescribed modulation of the interleaved data stream, and the code word bits for each code word fragment are written into respective selected locations of the corresponding memory bank based on the prescribed modulation and the corresponding prescribed subcarrier frequency. The deinterleaver module outputs deinterleaved data from the memory banks based on parallel output of the respective stored code word bits from a selected address of the memory banks.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: October 21, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Chien-Meen Hwang, Peter Chan, Howard Hicks, Chih (Rex) Hsueh, Liping Zhang
  • Patent number: 7432178
    Abstract: A method for performing a bit line implant is disclosed. The method includes forming a group of structures on an oxide-nitride-oxide stack of a semiconductor device. Each structure of the group of structures includes a polysilicon portion and a hard mask portion. A first structure of the group of structures is separated from a second structure of the group of structures by less than 100 nanometers. The method further includes using the first structure and the second structure to isolate a portion of the semiconductor device for the bit line implant.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: October 7, 2008
    Assignees: Advanced Micro Devices, Inc., Spansion LLC
    Inventors: Angela T. Hui, Jean Yang, Yu Sun, Mark T. Ramsbey, Weidong Qian
  • Patent number: 7432557
    Abstract: A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.
    Type: Grant
    Filed: January 13, 2004
    Date of Patent: October 7, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Matthew S. Buynoski, Judy Xilin An, Bin Yu
  • Patent number: 7432136
    Abstract: In one illustrative embodiment, the method comprises providing an SOI substrate comprised of an active layer, a buried insulation layer and a bulk substrate, the active layer being doped with a first type of dopant material, the bulk substrate having an inner well formed therein adjacent a surface of the bulk substrate and under the active layer, the inner well being doped with the first type of dopant material, forming a transistor above the SOI substrate in an area above the inner well and applying a voltage to the inner well to vary a threshold voltage of the transistor. In some embodiments, the method further comprises forming an NMOS transistor, wherein the active layer and the inner well are doped with a P-type dopant material. In other embodiments, the method further comprises forming a PMOS transistor, wherein the active layer and the inner well are doped with an N-type dopant material.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: October 7, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Mark B. Fuselier, Derick J. Wristers, Andy C. Wei
  • Patent number: 7433224
    Abstract: There is disclosed a static random access memory (SRAM) device that stores an embedded program that is accessible when the SRAM device is powered up. The SRAM device comprises a plurality of storage cells, each of the storage cells comprises a data latch having an input and an output, wherein the data latch comprises a) a first inverter having an input coupled to the first I/O line and an output coupled to the second I/O line, and b) a second inverter having an input coupled to the second I/O line and an output coupled to the first I/O line. The storage cell also comprises a biasing circuit that forces at least one of the first and second I/O lines to a known logic state when power is applied to the SRAM device. The known logic state comprises one bit in the embedded program.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: October 7, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frederick S. Dunlap, John Eitrheim
  • Patent number: 7432558
    Abstract: A semiconductor device may include a substrate and an insulating layer formed on the substrate. A fin may be formed on the insulating layer. The fin may include a side surface and a top surface, and the side surface may have a <100> orientation. A first gate may be formed on the insulating layer proximate to the side surface of the fin.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: October 7, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Shibly S. Ahmed, Judy Xilin An, Srikanteswara Dakshina-Murthy, Cyrus E. Tabery, Bin Yu
  • Patent number: 7432174
    Abstract: A method is provided for fabricating a differential semiconductor substrate. A first structure is provided which comprises a first semiconductor substrate including a first semiconductor region, and a first oxide layer overlying a surface of the first semiconductor substrate. The first semiconductor substrate has a first crystallographic orientation. A second structure is provided which includes a second semiconductor substrate comprising a first layer and a second layer, and a second oxide layer which overlies a surface of the first layer. The second semiconductor substrate has a second crystallographic orientation different than the first crystallographic orientation. The first layer includes a second semiconductor region. The first layer and the second oxide layer are removed from the second structure, and assembled to the first semiconductor substrate to form a composite structure.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: October 7, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Igor Peidous
  • Patent number: 7430223
