Patents Assigned to Applied Material
  • Patent number: 11467499
    Abstract: Apparatus, methods and are disclosed for measuring refractive index of an absorber material used in EUV phase shift masks. The method and apparatus utilize a reference measurement and as series of reflectance measurements at a range of EUV wavelengths and thickness values for the absorber material to determine the refractive index of the absorber material.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: October 11, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Wen Xiao, Vibhu Jindal, Huajun Liu, Herng Yau Yoong
  • Patent number: 11469100
    Abstract: A method of post-treating a dielectric film formed on a surface of a substrate includes positioning a substrate having a dielectric film formed thereon in a processing chamber and exposing the dielectric film to microwave radiation in the processing chamber at a frequency between 5 GHz and 7 GHz.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: October 11, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Yong Sun, Praket Prakash Jha, Jingmei Liang, Martin Jay Seamons, DongQing Li, Shashank Sharma, Abhilash J. Mayur, Wolfgang R. Aderhold
  • Publication number: 20220320417
    Abstract: Doped-aluminum nitride (doped-AlN) films and methods of manufacturing doped-AlN films are disclosed. Some methods comprise forming alternating pinning layers and doped-AlN layers including a dopant selected from the group consisting of Sc, Y, Hf, Mg, Zr and Cr, wherein the pinning layers pin the doped-AlN layers to a c-axis orientation. Some methods include forming a conducting layer including a material selected from the group consisting of Mo, Pt, Ta, Ru, LaNiO3 and SrRuO3. Some methods include forming a thermal oxide layer having silicon oxide on a silicon substrate. Piezoelectric devices comprising the doped-AlN film are also disclosed.
    Type: Application
    Filed: April 1, 2021
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Abhijeet Laxman Sangle, Suresh Chand Seth, Vijay Bhan Sharma, Bharatwaj Ramakrishnan, Ankur Anant Kadam
  • Publication number: 20220319836
    Abstract: Exemplary processing methods include forming a nucleation layer on a substrate. The nucleation layer may be formed by physical vapor deposition (PVD), and the physical vapor deposition may be characterized by a deposition temperature of greater than or about 700° C. The methods may further include forming a patterned mask layer on the nucleation layer. The patterned mask layer may include openings that expose portions of the nucleation layer. Gallium-and-nitrogen-containing regions may be formed on the exposed portions of the nucleation layer. In additional embodiments, the nucleation layer may include a first and second portion separated by an interlayer that stop the propagation of at least some dislocations in the nucleation layer.
    Type: Application
    Filed: March 17, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Michael Chudzik, Ria Someshwar, Daniel Deyo, Michel Khoury, Sha Zhao
  • Publication number: 20220319837
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. A substrate comprising a surface structure with a metal bottom, dielectric sidewalls, and a field of dielectric is exposed to a dual plasma treatment in a processing chamber to remove chemical residual and/or impurities from the metal bottom, the dielectric sidewalls, and/or the field of the dielectric and/or repair surface defects in the dielectric sidewalls and/or the field of the dielectric. The dual plasma treatment comprises a direct plasma and a remote plasma.
    Type: Application
    Filed: June 20, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yi Xu, Yufei Hu, Kazuya Daito, Yu Lei, Dien-Yeh Wu, Jallepally Ravi
  • Publication number: 20220319601
    Abstract: Described is a memory string including at least one select gate for drain (SGD) transistor and at least one memory transistor in a vertical hole extending through a memory stack on a substrate. The memory stack comprises alternating word lines and dielectric material. There is at least one select-gate-for-drain (SGD) transistor in a first vertical hole extending through the memory stack, the select-gate-for-drain (SGD) transistor comprising a first gate material. At least one memory transistor is in a second vertical hole extending through the memory stack, the at least one memory transistor comprising a second gate material different from the first gate material.
    Type: Application
    Filed: March 28, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Tomohiko Kitajima, Gill Yong Lee, Qian Fu, Sung-Kwan Kang, Takehito Koshizawa, Fredrick Fishburn
  • Publication number: 20220319813
    Abstract: Provided is a processing chamber configured to contain a semiconductor substrate in a processing region of the chamber. The processing chamber includes a remote plasma unit and a direct plasma unit, wherein one of the remote plasma unit or the direct plasma unit generates a remote plasma and the other of the remote plasma unit or the direct plasma unit generates a direct plasma. The combination of a remote plasma unit and a direct plasma unit is used to remove, etch, clean, or treat residue on a substrate from previous processing and/or from native oxide formation. The combination of a remote plasma unit and direct plasma unit is used to deposit thin films on a substrate.
