Patents Assigned to Applied Material
  • Patent number: 11482432
    Abstract: Methods of processing a semiconductor substrate and apparatus to process semiconductor substrates are described. The methods and apparatus described enable the repetitive cyclic low temperature application of a chemistry and high temperature treatment step to a substrate.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventor: Errol Antonio C. Sanchez
  • Patent number: 11480865
    Abstract: Apparatus and methods for improving flatness of extreme ultraviolet (EUV) mask blanks are disclosed. The apparatus and methods may utilize one or more of heating the backside and/or the front side of the EUV mask blank and a cooling system. Interfacial layers of the EUV mask blank are selectively heated, resulting in improved flatness of the EUV mask blanks.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Vibhu Jindal, Sanjay Bhat, Wen Xiao, Vinodh Ramachandran
  • Patent number: 11479859
    Abstract: Gas distribution assemblies and process chamber comprising gas distribution assemblies are described. The gas distribution assembly includes a gas distribution plate, a lid and a primary O-ring. The primary O-ring is positioned between a purge channel of a first contact surface of the gas distribution plate and a second contact surface. Methods of sealing a process chamber using the disclosed gas distribution assemblies are described.
    Type: Grant
    Filed: April 9, 2020
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Muhannad Mustafa, Muhammad M. Rasheed
  • Patent number: 11480712
    Abstract: Embodiments described herein relate to nanostructured trans-reflective filters having sub-wavelength dimensions. In one embodiment, the trans-reflective filter includes a film stack that transmits a filtered light within a range of wavelengths and reflects light not within the first range of wavelengths. The film stack includes a first metal film disposed on a substrate having a first thickness, a first dielectric film disposed on the first metal film having a second thickness, a second metal film disposed on the first dielectric film having a third thickness, and a second dielectric film disposed on the second metal film having a fourth thickness.
    Type: Grant
    Filed: March 25, 2021
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Tapashree Roy, Rutger Meyer Timmerman Thijssen, Robert Jan Visser
  • Patent number: 11482397
    Abstract: An ion source is provided. The ion source may include an ion source chamber, and a cathode disposed in the ion source chamber and configured to emit electrons to generate a plasma within the ion source chamber, the cathode comprising a refractory metal, wherein the refractory metal comprises a macrocrystalline structure.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Craig Richard Chaney, Frank Sinclair, Daniel R. Tieger
  • Patent number: 11480866
    Abstract: Apparatus and methods to improve centroid wavelength uniformity of EUV mask blanks are disclosed. The apparatus and methods may utilize one or more of heating the backside and/or the front side of the EUV mask blank. Selected regions and sub regions of the EUV mask blank are selectively heated, resulting in improved centroid wavelength uniformity of EUV mask blanks.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Herng Yau Yoong, Wen Xiao, Ribhu Gautam, Sanjay Bhat, Vibhu Jindal
  • Patent number: 11482444
    Abstract: Implementations described herein provide a substrate support assembly. The substrate support assembly has a first ceramic plate having a workpiece supporting surface and a bottom surface. The first ceramic plate has a plurality of secondary heaters each forming a plurality of micro zones. The substrate support assembly has a second ceramic plate having an upper surface and a lower surface. A first metal bonding layer is disposed between the bottom surface of the first ceramic plate and the upper surface of the second ceramic plate. A third ceramic plate has a top portion and a bottom portion. The third ceramic plate has primary heaters. A second metal bonding layer is disposed between the lower surface of the second ceramic plate and the top portion of the third ceramic plate.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventor: Vijay D. Parkhe
  • Patent number: 11479857
    Abstract: Gas distribution apparatus, processing chambers and methods using a dead volume-free valve are described. The valve has a first inlet line with upstream and downstream ends and a second inlet line with a downstream end that connects to the first inlet line. A sealing surface at the downstream end of the second inlet line separates the first inlet line from the second inlet line preventing fluid communication between the first inlet line and the second inlet line.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Ashutosh Agarwal, Sanjeev Baluja
  • Patent number: 11480724
    Abstract: An apparatus with a grating structure and a method for forming the same are disclosed. The grating structure includes forming a recess in a grating layer. A plurality of channels is formed in the grating layer to define slanted grating structures therein. The recess and the slanted grating structures are formed using a selective etch process.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: October 25, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Morgan Evans, Rutger Meyer Timmerman Thijssen
