Patents Assigned to Applied Material
  • Publication number: 20220107556
    Abstract: Extreme ultraviolet (EUV) mask blanks, methods for their manufacture and production systems therefor are disclosed. The EUV mask blanks comprise a substrate; a multilayer stack of reflective layers on the substrate; a capping layer on the multilayer stack of reflecting layers; and an absorber layer on the capping layer, the absorber layer comprising an alloy selected from an alloy of tantalum, iridium and antimony; an alloy of iridium and antimony; and an alloy of tantalum, ruthenium and antimony.
    Type: Application
    Filed: October 6, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Shuwei Liu, Shiyu Liu, Vibhu Jindal
  • Publication number: 20220108893
    Abstract: Provided herein are approaches for forming an image sensor with increased well depth due to cryogenic ion channeling of ultra-high energy (UHE) ions. In some embodiments, a method may include providing a wafer of a semiconductor device, the semiconductor device including a photoelectric conversion region, and cooling the wafer to a temperature less than ?50° C. The method may further include performing an ion implant to the photoelectric conversion region to form a photodiode well after cooling the wafer.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Hans-Joachim L. Gossmann, Stanislav S. Todorov, Hiroyuki Ito
  • Publication number: 20220108886
    Abstract: A method to form a 2-Dimensional transistor channel may include depositing an amorphous layer comprising a 2-dimensional material, implanting an implant species into the amorphous layer; and annealing the amorphous layer after the implanting. As such, the amorphous layer may form a doped crystalline layer.
    Type: Application
    Filed: January 15, 2021
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Keith T. Wong, Hurshvardhan Srivastava, Srinivas D. Nemani, Johannes M. van Meer, Rajesh Prasad
  • Publication number: 20220108888
    Abstract: Methods for selectively depositing germanium containing films are disclosed. Some embodiments of the disclosure provide deposition on a bare silicon with little to no deposition on a silicon oxide surface. Some embodiments of the disclosure provide conformal films on trench sidewalls. Some embodiments of the disclosure provide superior gap fill without seams or voids.
    Type: Application
    Filed: October 4, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Huiyuan Wang, Susmit Singha Roy, Abhijit Basu Mallick
  • Publication number: 20220106683
    Abstract: Apparatus and methods for loading and unloading substrates from a spatial processing chamber are described. A support assembly has a rotatable center base and support arms extending therefrom. A support shaft is at the outer end of the support arms and a substrate support is on the support shaft. Primary lift pins are positioned within openings in the substrate support. Secondary lift pins are positioned within openings in the support arms and are aligned with the primary lift pins. An actuation plate within the processing volume causes, upon movement of the support assembly, the primary lift pins to elevate through contact with the secondary lift pins.
    Type: Application
    Filed: October 1, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Sanjeev Baluja, Tejas Ulavi, Eric J. Hoffmann, Ashutosh Agarwal
  • Publication number: 20220108907
    Abstract: Exemplary semiconductor processing systems may include a chamber body including sidewalls and a base. The chamber body may define an interior volume. The systems may include a substrate support extending through the base of the chamber body. The substrate support may be configured to support a substrate within the interior volume. The systems may include a faceplate positioned within the interior volume of the chamber body. The faceplate may define a plurality of apertures through the faceplate. The systems may include a leveling apparatus seated on the substrate support. The leveling apparatus may include a plurality of piezoelectric pressure sensors.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Katherine Woo, Paul L. Brillhart, Jian Li, Shinnosuke Kawaguchi, David W. Groechel, Dorothea Buechel-Rimmel, Juan Carlos Rocha-Alvarez, Paul E. Fisher, Chidambara A. Ramalingam, Joseph J. Farah
  • Publication number: 20220108884
    Abstract: Semiconductor processing methods are described for forming UV-treated, low-? dielectric films. The methods may include flowing deposition precursors into a substrate processing region of a semiconductor processing chamber. The deposition precursors may include a silicon-and-carbon-containing precursor. The methods may further include generating a deposition plasma from the deposition precursors within the substrate processing region, and depositing a silicon-and-carbon-containing material on the substrate from plasma effluents of the deposition plasma. The as-deposited silicon-and-carbon-containing material may be characterized by greater than or about 5% hydrocarbon groups. The methods may still further include exposing the deposited silicon-and-carbon-containing material to ultraviolet light. The exposed silicon-and-carbon-containing material may be characterized by less than or about 2% hydrocarbon groups.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Bo Xie, Ruitong Xiong, Sure Ngo, Kang Sub Yim, Yijun Liu, Li-Qun Xia
  • Publication number: 20220107558
    Abstract: A physical vapor deposition (PVD) chamber and a method of operation thereof are disclosed. Chambers and methods are described that provide a chamber comprising an upper shield with two holes that are positioned to permit alternate sputtering from two targets. A process for improving reflectivity from a multilayer stack is also disclosed.
