Patents Assigned to Applied Material
  • Patent number: 11610759
    Abstract: Disclosed herein is a gas delivery assembly for processing a substrate. In one example, a processing chamber comprises a plurality of walls, a bottom, and a lid to form an interior volume. Gas nozzles provide gas into the interior volume. A substrate support is disposed in the interior volume, having a top surface that supports a substrate. A gas delivery assembly comprises a gas manifold, and is disposed outside of the processing chamber. Gas passageways extend from the gas manifold to the gas nozzles, each gas passageway having similar conductance. A controller is fluidically coupled to each of the gas passageways, and is configured to control the timing at which a first process gas flows from the gas delivery assembly through the controller into the gas manifold, and the timing at which a second process gas is injected into the gas manifold through the gas nozzles.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventor: James Rogers
  • Patent number: 11610796
    Abstract: A system includes an equipment front end module chamber, alignment pedestals housed within the equipment front end module chamber, and a load/unload robot at least partially housed within the equipment front end module chamber. The alignment pedestals include a first alignment pedestal having a first support surface and a second alignment pedestal having a second support surface, and the first support surface has a vertical offset and an overlap region having at least a partial overlap relative to the second support surface. The load/unload robot includes an arm, and vertically arranged blades attached to the arm. The vertically arranged blades include an upper blade configured to transfer a first substrate to the first alignment pedestal and a lower blade configured to transfer a second substrate to the second alignment pedestal.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Nicholas Michael Bergantz
  • Patent number: 11609490
    Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer comprising an alloy selected from an alloy of tantalum, iridium and antimony; an alloy of iridium and antimony; and an alloy of tantalum, ruthenium and antimony.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Shuwei Liu, Shiyu Liu, Vibhu Jindal
  • Patent number: 11610972
    Abstract: A method of forming a metal oxide semiconductor field effect transistor with improved gate-induced drain leakage performance, the method including providing a semiconductor substrate having a gate trench formed therein, performing an ion implantation process on upper portions of sidewalls of the gate trench to make the upper portions more susceptible to oxidation relative to non-implanted lower portions of the sidewalls, and performing an oxidation process on surfaces of the substrate, wherein the implanted upper portions of the sidewalls develop a thicker layer of oxidation relative to the non-implanted lower portions of the sidewalls.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Sipeng Gu, Qintao Zhang
  • Patent number: 11608558
    Abstract: Embodiments of the present disclosure relate to forming multi-depth films for the fabrication of optical devices. One embodiment includes disposing a base layer of a device material on a surface of a substrate. One or more mandrels of the device material are disposed on the base layer. The disposing the one or more mandrels includes positioning a mask over of the base layer. The device material is deposited with the mask positioned over the base layer to form an optical device having the base layer with a base layer depth and the one or more mandrels having a first mandrel depth and a second mandrel depth.
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Karl J. Armstrong, Ludovic Godet, Brian Alexander Cohen, Wayne McMillan, James D. Strassner, Benjamin Riordon
  • Patent number: 11609183
    Abstract: Implementations disclosed describe an optical inspection device comprising a source of light to direct a light beam to a location on a surface of a wafer, the wafer being transported from a processing chamber, wherein the light beam is to generate, a reflected light, an optical sensor to collect a first data representative of a direction of the first reflected light, collect a second data representative of a plurality of values characterizing intensity of the reflected light at a corresponding one of a plurality of wavelengths, and a processing device, in communication with the optical sensor, to determine, using the first data, a position of the surface of the wafer; retrieve calibration data, and determine, using the position of the surface of the wafer, the second data, and the calibration data, a characteristic representative of a quality of the wafer.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Todd J. Egan, Avishek Ghosh, Edward W. Budiarto, Guoheng Zhao
  • Patent number: 11610794
    Abstract: Electronic device processing assemblies including an equipment front end module (EFEM) with at least one side storage pod attached thereto are described. The side storage pod has a side storage container. In some embodiments, an exhaust conduit extends between the chamber and a pod plenum that can contain a chemical filter proximate thereto. A supplemental fan may draw purge gas from the pod plenum through the chemical filter and route the gas through a return duct to an upper plenum of the EFEM. Methods and side storage pods in accordance with these and other embodiments are also disclosed.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: March 21, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Paul Reuter, Dean C. Hruzek, Nir Merry, John C. Menk, Douglas B. Baumgarten
  • Publication number: 20230083050
    Abstract: A drift tube may include a middle portion, arranged as a hollow cylinder, and coupled to receive an RF voltage signal. The drift tube may include a first end portion, adjacent to and electrically connected to the middle portion. The middle portion and the first end portion may define a central opening to conduct an ion beam therethrough, along a direction of beam propagation. The first end portion may include a first focus assembly, and a second focus assembly, where the first focus assembly and the second focus assembly are movable with respect to one another along the direction of beam propagation, from a first configuration to a second configuration.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: William Davis Lee, Charles T. Carlson