  • Publication number: 20220336216
    Abstract: Exemplary deposition methods may include delivering a silicon-containing precursor and an inert gas to a processing region of a semiconductor processing chamber. The methods may include providing a hydrogen-containing precursor with the silicon-containing precursor and the inert gas. The methods may include forming a plasma of all precursors within the processing region of a semiconductor processing chamber. The methods may include depositing a silicon-containing material on a substrate disposed within the processing region of the semiconductor processing chamber. The processing region may be maintained free of helium delivery during the deposition method.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Zeqiong Zhao, Allison Yau, Sang-Jin Kim, Akhil Singhal, Zhijun Jiang, Deenesh Padhi, Ganesh Balasubramanian
  • Publication number: 20220333244
    Abstract: Exemplary semiconductor processing chamber showerheads include an inner core region. The inner core region may define a plurality of apertures. The showerheads may include an outer core region disposed about an outer periphery of the inner core region. The outer core region may define an annular channel. The showerheads may include a heating element disposed within the annular channel. The showerheads may include an annular liner disposed about an outer periphery of the outer core region. The inner core region and the outer core region may include an aluminum alloy. The annular liner may have a lower thermal conductivity than the aluminum alloy.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sumit Agarwal, Katherine Woo, Shawyon Jafari, Jian Li, Chidambara A. Ramalingam
  • Publication number: 20220336470
    Abstract: Disclosed are 3-D DRAM devices and methods of forming 3-D DRAM devices. One method may include forming a stack of DRAM device layers, forming a MOS substrate directly atop the stack of alternating DRAM device layers, and forming a trench through the MOS substrate and the stack of DRAM device layers. The method may further include depositing a protection layer over the MOS substrate, wherein the protection layer is deposited at a non-zero angle of inclination relative to a vertical extending from a top surface of the MOS substrate.
    Type: Application
    Filed: June 1, 2022
    Publication date: October 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sony Varghese, Fred Fishburn
  • Publication number: 20220336212
    Abstract: Exemplary methods of semiconductor processing may include providing a silicon-containing precursor and a carbon-containing precursor to a processing region of a semiconductor processing chamber. The carbon-containing precursor may be characterized by a carbon-carbon double bond or a carbon-carbon triple bond. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include providing a boron-containing precursor to the processing region of the semiconductor processing chamber. The methods may include thermally reacting the silicon-containing precursor, the carbon-containing precursor, and the boron-containing precursor at a temperature above about 250° C. The methods may include forming a silicon-and-carbon-containing layer on the substrate.
    Type: Application
    Filed: April 20, 2021
    Publication date: October 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Zeqing Shen, Bo Qi, Abhijit Basu Mallick
  • Publication number: 20220333232
    Abstract: Methods of depositing a metal film with high purity are discussed. A catalyst enhanced CVD process is utilized comprising an alkyl halide catalyst soak and a precursor exposure. The precursor comprises a metal precursor having the general formula (I): M-L1(L2)y, wherein M is a metal, L1 is an aromatic ligand, L2 is an aliphatic ligand, and y is a number in the range of from 2 to 8 to form a metal film on the substrate surface, wherein the L2 comprises 1,5-hexdiene, 1,4-hexadiene, and less than 5% of 1,3-hexadiene. Selective deposition of a metal film with high purity on a metal surface over a dielectric surface is described.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Byunghoon Yoon, Seshadri Ganguli, Xi Cen
  • Publication number: 20220336223
    Abstract: Described is a process to clean up junction interfaces for fabricating semiconductor devices involving forming low-resistance electrical connections between vertically separated regions. An etch can be performed to remove silicon oxide on silicon surface at the bottom of a recessed feature. Described are methods and apparatus for etching up the bottom oxide of a hole or trench while minimizing the effects to the underlying epitaxial layer and to the dielectric layers on the field and the corners of metal gate structures. The method for etching features involves a reaction chamber equipped with a combination of capacitively coupled plasma and inductive coupled plasma. CHxFy gases and plasma are used to form protection layer, which enables the selectively etching of bottom silicon dioxide by NH3—NF3 plasma. Ideally, silicon oxide on EPI is removed to ensure low-resistance electric contact while the epitaxial layer and field/corner dielectric layers are—etched only minimally or not at all.
