Patents Assigned to Elpida Memory, Inc.
  • Patent number: 8580649
    Abstract: Disclosed is a method for manufacturing a semiconductor device, which provides an isolation region in which a dense silicon oxide film is formed in a trench that requires high aspect ratio. The method includes forming an isolation trench using, as an etching mask, a nitride mask film formed on a substrate, forming a liner nitride film in the isolation trench, depositing a flowable silazane compound by a CVD method such that the height of the flowable silazane compound is higher than the upper surface of the nitride mask film from the upper portion of the trench, performing heat treatment under an oxidizing atmosphere to convert the flowable silazane compound film into a silicon oxide film and simultaneously densifying therefore, and planarizing the silicon oxide film to the height of the upper surface of the nitride mask film.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Jiro Miyahara, Nan Wu
  • Patent number: 8581758
    Abstract: A semiconductor device includes a multiplexer and an output buffer. The multiplexer includes: n switches (n is an integer of 2 or greater) each including an input node receiving a different data signal and an output node coupled to an input node of the output buffer; and a plurality of switch control circuits each corresponding to a respective one of the n switches. Each of the plurality of switch control circuits turns on a corresponding one of the n switches based on a corresponding one of the signals each having a first cycle and a phase different by 1/n of the cycle from adjacent phases. When each of the plurality of switch control circuits detects that an input-side data signal of the corresponding one of the n switches appears at a corresponding output-side node, each of the plurality of switch control circuits turns off the corresponding switch.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Yuki Teramoto, Yoshinori Haraguchi
  • Patent number: 8582337
    Abstract: A system, includes a controller including a plurality of first external terminals configured to supply a command, a clock signal and an address, and communicate a data, and communicate a strobe signal related to the data, and a semiconductor memory device including a plurality of second external terminals corresponding to the plurality of first external terminals, one of the plurality of first external terminals and one of the plurality of second external terminals transferring an information specifying a length of a preamble of the strobe signal before the semiconductor memory device communicates the data.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Atsuo Koshizuka
  • Patent number: 8581649
    Abstract: The semiconductor device includes an output driver and a characteristic switching circuit that switches characteristics of the output driver. The characteristic switching circuit mutually matches a rising time and a falling time of an output signal output from the output driver, when a power voltage supplied to a power line is a first voltage, with a rising time and a falling time of the output signal output from the output driver, when the power voltage supplied to the power line is a second voltage. As a result, an increase in an influence of a harmonic component or a crosstalk when the power voltage is reduced does not occur. Moreover, because a receiving condition on a receiver side does not change even when the power voltage is reduced, signal transmission and reception can be performed correctly irrespective of the power voltage.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Yoji Nishio
  • Patent number: 8581315
    Abstract: To provide a semiconductor device including: plural capacitors each including a cylindrical lower electrode having an internal wall and an external wall, and an upper electrode that covers the external wall of the lower electrode via a capacitance dielectric film; and a supporting film having a buried portion buried in an internal region surrounded by the internal wall of the lower electrode, and a supporting portion a part of which is positioned within the internal region and remaining parts of which are positioned at outside of the internal region. The supporting portion sandwiches an upper end of the lower electrode at both ends of the upper end by covering the internal wall and the external wall of the upper end of the lower electrode.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Satoru Isogai, Takahiro Kumauchi
  • Patent number: 8580681
    Abstract: A device manufacturing method includes: sequentially forming a first sacrificial film, a first support film, a second sacrificial film, and a second support film on a semiconductor substrate; forming a hole to pass through these films; forming a crown-shaped electrode covering an inner surface of the hole and connected to the second support film and the first support film; forming a first opening in the second support film into a first pattern designed such that the connection between the crown-shaped electrode and the second support film is at least partially maintained; removing at least a part of the second sacrificial film through the first opening; forming a second opening in the first support film with use of the first opening; and removing the first sacrificial film through the second opening. This method is able to prevent misalignment of openings between the support films.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Nobuyuki Sako
  • Patent number: 8584061
