Patents Assigned to Applied Material
-
Patent number: 7563728Abstract: Methods are provided for processing a substrate for depositing an adhesion layer having a low dielectric constant between two low k dielectric layers. In one aspect, the invention provides a method for processing a substrate including depositing a barrier layer on the substrate, wherein the barrier layer comprises silicon and carbon and has a dielectric constant less than 4, depositing a dielectric initiation layer adjacent the barrier layer, and depositing a first dielectric layer adjacent the dielectric initiation layer, wherein the dielectric layer comprises silicon, oxygen, and carbon and has a dielectric constant of about 3 or less.Type: GrantFiled: February 26, 2007Date of Patent: July 21, 2009Assignee: Applied Materials, Inc.Inventors: Francimar Campana Schmitt, Li-Qun Xia, Son Van Nguyen, Shankar Venkataraman
-
Publication number: 20090178919Abstract: A sputter coating installation 1 comprises a vacuum chamber having an interior space 3?. The interior space 3? of the vacuum chamber is defined by chamber walls 3. According to the present invention, an array of target units 9 is arranged in line inside the vacuum coating chamber. Particularly, the target units 9 are arranged tiltable relative to the vacuum chamber and relative to a transport path t of a substrate 2. The target units 9 are cathode units or magnetron units and comprise a target and a housing. The housing is attached to the target and defines an interior space of the target unit. Within the interior space of the target units a number of components are arranged, e.g. a combination of a magnet yoke and a magnet system, a magnet yoke drive, a cooling system (arranged near the target), an electric current supply for supplying energy for the sputter process, etc.Type: ApplicationFiled: January 16, 2008Publication date: July 16, 2009Applicant: Applied Materials, Inc.Inventors: Andreas Lopp, Ralph Lindenberg
-
Publication number: 20090178916Abstract: The invention refers to a coating device for the deposition of thin films on large area substrates comprising a process chamber, an electrode arrangement within the process chamber (2) which is adapted for generating a plasma adjacent to the electrode arrangement (4) at at least two opposing sides of the electrode arrangement, and at least two substrate holders for supporting at least two substrates (5,6) in substrate positions on opposing sides of the electrode arrangement, the electrode arrangement being located between the substrate positions and the substrates facing in the substrate positions the at least two plasma generated at the electrode arrangement, wherein the electrode arrangement comprises at least two cathodes arranged in a plane, the cathodes being able to generate a plasma at at least two sides of each cathode.Type: ApplicationFiled: January 16, 2008Publication date: July 16, 2009Applicant: Applied Materials, Inc.Inventor: Andreas Kloeppel
-
Patent number: 7560377Abstract: A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas comprising carbon at a constant RF power level. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers.Type: GrantFiled: March 22, 2005Date of Patent: July 14, 2009Assignee: Applied Materials, Inc.Inventors: David Cheung, Wai-Fan Yau, Robert P. Mandal, Shin-Puu Jeng, Kuo-Wei Liu, Yung-Cheng Lu, Michael Barnes, Ralf B. Willecke, Farhad Moghadam, Tetsuya Ishikawa, Tze Wing Poon
-
Patent number: 7561015Abstract: A magnet encapsulated within a canister formed from two cans into a laminated structure particularly useful in plasma processing reactors. Each can includes an end wall and a cylindrical sidewall. One can additionally includes an annular lip that slidably fits outside the sidewall of the other can with a small gap therebetween. The magnet is inserted into the two cans together with a flowable and curable adhesive such as epoxy. The cans are slid together and compressed to cause the adhesive to flow between the magnet and the two cans and between the lip of one can and the sidewall of the other. The adhesive is cured to bond the magnet to the cans and to bond the cans together and to also hermetically seal the structure. The cans may be deep drawn from non-magnetic stainless steel with wall thicknesses of less than 0.064 mm.Type: GrantFiled: December 2, 2003Date of Patent: July 14, 2009Assignee: Applied Materials, Inc.Inventors: Anthony Vesci, Alan B. Liu, Donny Young, Joe F. Sommers, Kevin Hughes
