Patents Assigned to Freescale
  • Patent number: 8901632
    Abstract: A method of making a semiconductor structure includes forming a select gate over a substrate in an NVM region and a first protection layer over a logic region. A control gate and a storage layer are formed over the substrate in the NVM region. The control gate has a top surface below a top surface of the select gate. The charge storage layer is under the control gate, along adjacent sidewalls of the select gate and control gate, and is partially over the top surface of the select gate. A second protection layer is formed over the NVM portion and the logic portion. The first and second protection layers are removed from the logic region. A portion of the second protection layer is left over the control gate and the select gate. A gate structure, formed over the logic region, has a high k dielectric and a metal gate.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Asanga H. Perera, Cheong Min Hong, Sung-Taeg Kang, Byoung W. Min, Jane A. Yater
  • Patent number: 8904109
    Abstract: A data processor is disclosed that definitively determines an effective address being calculated and decoded will be associated with an address range that includes a memory local to a data processor unit, and will disable a cache access based upon a comparison between a portion of a base address and a corresponding portion of an effective address input operand. Access to the local memory can be accomplished through a first port of the local memory when it is definitively determined that the effective address will be associated with an address range. Access to the local memory cannot be accomplished through the first port of the local memory when it is not definitively determined that the effective address will be associated with the address range.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: William C. Moyer
  • Patent number: 8901722
    Abstract: A packaged semiconductor device has opposing first and second main surfaces and a sidewall connecting the first and second main surfaces. A semiconductor die is embedded in the package and has a first main surface facing the first main surface of the package and an opposing second main surface facing the second main surface of the package. Conductive leads are electrically coupled to the semiconductor die, each of which is partially embedded within the package and extends outside of the package from the package sidewall. At least one tie bar is partially embedded within the package and has an exposed segment extending outside of the package from the sidewall. A portion of the exposed segment is in contact with the first main surface of the package. The tie bar forms a heat sink to dissipate heat generated by the semiconductor die.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: You Ge, Meng Kong Lye, Penglin Mei
  • Patent number: 8901986
    Abstract: An integrated circuit includes a plurality of power gating elements for controlling power applied to a first module which is in a powered off state, while a second module is in a powered on state, the second module being coupled to receive at least one signal from the first module when the first module is powered on. A a synchronization controller is provided for controlling the power gating elements to ramp up the power gated to the first module in order to power it up and, for a time while the power gated to the first module is below a first level, reducing the power gated to the second module, and for a time when the power gated to the first module is above the first level, increasing the power gated to the second module.
    Type: Grant
    Filed: November 25, 2010
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Anton Rozen, Leonid Fleshel, Michael Priel
  • Patent number: 8902748
    Abstract: Apparatus arranged to perform data multiplexing or demultiplexing or a non-transitory computer readable medium comprising a computer program which, when executed by a computer, carries out a method of multiplexing or demultiplexing data, the apparatus comprising a memory, an interface, and a processing unit arranged to determine locations of corresponding regions of the memory for corresponding channels based on data sizes and time-unit-numbers that have passed since a previous corresponding quantity of channel data for a corresponding channel was last stored in the memory or processed, wherein the data sizes and time-unit numbers correspond to one or more channels of the plurality of channels, such that the processing unit will not store the corresponding quantity of the channel data, for each corresponding channel of the plurality of channels, at a location in the memory that is currently storing any channel data that has not yet been output or processed.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Adrian Ioan Nistor, Jason Pelly
  • Patent number: 8904150
    Abstract: A processor includes an instruction unit which provides instructions for execution by the processor, a decode/issue unit which decodes instructions received from the instruction unit and issues the instructions, and a plurality of execution queues coupled to the decode/issue unit. Each issued instruction from the decode/issue unit is stored into an entry of at least one queue of the plurality of execution queues, wherein each entry of the plurality of execution queues is configured to store an issued instruction and a duplicate indicator corresponding to the issued instruction which indicates whether or not a duplicate instruction of the issued instruction is also stored in an entry of another queue of the plurality of execution queues.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Thang M. Tran, Leick D. Robinson