    Type: Application
    Filed: December 16, 2021
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Vibhu Jindal, Wen Xiao, Sanjay Bhat
  • Publication number: 20220108892
    Abstract: Embodiments of the present technology include semiconductor processing methods to make boron-and-silicon-containing layers that have a changing atomic ratio of boron-to-silicon. The methods may include flowing a silicon-containing precursor into a substrate processing region of a semiconductor processing chamber, and also flowing a boron-containing precursor and molecular hydrogen (H2) into the substrate processing region of the semiconductor processing chamber. The boron-containing precursor and the H2 may be flowed at a boron-to-hydrogen flow rate ratio. The flow rate of the boron-containing precursor and the H2 may be increased while the boron-to-hydrogen flow rate ratio remains constant during the flow rate increase. The boron-and-silicon-containing layer may be deposited on a substrate, and may be characterized by a continuously increasing ratio of boron-to-silicon from a first surface in contact with the substrate to a second surface of the boron-and-silicon-containing layer furthest from the substrate.
    Type: Application
    Filed: October 5, 2020
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yi Yang, Krishna Nittala, Rui Cheng, Karthik Janakiraman, Diwakar Kedlaya, Zubin Huang, Aykut Aydin
  • Patent number: 11292079
    Abstract: Apparatus and methods for measuring the temperature of a substrate are disclosed. The apparatus includes a source of temperature-indicating radiation, a detector for the temperature-indicating radiation, and a decorrelator disposed in an optical path between the source of temperature-indicating radiation and the detector for the temperature-indicating radiation. The decorrelator may be a broadband amplifier and/or a mode scrambler. A broadband amplifier may be a broadband laser, Bragg grating, a fiber Bragg grating, a Raman amplifier, a Brillouin amplifier, or combinations thereof. The decorrelator is selected to emit radiation that is transmitted, at least in part, by the substrate being monitored. The source is matched to the decorrelator such that the emission spectrum of the source is within the gain bandwidth of the decorrelator, if the decorrelator is a gain-driven device.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: April 5, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Jiping Li, Aaron Muir Hunter, Thomas Haw
  • Patent number: 11296296
    Abstract: An organic light-emitting diode (OLED) structure includes a stack of OLED layers that includes a light emission zone having a planar portion, and a light extraction layer formed of a UV-cured ink disposed over the light emission zone of the stack of OLED layers. The light extraction layer has a gradient in index of refraction along an axis normal to the planar portion.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: April 5, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
  • Patent number: 11295786
    Abstract: Memory devices are described. The memory devices include a plurality of bit lines extending through a stack of alternating memory layers and dielectric layers. Each of the memory layers comprises a single crystalline-like silicon layer and includes a first word line, a second word line, a first capacitor, and a second capacitor. Methods of forming stacked memory devices are also described.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: April 5, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Chang Seok Kang, Tomohiko Kitajima, Gill Yong Lee, Sanjay Natarajan, Sung-Kwan Kang, Lequn Liu
  • Patent number: 11293093
    Abstract: Processing methods comprising exposing a substrate to a first reactive gas comprising an ethylcyclopentadienyl ruthenium complex or a cyclohexadienyl ruthenium complex and a second reactive gas comprising water to form a ruthenium film are described.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: April 5, 2022
    Assignee: Applied Materials Inc.
    Inventors: Feng Q. Liu, Feng Chen, Jeffrey W. Anthis, David Thompson, Mei Chang
  • Patent number: 11293099
    Abstract: The present disclosure relates to a semiconductor processing apparatus. The processing chamber includes a chamber body and lid defining an interior volume, a substrate support disposed in the interior volume and a showerhead assembly disposed between the lid and the substrate support. The showerhead assembly includes a faceplate configured to deliver a process gas to a processing region defined between the showerhead assembly and the substrate support and an underplate positioned above the faceplate, defining a first plenum between the lid and the underplate, the having multiple zones, wherein each zone has a plurality of openings that are configured to pass an amount of inert gas from the first plenum into a second plenum defined between the faceplate and the underplate, in fluid communication with the plurality of openings of each zone such that the inert gas mixes with the process gas before exiting the showerhead assembly.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: April 5, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Amit Kumar Bansal, Juan Carlos Rocha-Alvarez, Sanjeev Baluja, Sam H. Kim, Tuan Anh Nguyen
  • Publication number: 20220098731
    Abstract: Methods of forming electronic devices comprising tungsten film stacks are provided. Methods include forming a tungsten nucleation layer on the barrier layer using an atomic layer deposition (ALD) process including a tungsten precursor that is free of fluorine. Forming the nucleation layer comprises controlling process parameters and/or forming WSi pre-nucleation layer.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Kedi Wu, Chenfei Shen, Chi-Chou Lin, Ilanit Fisher, Shih Chung Chen, Mandyam Sriram, Srinivas Gandikota
  • Publication number: 20220100078
    Abstract: Methods and devices for producing substrates with variable height features are provided. In one example, a proximity mask may include a plate positioned over a substrate, wherein at least a portion of the plate is separated from the substrate by a distance. The plate may include a first opening and a second opening, wherein the first opening is defined by a first perimeter having a first shape, wherein the second opening is defined by a second perimeter having a second shape, and wherein the first shape is different than the second shape.