    Abstract: To include a first semiconductor chip including driver circuits, a second semiconductor chip including receiver circuits, and through silicon vias provided in the second semiconductor chip. The first semiconductor chip includes an output switching circuit that exclusively connects an output terminal of an i-th driver circuit (where i is an integer among 1 to n) to one through silicon via among an i-th through silicon via to an (i+m)-th through silicon via. The second semiconductor chip includes an input switching circuit that exclusively connects an input terminal of an i-th receiver circuit (where i is an integer among 1 to n) to one through silicon via among the i-th through silicon via to the (i+m)-th through silicon via. With this configuration, because a difference in wiring lengths does not occur between signal paths before and after replacement of through silicon vias, the signal quality can be enhanced.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Kayoko Shibata, Hitoshi Miwa, Yoshihiko Inoue
  • Patent number: 8581417
    Abstract: In a semiconductor device of the present invention, a second semiconductor chip is stacked on a first semiconductor chip having a plurality of bonding pads in its central region, with a bonding layer interposed therebetween. A plurality of wires respectively connected to the plurality of bonding pads of the first semiconductor chip are led out to the outside over a peripheral edge of the first semiconductor chip by passing through a space between the first and second semiconductor chips. A retaining member for retaining at least a subset of the plurality of wires is provided in a region on the first semiconductor chip including a middle point between the bonding pads and the peripheral edge of the first semiconductor chip by using a material different from the bonding layer so that the subset of the wires is positioned generally at a center of the spacing between the first semiconductor chip and the second semiconductor chip.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: November 12, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Yu Hasegawa, Mitsuaki Katagiri, Satoshi Isa, Ken Iwakura, Dai Sasaki
  • Publication number: 20130294170
    Abstract: A device includes a first transistor coupled between first and second nodes, and including a control gate supplied with a first control signal, a second transistor coupled between the first node and a third node, and including a control gate supplied with the first control signal, a third transistor coupled between the third node and a fourth node, and including a control gate supplied with a second control signal, a fourth transistor coupled between the fourth node and a fifth node, and including a control gate supplied with the second control signal, and a fifth transistor coupled between the fifth node and the second nodes, and including a control gate supplied with the first control signal. Each of the second and fifth transistors is smaller in threshold voltage than the first transistor.
    Type: Application
    Filed: May 4, 2012
    Publication date: November 7, 2013
    Applicant: Elpida Memory, Inc.
    Inventors: Stefano Sivero, Chiara Missiroli
  • Publication number: 20130294176
    Abstract: A control device that comprises a first data strobe input terminal to be connected in common to data strobe terminals that are included respectively in first memory devices, and a plurality of first sub-units each coupled to the first data strobe input terminal and each holding a data strobe delay value corresponding to an associated one of the first memory devices, and the data strobe delay values of the sub-units being independent from each other.
    Type: Application
    Filed: April 23, 2013
    Publication date: November 7, 2013
    Applicant: Elpida Memory, Inc.
    Inventor: Yoji NISHIO
  • Publication number: 20130294137
    Abstract: Disclosed herein is a semiconductor device that includes a plurality of memory cells; a local bit line coupled to the memory cells; a global bit line; and a first switch circuit coupled between the global bit line and the local bit line, the first switch circuit electrically connecting the local bit line to the global bit line when at least one of first and second control signals is in an active state, and the first switch circuit electrically disconnecting the local bit line to the global bit line when both of the first and second control signals are in an inactive state.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 7, 2013
    Applicant: Elpida Memory, Inc.
    Inventors: Noriaki MOCHIDA, Hiroyuki UNO, Koji IKEBATA, Kyoichi NAGATA
  • Patent number: 8575763
    Abstract: A semiconductor device includes a first wiring hoard, a second semiconductor chip, and a second seal. The first wiring board includes a first substrate, a first semiconductor chip, and a first seal. The first semiconductor chip is disposed on the first substrate. The first seal is disposed on the first substrate. The first seal surrounds the first semiconductor chip. The first seal has the same thickness as the first semiconductor chip. The second semiconductor chip is stacked over the first semiconductor chip. The first semiconductor chip is between the second semiconductor chip and the first substrate. The second semiconductor chip is greater in size in plan view than the first semiconductor chip. The second seal seals at least a first gap between the first semiconductor chip and the second semiconductor chip.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: November 5, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Masanori Yoshida, Fumitomo Watanabe
  • Patent number: 8574983
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor includes forming a first electrode film. The first electrode film comprises a conductive binary metal compound and a dopant. The dopant may have a uniform or non-uniform concentration within the first electrode film. A high-k dielectric film is formed over the first electrode film. A second electrode film is formed over the dielectric film. The second electrode film comprises a conductive binary metal compound and a dopant. The dopant may have a uniform or non-uniform concentration within the second electrode film. The dopants and their distribution are chosen so that the crystal structure of the surface of the electrode is not degraded if the electrode is to be used as a templating structure for subsequent layer formation. Additionally, the dopants and their distribution are chosen so that the work function of the electrodes is not degraded.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Karthik Ramani, Wim Deweerd, Hiroyuki Ode