    Type: Application
    Filed: June 20, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Kazuya Daito, Yi Xu, Yu Lei, Takashi Kuratomi, Jallepally Ravi, Pingyan Lei, Dien-Yeh Wu
  • Publication number: 20220319899
    Abstract: Substrate supports comprising a top plate positioned on a shaft are described. The top plate including a primary heating element a first depth from the surface of the top plate, a inner zone heating element a second depth from the surface of the top plate and an outer zone heating element a third depth from the surface of the top plate. Substrate support assemblies comprising a plurality of substrate supports and methods of processing a substrate are also disclosed.
    Type: Application
    Filed: June 21, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Tejas Ulavi, Sanjeev Baluja, Dhritiman Subha Kashyap
  • Publication number: 20220319806
    Abstract: An ion implanter may include an ion source, arranged to generate a continuous ion beam, a DC acceleration system, to accelerate the continuous ion beam, as well as an AC linear accelerator to receive the continuous ion beam and to output a bunched ion beam. The ion implanter may also include an energy spreading electrode assembly, to receive the bunched ion beam and to apply an RF voltage between a plurality of electrodes of the energy spreading electrode assembly, along a local direction of propagation of the bunched ion beam.
    Type: Application
    Filed: April 2, 2021
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Paul J. Murphy, Frank Sinclair, Jun Lu, Daniel Tieger, Anthony Renau
  • Publication number: 20220316061
    Abstract: Processing chambers and methods to disrupt the boundary layer are described. The processing chamber includes a showerhead and a substrate support therein. The showerhead and the substrate support are spaced to have a process gap between them. In use, a boundary layer is formed adjacent to the substrate support or wafer surface. As the reaction occurs at the wafer surface, reaction products and byproduct are produced, resulting in reduced chemical utilization rate. The processing chamber and methods described disrupt the boundary layer by changing one or more process parameters (e.g., pressure, flow rate, time, process gap or temperature of fluid passing through the showerhead).
    Type: Application
    Filed: June 21, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Kevin Griffin, Sanjeev Baluja, Joseph AuBuchon, Mario D. Silvetti, Hari Ponnekanti
  • Publication number: 20220320318
    Abstract: Electronic devices and methods of forming electronic devices with gate-all-around non-I/O devices and finlike structures for I/O devices are described. A plurality of dummy gates is etched to expose a fin comprising alternating layers of a first material and a second material. The second material layers are removed to create openings and the first material layers remaining are epitaxially grown to form a finlike structure.
    Type: Application
    Filed: June 18, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Benjamin Colombeau, Matthias Bauer, Naved Ahmed Siddiqui, Phillip Stout
  • Publication number: 20220319841
    Abstract: Examples of the present technology include semiconductor processing methods that provide a substrate in a substrate processing region of a substrate processing chamber, where the substrate is maintained at a temperature less than or about 50° C. A plasma may be generated from the hydrocarbon-containing precursor, and a carbon-containing material may be deposited from the plasma on the substrate. The carbon-containing material may include diamond-like-carbon, and may have greater than or about 60% of the carbon atoms with sp3 hybridized bonds.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 6, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Rick Kustra, Bo Qi, Abhijit Basu Mallick, Kaushik Alayavalli, Jay D. Pinson
  • Patent number: 11459652
    Abstract: Embodiments herein include void-free material depositions on a substrate (e.g., in a void-free trench-filled (VFTF) component). In some embodiments, a method may include providing a plurality of device structures extending from a base, each of the plurality of device structures including a first sidewall opposite a second sidewall and a top surface extending between the first and second sidewalls, and providing a seed layer over the plurality of device structures. The method may further include forming a dielectric layer along just the top surface and along an upper portion of the first and second sidewalls using an angled deposition delivered to the plurality of device structures at a non-zero angle of inclination relative to a perpendicular extending from an upper surface of the base, and forming a fill material within one or more trenches defined by the plurality of device structures.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Tristan Y. Ma, Kelvin Chan
  • Patent number: 11462388