    Type: Application
    Filed: September 25, 2020
    Publication date: March 31, 2022
    Applicant: Applied Materials, Inc.
    Inventors: M. Arif Zeeshan, Ross Bandy, Peter F. Kurunczi, Shantanu Kallakuri, Thomas Soldi, Joseph C. Olson
  • Publication number: 20220102179
    Abstract: Exemplary semiconductor processing systems may include a processing chamber and an electrostatic chuck disposed at least partially within the processing chamber. The electrostatic chuck may include at least one electrode and a heater. A semiconductor processing system may include a power supply to provide a signal to the electrode to provide electrostatic force to secure a substrate to the electrostatic chuck. The system may also include a filter communicatively coupled between the power supply and the electrode. The filter is configured to remove or reduce noise introduced into the chucking signal by operating the heater while the electrostatic force on the substrate is maintained. The filter may include active circuitry, passive circuitry, or both, and may include an adjustment circuit to set the gain of the filter so that an output signal level from the filter corresponds to an input signal level for the filter.
    Type: Application
    Filed: September 29, 2020
    Publication date: March 31, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Zheng John Ye, Daemian Raj Benjamin Raj, Rana Howlader, Abhigyan Keshri, Sanjay G. Kamath, Dmitry A. Dzilno, Juan Carlos Rocha-Alvarez, Shailendra Srivastava, Kristopher R. Enslow, Xinhai Han, Deenesh Padhi, Edward P. Hammond
  • Patent number: 11289342
    Abstract: Exemplary methods of etching semiconductor substrates may include flowing a halogen-containing precursor into a processing region of a semiconductor processing chamber. The processing region may house a substrate having a conductive material and an overlying mask material. The conductive material may be characterized by a first surface in contact with the mask material, and the mask material may define an edge region of the conductive material. The methods may include contacting the edge region of the conductive material with the halogen-containing precursor and the oxygen-containing precursor. The methods may include etching in a first etching operation the edge region of the conductive material to a partial depth through the conductive material to produce a footing of conductive material protruding along the edge region of the conductive material. The methods may also include removing the footing of conductive material in a second etching operation.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: March 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: He Ren, Jong Mun Kim, Maximillian Clemons, Minrui Yu, Mehul Naik, Chentsau Ying
  • Patent number: 11289361
    Abstract: Embodiments described herein relate to a substrate chucking apparatus having a plurality of cavities formed therein. The cavities are formed in a body of the chucking apparatus and a plurality of support elements extend from the body and separate each of the plurality of cavities. In one embodiment, a first plurality of ports are formed in a top surface of the body and extend to a bottom surface of the body through one or more of the plurality of support elements. In another embodiment, a second plurality of ports are formed in a bottom surface of the plurality of cavities and extend through the body to a bottom surface of the body. In yet another embodiment, a first electrode assembly is disposed adjacent the top surface of the body within each of the plurality of support elements and a second electrode assembly is disposed within the body adjacent each of the plurality of cavities.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: March 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Ludovic Godet, Rutger Meyer Timmerman Thijssen
  • Patent number: 11289328
    Abstract: Chromium containing precursors and methods of forming chromium-containing thin films are described. The chromium precursor has a chromium-diazadiene bond or cyclopentadienyl ligand and is homoleptic or heteroleptic. A suitable reactant is used to provide one of a metallic chromium film or a film comprising one or more of an oxide, nitride, carbide, boride and/or silicide. Methods of forming ternary materials comprising chromium with two or more of oxygen, nitrogen, carbon, boron, silicon, titanium, ruthenium and/or tungsten are also described. Methods of filling gaps in a substrate with a chromium-containing film are also described.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 29, 2022
    Assignee: Applied Materials Inc.
    Inventors: Thomas Knisley, Mark Saly, Lakmal C. Kalutarage, David Thompson