  • Patent number: 8576610
    Abstract: A semiconductor device is disclosed in which a signal line and a drive circuit driving the signal line in response to a signal to be transmitted are provided. A transistor of a floating body type is further provided that includes a gate, a source, a drain, and a body between the source and drain which is brought into an electrically floating state. The gate is connected to the signal line, and at least one of the source and drain is connected to a control node that is supplied with a control signal. The control signal is configured to receive a control signal that changes from the first level to a second level during the period of time when the drive circuit is driving the signal node.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: November 5, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Soichiro Yoshida
  • Patent number: 8574985
    Abstract: Methods for depositing high-K dielectrics are described, including depositing a first electrode on a substrate, wherein the first electrode is chosen from the group consisting of platinum and ruthenium, applying an oxygen plasma treatment to the exposed metal to reduce the contact angle of a surface of the metal, and depositing a titanium oxide layer on the exposed metal using at least one of a chemical vapor deposition process and an atomic layer deposition process, wherein the titanium oxide layer comprises at least a portion rutile titanium oxide.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Xiangxin Rui, Sunil Shanker, Sandra Malhotra, Imran Hashim, Edward Haywood
  • Patent number: 8574996
    Abstract: A method of manufacturing a semiconductor device comprises: forming a processing target; forming a first supporter on the processing target; forming a first mask so as to contact one side surface of the first mask with a side surface of the first supporter; patterning the processing target using, as masks, the first mask and the first supporter; forming a second supporter so as to be contacted with a side surface of the processing target exposed in first processing step and the other side surface of the first mask; removing the first supporter; and patterning the processing target using, as masks, the first mask and the second supporter.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: November 5, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Tomoyasu Kakegawa
  • Patent number: 8576639
    Abstract: A memory device in which a circuit reads a cell condition. A terminal provides voltage to a bit line of the circuit via a switch. The circuit outputs and enables storage of a first logical value when the voltage provided from the terminal does not exceed a threshold value. The circuit outputs and enables storage of a second logical value when the voltage provided from the terminal exceeds the threshold value. The output and storage occurs in the absence of an electrical connection between the cell and circuit. The switch provides voltage supplied from the terminal to the bit line of the circuit. The voltage increases from a value which does not exceed the threshold to a value which exceeds the threshold.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: November 5, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Giulio Martinozzi
  • Patent number: 8574999
    Abstract: A method for forming a DRAM MIM capacitor stack having low leakage current involves the use of a first electrode that serves as a template for promoting the high k phase of a subsequently deposited dielectric layer. The high k dielectric layer comprises a doped material that can be crystallized after a subsequent annealing treatment. An amorphous blocking is formed on the dielectric layer. The thickness of the blocking layer is chosen such that the blocking layer remains amorphous after a subsequent annealing treatment. A second electrode layer compatible with the blocking layer is formed on the blocking layer.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Sandra G. Malhotra, Hanhong Chen, Wim Y. Deweerd, Hiroyuki Ode
  • Patent number: 8576652
    Abstract: A semiconductor memory device has an operation mode in which a read/write operation is performed in response to a command supplied externally in synchronization with a clock, and a power-down mode in which no external read/write command is accepted. The semiconductor memory device performs a refresh operation in response to an externally supplied signal during the power-down mode. A memory system has a plurality of the semiconductor devices and a memory controller. The memory controller outputs a control signal during the power-down mode, and the plurality of semiconductor devices perform a refresh operation in response to the control signal during the power-down mode.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: November 5, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Atsuo Koshizuka
  • Patent number: 8574997
    Abstract: A method for fabricating a dynamic random access memory (DRAM) capacitor includes forming a first electrode layer, forming a catalytic layer on the first electrode layer, optionally annealing the catalytic layer, forming a dielectric layer on the catalytic layer, optionally annealing the dielectric layer, forming a second electrode layer on the dielectric layer, and optionally annealing the capacitor stack. Advantageously, the electrode layers are TiN, the catalytic layer is MoO2?x where x is between 0 and 2, and the physical thickness of the catalytic layer is between about 0.5 nm and about 10 nm, and the dielectric layer is ZrO2.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: November 5, 2013
    Assignees: Intermolecular, Inc., Elpida Memory, Inc.
    Inventors: Hanhong Chen, Sandra Malhotra, Hiroyuki Ode, Xiangxin Rui