  • Patent number: 8904333
    Abstract: A system for prototyping an integrated circuit (IC) that has a mixed signal intellectual property (IP) core includes implementing the IP core using discrete programmable digital ICs and discrete analog ICs by partitioning the IP core into a digital IP portion and an analog IP portion.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Haifeng Bai, Yin Guo, Xuewen He, Kun Wu, Lei Zhang, Shayan Zhang
  • Patent number: 8901991
    Abstract: Power monitoring circuitry. In some embodiments, comparator circuitry may be configured to receive a first voltage value and a second voltage value, and to identify the greater of the first and second voltage values. Selector circuitry coupled to the comparator circuitry may be configured to power one or more components within the comparator circuitry with a supply voltage corresponding to the greater voltage value. In other embodiments, a method may include identifying, via a comparator, the largest among a plurality of voltage values, and powering one or more logic components within the comparator with the identified voltage value.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Pedro Barbosa Zanetta, Ivan Carlos Ribeiro Nascimento
  • Patent number: 8902677
    Abstract: Systems and methods for reducing the power consumption of memory devices. A method of operating a memory device may include monitoring a plurality of sense amplifiers, each sense amplifier configured to evaluate a logic value stored in a memory cell, determining whether each of the plurality of sense amplifiers has completed its evaluation, and stopping a reference current from being provided to the sense amplifiers in response to all of the sense amplifiers having completed their evaluations. An electronic circuit may include memory cells, sense amplifiers coupled to the memory cells, transition detection circuits coupled to the sense amplifiers, and control circuitry coupled to the transition detection circuits, the transition detection circuits configured to stop a reference current from being provided to the sense amplifiers if each transition detection circuit determines that its respective sense amplifier has identified a logic value stored in a respective memory cell.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Walter L. Terçariol, Richard Titov Lara Saez, Afrânio Magno da Silva, Jr.
  • Publication number: 20140351570
    Abstract: A programming interface and method of operating a programming interface use a system clock input, an asynchronous reset input, and an interface control input. The method selectively controls multiplexed coupling of a source register to a destination register and the destination register to a buffer register. The multiplexed coupling of the destination register to the buffer register reduces the possibility of the buffer register being corrupted when an asynchronous reset signal is applied to the programming interface. Problems associated with meta-stable asynchronous crossing paths in asynchronous reset programming systems are therefore alleviated.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Arjun Pal Chowdhury, Neha Agarwal, Chandan Gupta, Ankush Sethi
  • Publication number: 20140345117
    Abstract: A lead frame for assembling a semiconductor device has a die pad surrounded by lead fingers. Each of the lead fingers has a proximal end close to but spaced from an edge of the die pad and a distal end farther from the die pad. A semiconductor die is attached to a surface of the die pad. The die has die bonding pads on its upper surface that are electrically connected to the proximal ends of the lead fingers with bond wires. An encapsulation material covers the bond wires, semiconductor die and the proximal ends of the lead fingers. Prior to assembly, hot spots of the die are determined and the lead fingers closest to the hot spots are selected to project closer to the die than the other lead fingers. These longer lead fingers assist in dissipating the heat at the die hot spot.
    Type: Application
    Filed: August 11, 2014
    Publication date: November 27, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Chetan Verma, Piyush Kumar Mishra, Cheong Chiang Ng
  • Publication number: 20140351781
    Abstract: There is provided a method of placing a plurality of operational cells of a semiconductor device within a semiconductor layout, comprising determining timing data for each of the plurality of operational cells, determining switching activity from RTL or design constraints for each of the plurality of operational cells, determining power grid switch locations relative to each of the plurality of operational cells, deriving a cost function based upon the determined timing data, determined switching activity from RTL/design constraints and determined relative power grid switch locations and initially placing the plurality of operational cells according to the derived cost function.
