Patents Assigned to Applied Material
-
Patent number: 11473198Abstract: Described are lanthanide-containing metal coordination complexes which may be used as precursors in thin film depositions, e.g. atomic layer deposition processes. More specifically, described are homoleptic lanthanide-aminoalkoxide metal coordination complexes, lanthanide-carbohydrazide metal coordination complexes, and lanthanide-diazadiene metal coordination complexes. Additionally, methods for depositing lanthanide-containing films through an atomic layer deposition process are described.Type: GrantFiled: January 25, 2020Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: Thomas Knisley, Mark Saly
-
Patent number: 11476146Abstract: An electrostatic chuck comprises a ceramic body comprising an embedded electrode and a first ceramic coating on a surface of the ceramic body, wherein the first ceramic coating fills pores in the ceramic body. The electrostatic chuck further comprises a second ceramic coating on the first ceramic coating and a plurality of elliptical mesas on the second ceramic coating, the plurality of elliptical mesas having rounded edges.Type: GrantFiled: April 14, 2020Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: Wendell Glenn Boyd, Jr., Vijay D. Parkhe, Teng-Fang Kuo, Zhenwen Ding
-
Patent number: 11476087Abstract: An ion implantation system, including an ion source and extraction system, arranged to generate an ion beam at a first energy, and a linear accelerator, disposed downstream of the ion source, the linear accelerator arranged to receive the ion beam as a bunched ion beam accelerate the ion beam to a second energy, greater than the first energy. The linear accelerator may include a plurality of acceleration stages, wherein a given acceleration stage of the plurality of acceleration stages comprises: a drift tube assembly, arranged to conduct the ion beam; a resonator, electrically coupled to the drift tube assembly; and an RF power assembly, coupled to the resonator, and arranged to output an RF signal to the resonator. As such, the given acceleration stage does not include a quadrupole element.Type: GrantFiled: August 3, 2020Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventor: Frank Sinclair
-
Patent number: 11476313Abstract: Embodiments described herein relate to sub-pixel circuits and methods of forming sub-pixel circuits that may be utilized in a display such as an organic light-emitting diode (OLED) display. The device includes a plurality of sub-pixels, each sub-pixel of the plurality of sub-pixels defined by adjacent pixel-defining layer (PDL) structures with inorganic overhang structures disposed on the PDL structures, each sub-pixel having an anode, organic light-emitting diode (OLED) material disposed on the anode, and a cathode disposed on the OLED material. The device is made by a process including the steps of: depositing the OLED material and the cathode by evaporation deposition, and depositing an encapsulation layer disposed over the cathode.Type: GrantFiled: October 11, 2021Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: Ji-young Choung, Dieter Haas, Yu Hsin Lin, Jungmin Lee, Seong Ho Yoo, Si Kyoung Kim
-
Patent number: 11476090Abstract: Embodiments provided herein generally include apparatus, plasma processing systems and methods for generation of a waveform for plasma processing of a substrate in a processing chamber. One embodiment includes a waveform generator having a voltage source circuitry, a first switch coupled between the voltage source circuitry and a first output node of the waveform generator, the first output node being configured to be coupled to a chamber, and a second switch coupled between the first output node and electrical ground node. The waveform generator also includes a third switch coupled between the voltage source circuitry and a second output node of the waveform generator, the second output node being configured to be coupled to the chamber, and a fourth switch coupled between the second output node and the electrical ground node.Type: GrantFiled: August 24, 2021Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: Kartik Ramaswamy, Yang Yang, Yue Guo
-
Patent number: 11476093Abstract: An apparatus for plasma processing includes a first plasma source, a first planar electrode, a gas distribution device, a plasma blocking screen and a workpiece chuck. The first plasma source produces first plasma products that pass, away from the first plasma source, through first apertures in the first planar electrode. The first plasma products continue through second apertures in the gas distribution device. The plasma blocking screen includes a third plate with fourth apertures, and faces the gas distribution device such that the first plasma products pass through the plurality of fourth apertures. The workpiece chuck faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen and the workpiece chuck. The fourth apertures are of a sufficiently small size to block a plasma generated in the process chamber from reaching the gas distribution device.Type: GrantFiled: December 5, 2019Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: Toan Q. Tran, Soonam Park, Zilu Weng, Dmitry Lubomirsky
-
