Patents Assigned to Applied Material
  • Patent number: 7550090
    Abstract: A method for in-situ cleaning of a dielectric dome surface having been used in pre-clean processes is provided. Carbon containing deposits are removed by providing a plasma of one or more oxidizing gases which react with the carbon containing films to form volatile carbon containing compounds.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: June 23, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Quancheng Gu, Cheng-Hsiung Tsai, John C. Forster, Xiaoxi Guo, Larry Frazier
  • Patent number: 7550927
    Abstract: A system and method for producing electrons and ions are disclosed. One embodiment includes an outer electrode with a discharge chamber; an inner electrode positioned inside the discharge chamber, the inner electrode positioning forming a upper portion of the discharge chamber and a lower portion of the discharge chamber; and a gas inlet positioned in the lower portion of the discharge chamber; wherein a plasma formed within the lower portion of the discharge chamber provides priming particles usable to form a plasma in the upper portion of the discharge chamber.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: June 23, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Michael W. Stowell, Guenter Klemm, Hans-Georg Lotz, Volker Hacker
  • Patent number: 7550381
    Abstract: Method for recovering treated metal silicide surfaces or layers are provided. In at least one embodiment, a substrate having an at least partially oxidized metal silicide surface disposed thereon is cleaned to remove the oxidized regions to provide an altered metal silicide surface. The altered metal silicide surface is then exposed to one or more silicon-containing compounds at conditions sufficient to recover the metal silicide surface.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: June 23, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Xinliang Lu, Chien-Teh Kao, Chiukin Steve Lai, Mei Chang
  • Patent number: 7550066
    Abstract: A sputtering target, particularly for sputter depositing a target material onto large rectangular panels, in which a plurality of target tiles are bonded to a backing plate in a two-dimensional non-rectangular array such that the tiles meet at interstices of no more than three tile, thus locking the tiles against excessive misalignment during bonding. The rectangular tiles may be arranged in staggered rows or in a herringbone or zig-zag pattern. Hexagonal and triangular tiles also provide many of the advantages of the invention.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: June 23, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Avi Tepman
  • Patent number: 7547570
    Abstract: Processing steps that are useful for forming interconnects in a photovoltaic module are described herein. According to one aspect, a method according to the invention includes processing steps that are similar to those performed in conventional integrated circuit fabrication. For example, the method can include etches to form a conductive step adjacent to the grooves that can be used to form interconnects between cells. According to another aspect the method for forming the conductive step can be self-aligned, such as by positioning a mirror above the module and exposing photoresist from underneath the substrate at an angle one or more times, and etching to expose the conductive step.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Peter Borden, David Eaglesham
  • Patent number: 7547569
    Abstract: A processing method described herein provides a method of patterning a MoSe2 and/or Mo material, for example a layer of such material(s) in a thin-film structure. According to one aspect, the invention relates to etch solutions that can effectively etch through Mo and/or MoSe2. According to another aspect, the invention relates to etching such materials when such materials are processed with other materials in a thin film photovoltaic device. According to other aspects, the invention includes a process of etching Mo and/or MoSe2 with selectivity to a layer of CIGS material in an overall process flow. According to still further aspects, the invention relates to Mo and/or MoSe2 etch solutions that are useful in an overall photolithographic process for forming a photovoltaic cell and/or interconnects and test structures in a photovoltaic device.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Timothy Weidman, Li Xu, Peter G. Borden
  • Patent number: 7547952
    Abstract: The present invention generally is a method for forming a high-k dielectric layer, comprising depositing a hafnium compound by atomic layer deposition to a substrate, comprising, delivering a hafnium precursor to a surface of the substrate, reacting the hafnium precursor and forming a hafnium containing layer to the surface, delivering a nitrogen precursor to the hafnium containing layer, forming at least one hafnium nitrogen bond and depositing the hafnium compound to the surface.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Craig Metzner, Shreyas Kher, Yeong Kwan Kim, M. Noel Rocklein, Steven M. George
  • Patent number: 7547644