-
Patent number: 7560364Abstract: In accordance with the present invention, improved methods for reducing the dislocation density of nitride epitaxial films are provided. Specifically, an in-situ etch treatment is provided to preferentially etch the dislocations of the nitride epitaxial layer to prevent threading of the dislocations through the nitride epitaxial layer. Subsequent to etching of the dislocations, an epitaxial layer overgrowth is performed. In certain embodiments, the etching of the dislocations occurs simultaneously with growth of the epitaxial layer. In other embodiments, a dielectric mask is deposited within the etch pits formed at the dislocations prior to the epitaxial layer overgrowth.Type: GrantFiled: May 5, 2006Date of Patent: July 14, 2009Assignee: Applied Materials, Inc.Inventors: David Bour, Sandeep Nijhawan, Jacob Smith, Lori Washington
-
Patent number: 7560352Abstract: A method for epitaxially forming a silicon-containing material on a substrate surface utilizes a halogen containing gas as both an etching gas as well as a carrier gas through adjustments of the process chamber temperature and pressure. It is beneficial to utilize HCl as the halogen containing gas because converting HCl from a carrier gas to an etching gas can easily be performed by adjusting the chamber pressure.Type: GrantFiled: March 17, 2006Date of Patent: July 14, 2009Assignee: Applied Materials, Inc.Inventors: David K. Carlson, Satheesh Kuppurao, Errol Antonio C. Sanchez, Howard Beckford, Yihwan Kim
-
Patent number: 7559527Abstract: A space-conserving integrated fluid delivery system which is particularly useful for gas distribution in semiconductor processing equipment. The fluid delivery system includes an integrated fluid flow network architecture, which may include, in addition to a layered substrate containing fluid flow channels, various fluid handling and monitoring components. The layered substrate is diffusion bonded, and the various fluid handling and monitoring components may be partially integrated or fully integrated into the substrate, depending on design and material requirements.Type: GrantFiled: April 19, 2007Date of Patent: July 14, 2009Assignee: Applied Materials, Inc.Inventors: Mark Crockett, John W. Lane, Micahel DeChellis, Chris Melcer, Erica Porras, Aneesh Khullar, Balarabe N. Mohammed
-
Patent number: 7556334Abstract: In a first aspect, a system is provided. The system includes (1) a stage adapted to move a substrate relative to print heads during printing; (2) at least one print head suspended from a support above the stage and adapted to be moveable in a plane above the stage; (3) a controller operable to rotate the print head about a center of the print head; and (4) an imaging system adapted to capture an image of the print head and to determine a center point of the print head based upon images of the print head captured as the print head is rotated. Numerous other aspects are provided.Type: GrantFiled: December 22, 2004Date of Patent: July 7, 2009Assignee: Applied Materials, Inc.Inventors: John M. White, Fan Cheung Sze, Quanyuan Shang, Shinichi Kurita, Hongbin Ji, Janusz Jozwiak, Inchen Huang, Emanual Beer
-
Patent number: 7554103Abstract: A pump liner is used to direct a laminar flow of purge gas across a workpiece to remove contaminants or species outgassed or otherwise produced by the workpiece during processing. The pump liner can take the form of a ring having a plurality of injection ports, such as slits of a variety of shapes and/or sizes, opposite a plurality of receiving ports in order to provide the laminar flow. The flow of purge gas is sufficient to carry a contaminant or outgassed species from the processing chamber in order to prevent the collection of the contaminants on components of the chamber. The pump liner can be heated, via conduction and irradiation from a radiation source, for example, in order to prevent the condensation of species on the liner. The pump liner also can be anodized or otherwise processed in order to increase the emissivity of the liner.Type: GrantFiled: November 21, 2006Date of Patent: June 30, 2009Assignee: Applied Materials, Inc.Inventors: Juan Carlos Rocha-Alvarez, Thomas Nowak, Sanjeev Baluja, Andrzej Kaszuba, Ndanka O. Mukuti