Patent number: 11476145Abstract: Disclosed herein is a system for pulsed DC biasing and clamping a substrate. The system can include a plasma chamber having an ESC for supporting a substrate. An electrode is embedded in the ESC and is electrically coupled to a biasing and clamping circuit. The biasing and clamping circuit includes at least a shaped DC pulse voltage source and a clamping network. The clamping network includes a DC voltage source and a diode, and a resistor. The shaped DC pulse voltage source and the clamping network are connected in parallel. The biasing and clamping network automatically maintains a substantially constant clamping voltage, which is a voltage drop across the electrode and the substrate when the substrate is biased with pulsed DC voltage, leading to improved clamping of the substrate.Type: GrantFiled: November 20, 2018Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: James Rogers, Linying Cui, Leonid Dorf
-
Patent number: 11476330Abstract: A system and method for creating various dopant concentration profiles using a single implant energy is disclosed. A plurality of implants are performed at the same implant energy but different tilt angles to implant ions at a variety of depths. The result of these implants may be a rectangular profile or a gradient profile. The resulting dopant concentration profile depends on the selection of tilt angles, doses and the number of implants. Varying tilt angle rather than varying implant energy to achieve implants of different depths may significantly improve efficiency and throughput, as the tilt angle can be changed faster than the implant energy can be changed. Additionally, this method may be performed by a number of different semiconductor processing apparatus.Type: GrantFiled: October 22, 2020Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: Venkataramana R. Chavva, Hans-Joachim Gossmann
-
Publication number: 20220325412Abstract: Methods for atomic layer deposition (ALD) of plasma enhanced atomic layer deposition (PEALD) of low-? films are described.Type: ApplicationFiled: June 24, 2022Publication date: October 13, 2022Applicant: Applied Materials, Inc.Inventors: Shuaidi Zhang, Ning Li, Mihaela A. Balseanu, Bhaskar Jyoti Bhuyan, Mark Saly, Thomas Knisley
-
Publication number: 20220328352Abstract: Methods of forming fully aligned vias connecting two metal lines extending in two directions are described. The fully aligned via is aligned with the first metal line and the second metal line along both directions. A third metal layer is patterned on a top of a second metal layer in electrical contact with a first metal layer. The patterned third metal layer is misaligned from the top of the second metal layer. The second metal layer is recessed to expose sides of the second metal layer and remove portions not aligned sides of the third metal layer.Type: ApplicationFiled: June 18, 2022Publication date: October 13, 2022Applicant: Applied Materials, Inc.Inventors: He Ren, Hao Jiang, Mehul Naik
-
Publication number: 20220325398Abstract: A hybrid halide perovskite film and methods of forming a hybrid halide perovskite film on a substrate are described. The film is formed on the substrate by depositing an organic solution on a substrate, heating the substrate and the organic solution to form an organic layer on the substrate, depositing an inorganic layer on the organic layer, and heating the substrate having the inorganic layer thereon to form a hybrid halide perovskite film. In some embodiments, the hybrid halide perovskite film comprises a CH[NH2]2+MX3 compound, where M is selected from the group consisting of Sn, Pb, Bi, Mg and Mn, and where X is selected from the group consisting of I, Br and Cl. In other embodiments, the hybrid halide perovskite film comprises a FAMX3 compound. Methods of forming a piezoelectric device are also disclosed.Type: ApplicationFiled: April 13, 2021Publication date: October 13, 2022Applicant: Applied Materials, Inc.Inventors: Vijay Bhan Sharma, Abhijeet Laxman Sangle, Ankur Anant Kadam, Suresh Chand Seth, Richa Pandey, Dinesh Kabra, Valipe Ramgopal Rao
-
Publication number: 20220327725Abstract: Methods for detecting areas of localized tilt on a sample using imaging reflectometry measurements include obtaining a first image without blocking any light reflected from the sample and obtaining a second image while blocking some light reflected from the sample at the aperture plane. The areas of localized tilt are detected by comparing first reflectance intensity values of pixels in the first image with second reflectance intensity values of corresponding pixels in the second image.Type: ApplicationFiled: June 28, 2022Publication date: October 13, 2022Applicant: Applied Materials, Inc.Inventors: Mehdi Vaez-Iravani, Guoheng Zhao
-
Publication number: 20220327262Abstract: Methods, software systems and processes to develop surrogate model-based optimizers for controlling and optimizing flow and pressure of purges between a showerhead and a heater having a substrate support to control non-uniformity inherent in a processing chamber due to geometric configuration and process regimes. The flow optimizer process utilizes experimental data from optimal process space coverage models, generated simulation data and statistical machine learning tools (i.e. regression models and global optimizers) to predict optimal flow rates for any user-specified process regime.Type: ApplicationFiled: April 7, 2021Publication date: October 13, 2022Applicant: Applied Materials, Inc.Inventors: Dhritiman Subha Kashyap, Chaowei Wang, Kartik Shah, Kevin Griffin, Karthik Ramanathan, Hanhong Chen, Joseph AuBuchon, Sanjeev Baluja