    Abstract: A computing device has a plurality of subsystems located in subsections that are moveable with respect to each other. Communication between the subsections is accomplished with wireless transceivers transmitting over the air gap interface separating the subsections. Data from multiple communicating subsystems in the subsections is multiplexed into a single data stream and encoded into the communication protocol of the wireless transceivers. The encoded data stream is transmitted to a compatible transceiver where it is decoded. The decoded data stream is demultiplexed into individual data streams for each of the communicating subsystems. The wireless transceivers include multiple communication protocols and transmission frequencies from radio frequencies to optical frequencies. Optical fibers, transmission lines or waveguides may be used to transmit signals within each subsection depending on the wireless technology and protocol.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: September 30, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: David W. Smith, Garth Hillman, Clark L. Buxton
  • Patent number: 7430622
    Abstract: Buffer-level arbitration is used to allocate released buffers, based on received flow control credits, between local packets and received packets on respective virtual channels in accordance with a determined insertion rate relative to a second number of received packets to be forwarded. Virtual channel arbitration also is performed to identify, from among the multiple virtual channels, the packets that should be sent next along the local and forwarded paths. Device arbitration is then performed to identify, from the insertion and forwarding paths, the packets that should be output onto an output transmission link, based on the determined insertion rate. Performing the arbitration at each step in accordance with the insertion rate maximizes packet bandwidth fairness among the multiple devices supplying packets across multiple virtual channels.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: September 30, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Jonathan Mercer Owen
  • Publication number: 20080235491
    Abstract: A technique for reducing stack pointer adjustment operations when stack dependent operations, which correspond to stack dependent instructions, are encountered includes setting a stack pointer to an initial value for a stack. A number of bytes associated with the stack dependent operation is determined. A stack pointer delta is then modified based upon the number of bytes associated with the stack dependent operation. A current location in the stack is determined based on the stack pointer and the stack pointer delta.
    Type: Application
    Filed: March 22, 2007
    Publication date: September 25, 2008
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Christopher Svec, Faisal Syed, Michael E. Tuuk, Benjamin T. Sander, Gregory W. Smaus
  • Patent number: 7427457
    Abstract: The present invention discloses a system and method for designing grating structures for use in situ scatterometry during the photolithography process to detect a photoresist defect (e.g., photoresist erosion, pattern collapse or pattern bending). In one embodiment, a grating structure may be designed with a pitch or critical dimensional smaller than the one used for the semiconductor device. The pitch and the critical dimension of the grating structure may be varied. In another embodiment, the present invention provides for a feedback mechanism between the in situ scatterometry process and the photolithography process to provide an early warning of the existence of a photoresist defect. If a defect is detected on the wafer, the wafer may be sent to be re-worked or re-patterned, thereby avoiding scrapping the entire wafer.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: September 23, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Marina V. Plat, Calvin T. Gabriel, Christopher F. Lyons, Anna M. Minvielle
  • Publication number: 20080225049
    Abstract: Based on a driver programmable stencil reference value command, stencil reference value logic produces a plurality of stencil reference values for a corresponding plurality of pixels or pixel samples. At least one of the plurality of stencil reference values has a different value than at least one other of the plurality of stencil reference values. The driver programmable stencil reference value command may include a reference to instruction data or instruction data itself such that the graphics processing logic produces the plurality of stencil reference values based on the instruction data. Stencil logic performs a stencil test on the produced plurality of stencil reference values with respect to or without reference to a previously produced plurality of stencil values. Stencil logic performs stencil operations based on the result of the stencil test.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 18, 2008
    Applicant: Advanced Micro Devices, Inc.
    Inventors: Mark Fowler, Christopher J. Brennan
  • Patent number: 7426644
    Abstract: A host bridge is described including a memory controller and a security check unit. The memory controller is adapted for coupling to a memory storing data arranged within a multiple memory pages. The memory controller receives memory access signals (e.g., during a memory access), and responds to the memory access signals by accessing the memory. The security check unit receives the memory access signals, wherein the memory access signals convey a physical address within a target memory page. The security check unit uses the physical address to access one or more security attribute data structures located in the memory to obtain a security attribute of the target memory page. The security check unit provides the memory access signals to the memory controller dependent upon the security attribute of the target memory page.
    Type: Grant
    Filed: December 5, 2001
    Date of Patent: September 16, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Geoffrey S. Strongin, Brian C. Barnes, Rodney W. Schmidt