-
Patent number: 7553214Abstract: A method is described. The method includes contacting a non-solid material to a non-linear edge of a sheet of polishing material, and causing the non-solid material to solidify to form a window that contacts the non-linear edge of the polishing material.Type: GrantFiled: February 15, 2007Date of Patent: June 30, 2009Assignee: Applied Materials, Inc.Inventors: Gregory E. Menk, Peter McReynolds, Erik S. Rondum, Anand N. Iyer, Gopalakrishna B. Prabhu, Garlen C. Leung
-
Patent number: 7554094Abstract: An electron-optical arrangement provides a primary beam path for a beam of primary electrons and a secondary beam path for secondary electrons. The electron-optical arrangement includes a magnet arrangement having first, second and third magnetic field regions. The first magnetic field region is traversed by the primary beam path and the secondary beam path. The second magnetic field region is arranged in the primary beam path upstream of the first magnetic field region and is not traversed by the secondary beam path. The first and second magnetic field regions deflect the primary beam path in substantially opposite directions. The third magnetic field region is arranged in the secondary beam path downstream of the first magnetic field region and is not traversed by the first beam path. The first and third magnetic field regions deflect the secondary beam path in a substantially same direction.Type: GrantFiled: June 13, 2007Date of Patent: June 30, 2009Assignees: Carl Zeiss SMT A.G., Applied Materials IsraelInventors: Rainer Knippelmeyer, Oliver Kienzle, Thomas Kemen, Heiko Mueller, Stephan Uhlemann, Maximilian Haider, Antonio Casares
-
Patent number: 7554052Abstract: Methods and apparatuses are disclosed for applying a twin wire arc spray composite coating to achieve surface effects on a substrate having predetermined characteristics.Type: GrantFiled: July 29, 2005Date of Patent: June 30, 2009Assignee: Applied Materials, Inc.Inventors: John Gilbert Deem, Robert Manuel Coyne
-
Patent number: 7552736Abstract: A process is provided for removing polymer from a backside of a workpiece. The process includes supporting the workpiece on the backside in a vacuum chamber while leaving at least a peripheral annular portion of the backside exposed. The process further includes confining gas flow at the edge of the workpiece within a gap at the edge of the workpiece on the order of about 1% of the diameter of the chamber, the gap defining a boundary between an upper process zone containing the wafer front side and a lower process zone containing the wafer backside. The process also includes providing a polymer etch precursor gas underneath the backside edge of the workpiece and applying RF power to a region underlying the backside edge of the workpiece to generate a first plasma of polymer etch species concentrated in an annular ring concentric with and underneath the backside edge of the workpiece.Type: GrantFiled: March 14, 2007Date of Patent: June 30, 2009Assignee: Applied Materials, Inc.Inventors: Kenneth S. Collins, Hiroji Hanawa, Andrew Nguyen, Ajit Balakrishna, David Palagashvili, James P. Cruse, Jennifer Y. Sun, Valentin N. Todorov, Shahid Rauf, Kartik Ramaswamy, Gerhard M. Schneider, Imad Yousif, Martin Jeffrey Salinas
-
Patent number: 7552816Abstract: A break-away mounting system for a continuous-motion, high-speed position conveyor system is disclosed. A support cradle may be suspended from a conveyor belt such that the support cradle maintains a fixed position and orientation relative to at least one point on the conveyor belt without inducing appreciable stress on the conveyor belt, the support cradle, or the coupling between the conveyor belt and the support cradle. The mount may include a leading rotatable bearing attached to the support cradle which may releasably engage a first key attached to the conveyor belt, the rotatable bearing adapted to accommodate rotational forces applied to the support cradle by the conveyor belt. The mount may also include a slide bearing attached to the support cradle which may releasably engage a second key attached to the conveyor belt, the slide bearing adapted to accommodate longitudinal forces applied to the support cradle by the conveyor belt.Type: GrantFiled: January 2, 2007Date of Patent: June 30, 2009Assignee: Applied Materials, Inc.Inventors: Michael R. Rice, Eric A. Englhardt, Robert B. Lowrance, Martin R. Elliott, Jeffrey C. Hudgens