    Abstract: In a first aspect, a method is provided that includes (1) forming a first barrier layer over the sidewalls and bottom of a via using atomic layer deposition within an atomic layer deposition (ALD) chamber; (2) removing at least a portion of the first barrier layer from the bottom of the via by sputter etching; and (3) depositing a second barrier layer on the sidewalls and bottom of the via within the ALD chamber. Numerous other embodiments are provided, as are systems, methods and computer program products in accordance with these and other aspects.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Fusen Chen, Ling Chen, Walter Benjamin Glenn, Praburam Gopalraja, Jianming Fu
  • Patent number: 7547243
    Abstract: A polishing layer of a polishing has a window member with a top surface positioned a predetermined distance below the polishing surface. A transparent layer can be positioned below the polishing layer and supporting the window member.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Andreas Norbert Wiswesser, Ramiel Oshana, Kerry F. Hughes, Jay Rohde, David Datong Huo, Dominic J. Benvegnu
  • Patent number: 7547633
    Abstract: The present invention provides methods and apparatus for performing thermal processes to a semiconductor substrate. Thermal processing chambers of the present invention comprise two different energy sources, such as an infrared radiation source and a UV radiation source. The UV radiation source and the infrared radiation source may be used alone or in combination to supply heat, activate electronic, or create active species inside the thermal processing chamber.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Joseph Michael Ranish, Yoshitaka Yokota
  • Patent number: 7548364
    Abstract: An apparatus for processing a coherent light pulse comprises a piezoelectric material having an optical interface surface and a surface acoustic wave (SAW) producing device disposed on the piezoelectric material. A coherent light pulse is dithered at a high frequency when it is reflected off of or transmitted through the optical interface surface. The SAW-producing device may be adapted to generate a travelling SAW or a standing SAW on the optical interface surface.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventor: Dean Jennings
  • Patent number: 7547621
    Abstract: A gate hard mask is deposited on a gate structure using low pressure chemical vapor deposition (LPCVD). By doing so, the wet etch removal ratio (WERR) of the gate hard mask relative to the underlying polysilicon gate layer is increased when compared to prior art hard masks. The LPCVD gate hard mask will not only etch faster than prior art hard masks, but it will also reduce undercutting of the gate oxide. To provide additional control of the wet etch rate, the LPCVD hard mask can be annealed. The annealing can be tailored to achieve the desired etching rate.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Rajesh Kanuri, Chorng-Ping Chang, Christopher Dennis Bencher, Hoiman Hung
  • Patent number: 7547643
    Abstract: Adhesion of a porous low K film to an underlying barrier layer is improved by forming an intermediate layer lower in carbon content, and richer in silicon oxide, than the overlying porous low K film. This adhesion layer can be formed utilizing one of a number of techniques, alone or in combination. In one approach, the adhesion layer can be formed by introduction of a rich oxidizing gas such as O2/CO2/etc. to oxidize Si precursors immediately prior to deposition of the low K material. In another approach, thermally labile chemicals such as alpha-terpinene, cymene, and any other non-oxygen containing organics are removed prior to low K film deposition. In yet another approach, the hardware or processing parameters, such as the manner of introduction of the non-silicon containing component, may be modified to enable formation of an oxide interface prior to low K film deposition.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Alexandros T. Demos, Derek R. Witty, Hichem M'Sadd, Sang H. Ahn, Lester A. D'Cruz, Khaled A. Elsheref, Zhenjiang Cui
  • Patent number: 7547465
    Abstract: A multi-station deposition apparatus capable of simultaneous processing multiple substrates using a plurality of stations, where a gas curtain separates the stations. The apparatus further comprises a multi-station platen that supports a plurality of wafers and rotates the wafers into specific deposition positions at which deposition gases are supplied to the wafers. The deposition gases may be supplied to the wafer through single zone or multi-zone gas dispensing nozzles.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: June 16, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Mei Chang, Lawrence C. Lei, Walter B. Glenn
  • Patent number: 7544723
    Abstract: Blue inks for displays are provided. In one aspect, the blue inks include one or more blue organic pigments, one or more monomers, one or more polymeric dispersants, and one or more organic solvents. In another aspect, the blue inks include one or more blue organic pigments, one or more violet pigments, one or more monomers, one or more polymeric dispersants, and one or more organic solvents. Methods of forming displays that include dispensing the blue inks by inkjetting onto a substrate and displays that include the blue inks are also provided.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: June 9, 2009
    Assignee: Applied Materials, Inc.