  • Publication number: 20230083497
    Abstract: An ion source. The ion source may include a plasma chamber to house a plasma, and an extraction assembly, disposed along a side of the plasma chamber, and comprising at least one extraction aperture. The ion source may further include an antenna assembly, extending through the plasma chamber, along a first axis. The antenna assembly may include a dielectric enclosure, a plurality of conductive antennae, extending along the first axis within the dielectric enclosure.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Alexandre Likhanskii, Peter F. Kurunczi, Ernest E. Allen
  • Publication number: 20230077737
    Abstract: Exemplary methods of plating are described. The methods may include contacting a patterned substrate with a plating bath in a plating chamber. The patterned substrate includes at least one metal interconnect with a contact surface that is exposed to the plating bath. The metal interconnect is made of a first metal characterized by a first reduction potential. The methods further include plating a diffusion layer on the contact surface of the metal interconnect. The diffusion layer is made of a second metal characterized by a second reduction potential that is larger than the first reduction potential of the first metal in the metal interconnects. The plating bath also includes one or more ions of the second metal and a grain refining compound that reduces the formation of pinhole defects in the diffusion layer.
    Type: Application
    Filed: September 14, 2021
    Publication date: March 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Eric J. Bergman, John L. Klocke, Marvin L. Bernt, Prayudi Lianto
  • Publication number: 20230077578
    Abstract: Methods of semiconductor processing may include forming a plasma of a carbon-containing material within a processing region of a semiconductor processing chamber. The methods may include depositing a carbon-containing material on a backside of a substrate housed within the processing region of the semiconductor processing chamber. A front side of the substrate may be maintained substantially free of carbon-containing material. The methods may include performing an etch process on the front-side of the substrate. The methods may include removing the carbon-containing material from the backside of the substrate.
    Type: Application
    Filed: September 13, 2021
    Publication date: March 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Leonard M. Tedeschi, Kartik Ramaswamy, Benjamin CE Schwarz, Changgong Wang, Vahid Firouzdor, Sumanth Banda, Teng-Fang Kou
  • Publication number: 20230080069
    Abstract: Exemplary flow-cells used in biological imaging may include a coverslip. The flow-cells may include a gasket that is positionable atop the coverslip. The gasket may define an open interior. The flow-cells may include a top plate that is positionable above the gasket and the coverslip. The top plate may define a fluid inlet that is in fluid communication with a first end of the open interior and a fluid outlet that is in fluid communication with a second end of the open interior opposite the first end. The flow-cells may include a clamping mechanism that compresses the gasket between the coverslip and the top plate against the to form a fluid region between the top plate and the coverslip and within the open interior of the gasket.
    Type: Application
    Filed: September 8, 2022
    Publication date: March 16, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Tze Howe Charn, Jan Hendrik Bolte, Jan Wiebe Eilander, Anne Freerk de Jager, Roel Penterman
  • Patent number: 11605426
    Abstract: Methods and architectures for refreshing memory elements in a memory array may initialize a reference array that stores each of the possible values stored in the memory element. The values in the memory array and the reference array will drift in parallel over time. To perform a refresh, the drifted values may be read from the reference array and mapped to the original values that were stored when the reference array was initialized. Next, each value may be read from the memory array and matched with a corresponding value from the reference array. The known original value stored in the reference array can then be used to refresh the corresponding memory element in the memory array.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: March 14, 2023
    Assignee: Applied Materials, Inc.
    Inventor: Christophe J. Chevallier
  • Patent number: 11604151
    Abstract: Apparatus and methods for measuring surface topography are described. The analysis apparatus and methods detect light reflected from the reflective backside of a cantilever assembly including a tip, calculate a background level (BGL) value obtained from an optical scan of a reference sample using a power spectral density (PSD) value obtained from a topographical scan of a reference sample to generate a correlational coefficient between the BGL and the PSD values. The correlational coefficient between the BGL and PSD values is used to measure the BGL value of additional EUV mask blanks by a topographical scan of the EUV mask blanks using the same tip mounted to the cantilever.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: March 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Weimin Li, Wen Xiao, Vibhu Jindal, Sanjay Bhat
  • Patent number: 11605741
    Abstract: Exemplary methods of forming a semiconductor structure may include forming a layer of metal on a semiconductor substrate. The layer of metal may extend along a first surface of the semiconductor substrate. The semiconductor substrate may be or include silicon. The methods may include performing an anneal to produce a metal silicide. The methods may include implanting ions in the metal silicide to increase a barrier height over 0.65 V.