-
Patent number: 7553679Abstract: Plasma parameters such as plasma ion density, wafer voltage, etch rate and wafer current in the chamber are determined from external measurements on the applied RF bias electrical parameters such as voltage and current. The method includes sensing RF parameters corresponding to an input impedance, an input current and an input voltage at the input of the impedance match element to a transmission line coupled between the bias generator and the wafer pedestal. The method continues by computing a junction admittance of a junction between the transmission line and the electrode within the wafer pedestal from the input impedance, input current and input voltage and from parameters of the transmission line. The method further includes providing shunt electrical quantities of a shunt capacitance between the electrode and a ground plane, and providing load electrical quantities of a load capacitance between the electrode and a wafer on the pedestal.Type: GrantFiled: August 23, 2006Date of Patent: June 30, 2009Assignee: Applied Materials, Inc.Inventor: Daniel J. Hoffman
-
Publication number: 20090163041Abstract: The present invention pertains to methods of depositing low wet etch rate silicon nitride films on substrates using high-density plasma chemical vapor deposition techniques at substrate temperatures below 600° C. The method additionally involves the maintenance of a relatively high ratio of nitrogen to silicon in the plasma and a low process pressure.Type: ApplicationFiled: December 21, 2007Publication date: June 25, 2009Applicant: Applied Materials, Inc.Inventors: Hemant P. Mungekar, Jing Wu, Young S. Lee, Anchuan Wang
-
Publication number: 20090159428Abstract: When a magnetron is scanned about the back of a target in a selected complex path having radial components, the erosion profile has a form depending upon the selection of paths. A radial erosion rate profile for a given magnetron is measured. Periodically during scanning, an erosion profile is calculated from the measured erosion rate profile, the time the magnetron spends at different radii, and the target power. The calculated erosion profile may be used to indicate when erosion has become excessive at any location prompting target replacement or to adjust the height of the magnetron above the target for repeated scans. In another aspect of the invention, the magnetron height is dynamically adjusted during a scan to compensate for erosion. The compensation may be based on the calculated erosion profile or on feedback control of the present value of the target voltage for a constant-power target supply.Type: ApplicationFiled: December 20, 2007Publication date: June 25, 2009Applicant: Applied Materials, Inc.Inventors: KEITH A. MILLER, Daniel C. Lubben
-
Publication number: 20090159439Abstract: Wafer level arc detection is provided in a plasma reactor using an RF transient sensor coupled to a threshold comparator, and a system controller responsive to the threshold comparator.Type: ApplicationFiled: August 15, 2007Publication date: June 25, 2009Applicant: Applied Materials, Inc.Inventors: John Pipitone, John C. Forster
-
Patent number: 7550055Abstract: Embodiments of the present invention generally relate to sputtering targets used in semiconductor manufacturing. In particular, the invention relates to bonding the sputtering target to a backing plate that supports the sputtering target in a deposition chamber. In one embodiment, a method of bonding at least one sputtering target tile to a backing plate comprises providing an elastomeric adhesive layer between the at least one sputtering target tile and the backing plate, and providing at least one metal mesh within the elastomeric adhesive layer, wherein at least a portion of the at least one metal mesh contacts both the at least one sputtering target tile and the backing plate, and the at least a portion of the at least one metal mesh is made of metal wire with diameter greater than 0.5 mm.Type: GrantFiled: September 12, 2005Date of Patent: June 23, 2009Assignee: Applied Materials, Inc.Inventors: Hienminh H. Le, Akihiro Hosokawa