Abstract: An I/O cell of a programmable logic device comprising a register, a first multiplexer, a second multiplexer, and a third multiplexer. The first multiplexer may be configured to present one of a plurality of signals to a data input of the register in response to a control signal. The second multiplexer may be configured to select either an output signal from the register or an external input signal in response to the control signal. The third multiplexer may be configured to select one of a number of inputs for presentation as an output signal of the I/O cell in response to the control signal. The register may be configured as an internal register of the programmable logic device when the I/O cell is configured to receive a combinatorial input signal and/or present a combinatorial output signal.
Abstract: An extender circuit provides a serial communication interface between an ATM layer and a PHY layer. The extender circuit includes a first circuit serially coupled to a second circuit. The first circuit communicates in parallel with the ATM layer, and the second circuit communicates in parallel with the PHY layer. The extender circuit additionally includes a serial link which serially transmits signals between the first and second circuits. The serial link includes a first serial link for transmitting a first serial signal from the first circuit to the second circuit, and a second serial link transmitting a second serial signal from the second circuit to the first circuit. The first circuit and the second circuit include similar architecture. The first circuit includes a parallel interface circuit for communicating in parallel with the ATM layer and a serial interface circuit coupled to the parallel interface circuit for serially communicating with the second circuit.
Abstract: A random access memory with a read port, a write port, a read/write control signal configured to control data transfer operations at the read port and/or the write port on both rising and falling transitions, and a first random access memory array configured to store and/or retrieve data at a first random address in the first random access memory array defined by one or more signals on a write address bus and/or a read address bus. One preferred embodiment further includes a write data register storing or latching data in response to a first transition of the read/write control signal, and the array storing data in response to a second transition of the read/write control signal. Other preferred embodiments further include an n·m-bits-wide input data bus coupling a set of data inputs to the write data register, and/or an n·m-bits-wide output data bus coupling the read data register to a set of data outputs, where n and m are each independently an integer >2.
Type:
Grant
Filed:
June 11, 2001
Date of Patent:
September 3, 2002
Assignee:
Cypress Semiconductor Corporation
Inventors:
Mathew R. Arcoleo, Cathal G. Phelan, Ashish Pancholy, Simon J. Lovett
Abstract: An apparatus comprising a pullup circuit, a pulldown circuit, and a control circuit. The pullup circuit may be configured to receive a first and second control signal. The pulldown circuit may be configured to receive a third and fourth control signal. The control circuit may be configured to generate the first, second, third and fourth control signals. The control circuit may comprise (i) a first and second control device coupled between the first and second control signals and a supply and (ii) a third and fourth control device coupled between the third and fourth control signals and the supply.
Abstract: A state machine comprising a first input receiving a first write clock, a second input receiving a first read clock, a third input receiving a first programmable Almost Empty look-ahead signal, a fourth input receiving a second write clock, a fifth input receiving a second read clock, and a sixth input receiving a second programmable Almost Empty look-ahead signal is disclosed. The state machine manipulates the inputs to produce an output signal representing an Almost Empty output flag that is at a first logic state when a FIFO is Almost Empty and is at a second logic state when the FIFO is Not Almost Empty.
Type:
Grant
Filed:
June 30, 2001
Date of Patent:
September 3, 2002
Assignee:
Cypress Semiconductor Corporation
Inventors:
Johnie Au, Chia Jen Chang, Parinda Mekara
Abstract: The present invention concerns a circuit comprising a memory, a flag/array address circuit and a flag logic circuit. The memory may be configured to read and write data in response to one or more memory address signals. The flag/array address circuit may be configured to present one or more flag address signals in response to (i) one or more enable signals and (ii) a control signal. The flag logic circuit may be configured to present one or more logic flags in response to the one or more flag address signals.
Abstract: An apparatus comprising a first device and a second device. The first device may be connected to a first supply voltage. The second device may be connected (i) in series with the first device and (ii) to a second supply voltage. The first device is generally biased to provide enhanced noise suppression performance. The second device is generally configured to switch between the first and second supply voltages.
Abstract: A logic section of a programmable logic device comprising a first circuit and a second circuit. The first circuit may be configured to generate a first output in response to a first input, a second input and a third input. The second circuit may be configured to generate a second output and a third output in response to a fourth input and a fifth input. The second output may be coupled to the second input and the first output may be coupled to the fifth input.
Abstract: A method, circuit and apparatus is provided for preserving and/or correcting product engineering information. Non-volatile storage devices reserved for receiving product engineering bits can either be contained in at least three separate storage locations spaced from each other across the integrated circuit or, alternatively, be contained in a single storage location area with error correction bits and/or words added to that location. In the first instance, redundant product engineering bits are written to each storage location. Product engineering bits read from a majority of those locations which have identical values are deemed valid. The addition of extra bits and/or words can be combined with the possibly defective product engineering bits to correct errors in those bits.
Abstract: A nitrogen-rich silicon oxide layer is formed using an apparatus for oxidizing semiconductor substrates having a process zone or chamber fluidically coupled to a torch zone or chamber. Generally, a thin initial silicon oxide layer is formed on the substrate using common wet or dry oxidizing processing conditions. Subsequently, a nitridizing atmosphere is introduced to the semiconductor substrates causing a nitrogen-rich silicon oxide layer to be formed thereon. The nitridizing atmosphere is advantageously generated by an exothermic reaction within the torch zone. Once formed, the nitridizing atmosphere is directed to the process zone through the fluidic coupling. The advantageous exothermic reaction resulting from the introduction of nitrous oxide (N2O) to the torch zone at a temperature sufficiently high to induce such an exothermic reaction, generally between approximately 850 to 950 degrees Celsius. Semiconductor integrated circuits are formed using nitrogen-rich silicon oxide films of the current method.