    Type: Grant
    Filed: November 23, 2020
    Date of Patent: March 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Joshua S. Holt, Lan Yu, Tyler Sherwood, Archana Kumar, Nicolas Louis Gabriel Breil, Siddarth Krishnan
  • Patent number: 11603591
    Abstract: Methods for depositing an amorphous carbon layer onto a substrate, including over previously formed layers on the substrate, use a plasma-enhanced chemical vapor deposition (PECVD) process. In particular, the methods utilize a combination of RF AC power and pulsed DC power to create a plasma which deposits an amorphous carbon layer with a high ratio of sp3 (diamond-like) carbon to sp2 (graphite-like) carbon. The methods also provide for lower processing pressures, lower processing temperatures, and higher processing powers, each of which, alone or in combination, may further increase the relative fraction of sp3 carbon in the deposited amorphous carbon layer. As a result of the higher sp3 carbon fraction, the methods provide amorphous carbon layers having improved density, rigidity, etch selectivity, and film stress as compared to amorphous carbon layers deposited by conventional methods.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: March 14, 2023
    Assignee: Applied Materials Inc.
    Inventors: Eswaranand Venkatasubramanian, Yang Yang, Pramit Manna, Kartik Ramaswamy, Takehito Koshizawa, Abhijit B. Mallick
  • Patent number: 11604089
    Abstract: An electronic device manufacturing system includes: a gas supply; a mass flow controller (MFC) coupled to the gas supply; an inlet coupled to the MFC; an outlet; a control volume serially coupled to the inlet to receive a gas flow; and a flow restrictor serially coupled to the control volume and the outlet. A controller is adapted to allow the gas supply to flow gas through the control volume and the flow restrictor to achieve a stable pressure in the control volume, terminate the gas flow from the gas supply, and measure a rate of pressure decay in the control volume over time. A process chamber is coupled to a flow path, which is coupled to the mass flow controller, the process chamber to receive one or more process chemistries via the mass flow controller.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: March 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zhiyuan Ye, Justin Hough, Marcel E. Josephson
  • Patent number: 11602776
    Abstract: In some embodiments, a sonic cleaning system includes a tank configured to receive a liquid that enables propagation of sonic waves and a cylindrical insert located within the tank. The cylindrical insert includes a first end having a first opening and a second end opposite the first end. The second end has a second opening. The cylindrical insert is configured to suspend a workpiece between the first opening and the second opening. The sonic cleaning system includes a sonic transducer located within the cylindrical insert.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: March 14, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Michael J. Coughlin, Jianqi Wang
  • Publication number: 20230075471
    Abstract: Extreme ultraviolet (EUV) mask blanks, methods of forming EUV mask blanks and production systems therefor are disclosed. The EUV mask blanks comprise a multilayer reflective stack on a substrate. The multilayer reflective stack comprises a trilayer film including a first film, a second film, and a third film. Some EUV mask blanks include an interface layer on one or more of the first film, the second film and the third film. EUV mask blanks described herein have low Zeff and high reflectance over large bandwidth of reflection angle, thereby minimizing the M3D effect, especially for high-NA EUV scanners.
    Type: Application
    Filed: September 9, 2021
    Publication date: March 9, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Wen Xiao, Herng Yau Yoong, Vibhu Jindal
  • Publication number: 20230072614
    Abstract: Methods of forming devices comprise forming a dielectric layer on a substrate, the dielectric layer comprising at least one feature defining a gap including sidewalls and a bottom. A self-assembled monolayer (SAM) is formed on the bottom of the gap, and a barrier layer is formed on the SAM before selectively depositing a metal liner on the barrier layer. The SAM is removed after selectively depositing the metal liner on the barrier layer.
    Type: Application
    Filed: September 3, 2021
    Publication date: March 9, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Ge Qu, Zhiyuan Wu, Feng Chen, Carmen Leal Cervantes, Yong Jin Kim, Kevin Kashefi, Xianmin Tang