    Abstract: Embodiments of the disclosure provided herein include an apparatus and method for the plasma processing of a substrate in a processing chamber. More specifically, embodiments of this disclosure describe a biasing scheme that is configured to provide a radio frequency (RF) generated RF waveform from an RF generator to one or more electrodes within a processing chamber and a pulsed-voltage (PV) waveform delivered from one or more pulsed-voltage (PV) generators to the one or more electrodes within the processing chamber. The plasma process(es) disclosed herein can be used to control the shape of an ion energy distribution function (IEDF) and the interaction of the plasma with a surface of a substrate during plasma processing.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Leonid Dorf, Rajinder Dhindsa, James Rogers, Daniel Sang Byun, Evgeny Kamenetskiy, Yue Guo, Kartik Ramaswamy, Valentin N. Todorow, Olivier Luere, Linying Cui
  • Patent number: 11459347
    Abstract: Molybdenum(IV) and molybdenum(III) coordination complexes are described. Methods for depositing molybdenum-containing films on a substrate are described. The substrate is exposed to a molybdenum precursor and a reactant to form the molybdenum-containing film (e.g., elemental molybdenum, molybdenum oxide, molybdenum carbide, molybdenum silicide, molybdenum nitride). The exposures can be sequential or simultaneous.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Andrea Leoncini, Paul Mehlmann, Nemanja Dordevic, Han Vinh Huynh, Doreen Wei Ying Yong
  • Patent number: 11462733
    Abstract: Implementations described herein generally relate to metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same. In one implementation, an anode electrode structure is provided. The anode electrode structure comprises a current collector comprising copper. The anode electrode structure further comprises a lithium metal film formed on the current collector. The anode electrode structure further comprises a solid electrolyte interface (SEI) film stack formed on the lithium metal film. The SEI film stack comprises a chalcogenide film formed on the lithium metal film. In one implementation, the SEI film stack further comprises a lithium oxide film formed on the chalcogenide film. In one implementation, the SEI film stack further comprises a lithium carbonate film formed on the lithium oxide film.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Girish Kumar Gopalakrishnan Nair, Subramanya P. Herle, Karl J. Armstrong
  • Patent number: 11462389
    Abstract: Embodiments of the disclosure provided herein include an apparatus and method for the plasma processing of a substrate in a processing chamber. More specifically, embodiments of this disclosure describe a biasing scheme that is configured to provide a radio frequency (RF) generated RF waveform from an RF generator to one or more electrodes within a processing chamber and a pulsed-voltage (PV) waveform delivered from one or more pulsed-voltage (PV) generators to the one or more electrodes within the processing chamber. The plasma process(es) disclosed herein can be used to control the shape of an ion energy distribution function (IEDF) and the interaction of the plasma with a surface of a substrate during plasma processing.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Leonid Dorf, Rajinder Dhindsa, James Rogers, Daniel Sang Byun, Evgeny Kamenetskiy, Yue Guo, Kartik Ramaswamy, Valentin N. Todorow, Olivier Luere, Jonathan Kolbeck, Linying Cui
  • Patent number: 11462426
    Abstract: In embodiments, a process gas supply provides a carrier gas and one or more process gases to a distribution manifold. A back pressure sensor senses back pressure in the distribution manifold and provides a signal to the first controller based at least in part on the back pressure. The first controller determines a back pressure set point based at least in part on the signal. One or more mass flow controllers control the flow of the gas mixture comprising the carrier gas and the one or more process gases into one or more zones of the process chamber. An upstream pressure controller fluidly and operatively connected to the distribution manifold controls flow of the carrier gas based on the back pressure set point.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Patent number: 11460413
    Abstract: Examples disclosed herein relate to a method and apparatus for inspecting lamp dimensions. The method includes determining an actual measurement of a lamp. The lamp is configured to heat a substrate in a substrate processing apparatus. A window is generated, the window having a width and a height. The window is based upon a target measurement of the lamp. The method further includes generating a deviation based upon a difference between an image of the actual measurement and the window. The deviation is compared to a first threshold. The lamp is rejected if the deviation is outside the first threshold.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Govinda Raj, Vilen K. Nestorov
  • Patent number: 11462386
    Abstract: Aspects of the disclosure relate to apparatus for the fabrication of waveguides. In one example, an angled ion source is utilized to project ions toward a substrate to form a waveguide which includes angled gratings. In another example, an angled electron beam source is utilized to project electrons toward a substrate to form a waveguide which includes angled gratings. Further aspects of the disclosure provide for methods of forming angled gratings on waveguides utilizing an angled ion beam source and an angled electron beam source.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Kartik Ramaswamy, Yang Yang, Manivannan Thothadri, Chien-An Chen, Ludovic Godet, Rutger Meyer Timmerman Thijssen