Abstract: A method of making a semiconductor structure, includes annealing a structure in a deuterium-containing atmosphere. The structure includes (i) a substrate, (ii) a gate dielectric on the substrate, (iii) a gate on the gate dielectric, (iv) an etch-stop layer on the gate, and (v) an interlayer dielectric on the etch-stop layer.
Abstract: A programmable circuit for generating a clock signal is disclosed. The present invention provides a clock generator architecture that combines PLL-based clock generator circuitry with an on-chip EPROM in a monolithic clock generator chip. The clock generator allows for electrical configuration of various information including PLL parameters, input thresholds, output drive levels and output frequencies. The various parameters can be configured after the clock generator is fabricated. The parameters can be configured either during wafer sort or after packaging. The clock generator can be erased prior to packaging so programming can be verified.
Abstract: A method for radiofrequency (RF) transmission of digital information includes generating an RF signal using a voltage-controlled oscillator (VCO), stabilizing the RF signal from the VCO by providing an error signal from a phase-locked loop (PLL) to an input of the VCO, and combining the digital information with the error signal of the PLL input to the VCO, thereby causing variations in frequency of the RF signal from the VCO that represent the digital information. Apparatus for RF transmission of digital information includes a VCO, the VCO arranged to generate an RF signal, a PLL, the frequency input of the PLL coupled to the RF signal output of the VCO, an encoder, the encoder arranged to convert the digital information into a form where it has a data rate faster than a response time of the PLL, and a coupler, the coupler coupling both the error signal output of the PLL and the encoded digital information to an input of the VCO.
Type:
Grant
Filed:
October 26, 1998
Date of Patent:
August 13, 2002
Assignee:
Cypress Semiconductor Corp.
Inventors:
Paul F. Beard, Mark D. Moore, Drew M. Harrington
Abstract: Architecture, circuitry, and methods are provided for testing one or more integrated circuits which may be arranged upon a printed circuit board. The integrated circuits include sequential and combinatorial logic used by the integrated circuit during normal functioning thereof. Testing of that logic can occur by sending test vectors in parallel or serial form to input pins of the integrated circuit. The test results can either be read as a serial data stream or as a parallel-delivered data stream. If the test information and results occur in parallel fashion, than automated test equipment can be used which do not require compliance with having a single serial fed test vector input and test result output, normally found in a TAP application. A parallel/serial multiplexer is used to select whether the integrated circuit receives parallel or serial test vectors, and another parallel/serial multiplexer is used to select whether the test results are to be delivered in parallel or serial fashion.
Abstract: A circuit and method for providing a fast transitioning output buffer that may be configured to operate using either a 3 volt or 5 volt supply voltage. The pullup behaves similarly to a MOS diode, but the circuit lowers the gate voltage on a pullup while the output is being pulled up. The circuit does not affect the final pullup voltage. As a result, a single PMOS device may be used as a pullup device that does not generally require an increased size to support a high operating voltage.
Abstract: The present invention is an efficient system and method for flexible masking of output bits from a counter. The maskable counter system and method of the present invention modify the chain carry fed into a counter so that any bit (or bits) of the counter may be masked. A masked bit of a maskable counter system and method is utilized to facilitate user programmable control of multiple configurations in a memory. A maskable counter system comprises a mask register (e.g., a D flip flop), a counter (e.g., a D flip flop), and a masking coordination circuit. The masking coordination circuit permits a carry in signal, a carry out signal, and a counter output bit signal to operate in a normal incrementation manner if a mask bit is not asserted and prevents the counter output bit signal from changing if the mask bit is asserted.
Abstract: A method is provided for programming and reading manufacturing information upon non-volatile storage elements of the integrated circuit. The manufacturing information includes the particular processing recipe and layout of the integrated circuit, each recipe or layout indicative of a specific hardware revision. The storage elements may be programmed prior to assembling the integrated circuit within a semiconductor package, and the programmed elements are read prior to shipping the packaged integrated circuit to a customer. If the read hardware revision is not qualified for release, the product will be placed in a staging area and prevented from shipping to a customer or end user. Thus, the programmed hardware revision serves to gate product at test before shipping that product to a customer. The manufacturing information is programmed by the manufacturer and is inaccessible by a customer since the address space which contains product engineering bits is known only to the manufacturer.
Abstract: A metal silicide (e.g., WSix) layer an integrated circuit is etched in a Cl2/O2 environment having an O2 concentration of greater than or equal to 25% by volume. This environment may be provided at a pressure of-approximately 2-40 mili-Torr, in a reactor with a source power of approximately 200-2000 Watts and a bias power of approximately 30-400 Watts for approximately 30 seconds. In one particular example, the Cl2/O2 environment includes approximately 45 sccm Cl2 and 30 sccm O2. The metal silicide layer is fully etched without etching an underlying poly-silicon layer. The metal silicide layer may be a portion of a gate structure.
Abstract: An apparatus for determining a state of a plurality of clock signals, comprising a circuit configured to store a state of each of said plurality of clock signals upon an edge of a data signal.
Abstract: A circuit comprising a programmable routing network, a logic array configured to generate a plurality of product terms in response to one or more of a plurality of input signals from said programmable routing network, a plurality of look-up tables each configured to receive a logical combination of at least two of said product terms and a plurality of macrocells each configured to generate an output in response to one or more of said look-up tables.