    Type: Application
    Filed: June 22, 2022
    Publication date: October 20, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yu Lei, Xuesong Lu, Tae Hong Ha, Xianmin Tang, Andrew Nguyen, Tza-Jing Gung, Philip A. Kraus, Chung Nang Liu, Hui Sun, Yufei Hu
  • Patent number: 11473189
    Abstract: Physical vapor deposition methods for reducing the particulates deposited on the substrate are disclosed. The pressure during sputtering can be increased to cause agglomeration of the particulates formed in the plasma. The agglomerated particulates can be moved to an outer portion of the process chamber prior to extinguishing the plasma so that the agglomerates fall harmlessly outside of the diameter of the substrate.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Halbert Chong, Lei Zhou, Adolph Miller Allen, Vaibhav Soni, Kishor Kalathiparambil, Vanessa Faune, Song-Moon Suh
  • Patent number: 11476202
    Abstract: The present disclosure relates to thin-form-factor reconstituted substrates and methods for forming the same. The reconstituted substrates described herein may be utilized to fabricate homogeneous or heterogeneous high-density 3D integrated devices. In one embodiment, a silicon substrate is structured by direct laser patterning to include one or more cavities and one or more vias. One or more semiconductor dies of the same or different types may be placed within the cavities and thereafter embedded in the substrate upon formation of an insulating layer thereon. One or more conductive interconnections are formed in the vias and may have contact points redistributed to desired surfaces of the reconstituted substrate. The reconstituted substrate may thereafter be integrated into a stacked 3D device.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: October 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Han-Wen Chen, Steven Verhaverbeke, Guan Huei See, Giback Park, Giorgio Cellere, Diego Tonini, Vincent Dicaprio, Kyuil Cho
  • Patent number: 11476135
    Abstract: Exemplary substrate processing systems may include a transfer region housing defining an internal volume. A sidewall of the transfer region housing may define a sealable access for providing and receiving substrates. The systems may include a plurality of substrate supports disposed within the transfer region. The systems may also include a transfer apparatus having a central hub including a first shaft and a second shaft concentric with and counter-rotatable to the first shaft. The transfer apparatus may include a first end effector coupled with the first shaft. The first end effector may include a plurality of first arms. The transfer apparatus may also include a second end effector coupled with the second shaft. The second end effector may include a plurality of second arms having a number of second arms equal to the number of first arms of the first end effector.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: October 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Charles T. Carlson, Jason M. Schaller, Luke Bonecutter, David Blahnik
  • Patent number: 11476267
    Abstract: Methods of forming memory structures are discussed. Specifically, methods of forming 3D NAND devices are discussed. Some embodiments form memory structures with a metal nitride barrier layer, an ?-tungsten layer, and a bulk metal material. The barrier layer comprises a TiXN or TaXN material, where X comprises a metal selected from one or more of aluminum (Al), silicon (Si), tungsten (W), lanthanum (La), yttrium (Yt), strontium (Sr), or magnesium (Mg).
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: October 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jacqueline S. Wrench, Yixiong Yang, Yong Wu, Wei V. Tang, Srinivas Gandikota, Yongjing Lin, Karla M Bernal Ramos, Shih Chung Chen
  • Patent number: 11473191
    Abstract: A method for creating a flat optical structure is disclosed, having steps of providing a substrate, etching at least one nanotrench in the substrate, placing a dielectric material in the at least one nanotrench in the substrate and encapsulating a top of the substrate with a film.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: October 18, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Tapashree Roy, Rutger Meyer Timmerman Thijssen, Ludovic Godet, Jinxin Fu