    Inventors: Lizhong Sun, Quanyuan Shang, John M. White
  • Patent number: 7544251
    Abstract: A pedestal assembly and method for controlling temperature of a substrate during processing is provided. In one embodiment, the pedestal assembly includes a support member that is coupled to a base by a material layer. The material layer has at least two regions having different coefficients of thermal conductivity. In another embodiment, the support member is an electrostatic chuck. In further embodiments, a pedestal assembly has channels formed between the base and support member for providing cooling gas in proximity to the material layer to further control heat transfer between the support member and the base, thereby controlling the temperature profile of a substrate disposed on the support member.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: June 9, 2009
    Assignee: Applied Materials, Inc.
    Inventors: John Holland, Theodoros Panagopoulos
  • Patent number: 7544950
    Abstract: A microscope for inspecting a surface in an evacuated volume, including an optical objective assembly which is located in the evacuated volume in proximity to the surface. The assembly is arranged to collect and convey radiation from the surface while focusing the radiation so as to form an image of the surface. The microscope further includes a sensor, located in a space outside the evacuated volume, which is arranged to receive the radiation conveyed from the optical objective assembly so as to generate a signal corresponding to the image.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 9, 2009
    Assignee: Applied Materials, Israel, Ltd.
    Inventor: Idan Paiss
  • Publication number: 20090139657
    Abstract: A semiconductor processing system includes a factory interface. A central transfer chamber is coupled to the factory interface. A first number of etch chambers are coupled to the central transfer chamber. The first number of etch chambers are configured to etch a substrate at about a first processing time. A second number of post-etch treatment chambers are coupled to the central transfer chamber. The second number of post-etch treatment chambers are configured to process the substrate at about a second processing time, wherein a ratio of the first number to the second number is substantially proportional to a ratio of the first processing time to the second processing time.
    Type: Application
    Filed: September 10, 2008
    Publication date: June 4, 2009
    Applicant: Applied Materials, Inc.
    Inventors: CHANGHUN LEE, Brad Eaton, Diana X. Ma
  • Publication number: 20090139540
    Abstract: A component from a substrate processing chamber which has plasma process residues on both its internal and external surfaces, is removed from the processing chamber, and transferred to a cleaning chamber. The component is exposed to an energized cleaning gas in the cleaning chamber, and the cleaning gas is exhausted from below the component so that the cleaning gas cleans off the residues on both the internal and external surfaces of the component. It has been determined that the cleaning gas can also repair surface defects in the component.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 4, 2009
    Applicant: Applied Materials, Inc.
    Inventor: Wesley George Lau
  • Publication number: 20090139854
    Abstract: A control system and method for controlling two motors determining the azimuthal and circumferential position of a magnetron rotating about the central axis of the sputter chamber in back of its target sputtering and capable of a nearly arbitrary scan path, e.g., with a planetary gear mechanism. A system controller periodically sends commands to the motion controller which closely controls the motors. Each command includes a command ticket, which may be one of several values. The motion controller accepts only commands having a command ticket of a different value from the immediately preceding command. One command selects a scan profile stored in the motion controller, which calculates motor signals from the selected profile. Another command instructs a dynamic homing command which interrogates sensors of the position of two rotating arms to determine if the arms in the expected positions. If not, the arms are rehomed.
    Type: Application
    Filed: November 30, 2007
    Publication date: June 4, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Yu Chang, William Kuang, Ronald D. Dedore, Jitendra R. Bhimjiyani, Wesley W. Zhang