-
Publication number: 20220328348Abstract: Methods of forming copper interconnects are described. A doped tantalum nitride layer formed on a copper layer on a substrate has a first amount of dopant. The doped tantalum nitride layer is exposed to a plasma comprising one or more of helium or neon to form a treated doped tantalum nitride layer with a decreased amount of dopant. Apparatus for performing the methods are also described.Type: ApplicationFiled: June 29, 2022Publication date: October 13, 2022Applicant: Applied Materials, Inc.Inventors: Rui Li, Xiangjin Xie, Tae Hong Ha, Xianmin Tang, Lu Chen
-
Publication number: 20220325410Abstract: Methods of depositing a metal film are discussed. A metal film is formed on the bottom of feature having a metal bottom and dielectric sidewalls. Formation of the metal film comprises exposure to a metal precursor and an alkyl halide catalyst while the substrate is maintained at a deposition temperature. The metal precursor has a decomposition temperature above the deposition temperature. The alkyl halide comprises carbon and halogen, and the halogen comprises bromine or iodine.Type: ApplicationFiled: June 23, 2022Publication date: October 13, 2022Applicant: Applied Materials, Inc.Inventors: Byunghoon Yoon, Liqi Wu, Joung Joo Lee, Kai Wu, Xi Cen, Wei Lei, Sang Ho Yu, Seshadri Ganguli
-
Patent number: 11469075Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for obtaining a microscope image that depicts a sample and a plurality of fiducial markers, identifying the plurality of fiducial markers in the image, and using the plurality of fiducial markers to register the image. Identifying the plurality of fiducial markers in the image includes comparing a spatial intensity distribution of a plurality of regions of the image to a reference distribution function.Type: GrantFiled: March 12, 2020Date of Patent: October 11, 2022Assignee: Applied Materials, Inc.Inventor: Yun-Ching Chang
-
Patent number: 11469107Abstract: Methods and techniques for deposition of amorphous carbon films on a substrate are provided. In one example, the method includes depositing an amorphous carbon film on an underlayer positioned on a susceptor in a first processing region. The method further includes implanting a dopant or the inert species into the amorphous carbon film in a second processing region. The implant species, energy, dose & temperature in some combination may be used to enhance the hardmask hardness. The method further includes patterning the doped amorphous carbon film. The method further includes etching the underlayer.Type: GrantFiled: July 27, 2020Date of Patent: October 11, 2022Assignee: Applied Materials, Inc.Inventors: Rajesh Prasad, Sarah Bobek, Prashant Kumar Kulshreshtha, Kwangduk Douglas Lee, Harry Whitesell, Hidetaka Oshio, Dong Hyung Lee, Deven Matthew Raj Mittal, Scott Falk, Venkataramana R. Chavva
-
Patent number: 11469124Abstract: Embodiments of the present disclosure relate to a substrate transfer device having a contactless latch and contactless coupling providing the ability to lock and unlock the substrate transfer device at atmospheric and vacuum pressure with without particle generation at a base of the substrate transfer device, the contactless latch, and the contactless coupling. The substrate transfer device includes a lid having one or more lid grooves, a base having one or more base grooves, and a rotation member rotatably coupled to the lid. Each flange of one or more flanges of the substrate transfer device is rotatable in aligned lid grooves and base grooves, and each flange of the one or more flanges has an arm with a ferromagnetic material coupled thereto. The base is coupled to the lid when the ferromagnetic material of the arm is aligned and spaced from a magnetic material of a slot of the one or more base grooves.Type: GrantFiled: January 24, 2020Date of Patent: October 11, 2022Assignee: Applied Materials, Inc.Inventors: Shreyas Patil Shanthaveeraswamy, Ribhu Gautam, Kumaresan Nagarajan, Vijay Singh, Andrew J. Constant, Michael P. Karazim, Kim Ramkumar Vellore
-
Patent number: 11469096Abstract: Embodiments of the present disclosure generally relate to methods and apparatus for backside stress engineering of substrates to combat film stresses and bowing issues. In one embodiment, a method of depositing a film layer on a backside of a substrate is provided. The method includes flipping a substrate at a factory interface so that the backside of the substrate is facing up, and transferring the flipped substrate from the factory interface to a physical vapor deposition chamber to deposit a film layer on the backside of the substrate. In another embodiment, an apparatus for depositing a backside film layer on a backside of a substrate, which includes a substrate supporting surface configured to support the substrate at or near the periphery of the substrate supporting surface without contacting an active region on a front side of the substrate.Type: GrantFiled: April 13, 2020Date of Patent: October 11, 2022Assignee: Applied Materials, Inc.Inventors: Chunming Zhou, Jothilingam Ramalingam, Yong Cao, Kevin Vincent Moraes, Shane Lavan
-
Patent number: D967351Type: GrantFiled: October 20, 2020Date of Patent: October 18, 2022Assignee: Applied Materials, Inc.Inventors: Alexander N. Lerner, Graeme Jamieson Scott, Prashanth Kothnur