    Type: Application
    Filed: December 1, 2011
    Publication date: November 27, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Anton Rozen, Asher Berkovitz, Michael Priel
  • Patent number: 8898212
    Abstract: A data reordering system for determining addresses associated with a vector of transformed data and corresponding method of reordering transformed data, where the data reordering system includes: a first transform function coupled to a data vector and operable to provide the vector of transformed data; a reordering function, including a plurality of counters, that is operable to determine a plurality of offset addresses, with a, respective, offset address for each element in the vector of transformed data; and an adder operable to add a base address that corresponds to the first address to the each, respective, offset address to provide a sequence of addresses suitable for accessing the vector of transformed data to provide a re-sequenced vector of transformed data.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc
    Inventors: Ning Chen, Christopher J. Daniels, Leo G. Dehner, Gregory C. Ng, Wendy F. Reed
  • Patent number: 8895409
    Abstract: A semiconductor wafer includes a die, an edge seal, a bond pad, a plating bus, and trace. The die is adjacent to a saw street. The edge seal is along a perimeter of the die and includes a conductive layer formed in a last interconnect layer of the die. The bond pad is formed as part of metal deposition layer above the last interconnect layer or part of the last interconnect layer. The plating bus is within the saw street. The trace is connected to the bond pad and to the plating bus (1) over the edge seal, insulated from the edge seal, and formed in the metal deposition layer or (2) through the edge seal and insulated from the edge seal.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Trent S. Uehling
  • Patent number: 8895394
    Abstract: A high voltage vertical field effect transistor device (101) is fabricated in a substrate (102, 104) using angled implantations (116, 120) into trench sidewalls formed above recessed gate poly layers (114) to form self-aligned N+ regions (123) adjacent to the trenches and along an upper region of an elevated substrate. With a trench fill insulator layer (124) formed over the recessed gate poly layers (114), self-aligned P+ body contact regions (128) are implanted into the elevated substrate without counter-doping the self-aligned N+ regions (123), and a subsequent recess etch removes the elevated substrate, leaving self-aligned N+ source regions (135-142) and P+ body contact regions (130-134).
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ganming Qin, Edouard D. de Frésart, Peilin Wang, Pon S. Ku
  • Patent number: 8896370
    Abstract: A voltage regulator bypass circuit to control bypass of a voltage regulator of an integrated circuit device, the voltage regulator bypass circuit including a first voltage detector, a second voltage detector, and circuit. The first voltage detector to detect that a core circuitry voltage level is above a first threshold and to assert a first detect signal at an output in response to the detection. The second voltage detector to detect that an unregulated supply voltage is above a second threshold and to assert a second detect signal at an output in response to the detection. The circuit having a first input coupled to the output of the first voltage detector and a second input coupled to the output of the second voltage detector, the circuit to bypass the voltage regulator in response the output of the latch being cleared.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: November 25, 2014
    Assignees: Freescale Semiconductor, Inc., STMicroelectronics SRL, STMicroelectronics Private Ltd.
    Inventors: Stefano Pietri, Chris C. Dao, Juxiang Ren, Nicolas Grossier, V Srinivasan
  • Patent number: 8896349
    Abstract: A low voltage detector (100) includes a power supply voltage monitor circuit (110) that produces a voltage VSP related to a first a power supply voltage, and a voltage generator (105), which includes a plurality of self-cascode MOSFET (SCM) structures (101-103) in a cascade configuration, that generates a reference voltage Vxm. A voltage comparator (140) outputs an output signal in response to a differential between Vxm and VSP, wherein Vxm and VSP have proportional to absolute temperature behavior (PTAT) over temperature with respect to a second power supply voltage. The output signal changes state when the first power supply voltage equals a trip point of the comparator. Each SCM structure is sized to provide a rate of change with temperature of the PTAT behavior of Vxm that matches a rate of change with temperature of the PTAT behavior of VSP.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Andre Luis Vilas Boas, Alfredo Olmos, Edgar Mauricio Camacho Galeano, Fabio de Lacerda
  • Patent number: 8896086
    Abstract: A system for generating a tamper detection signal indicating tampering with one or more circuits of an integrated circuit (IC) includes a tamper detection module, and wire-pairs connected to the tamper detection module and arranged in a winding configuration to form a wire-mesh. The wire-mesh is placed a predefined distance from the circuits. The tamper detection module generates and provides serial bit-streams to the wire-pairs for detecting a breach in the wire-mesh by an external probe.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mohit Arora, Prashant Bhargava, Rishi Bhooshan
  • Patent number: 8896102
    Abstract: Die structures for electronic devices and related fabrication methods are provided. An exemplary die structure includes a diced portion of a semiconductor substrate that includes a device region having one or more semiconductor devices fabricated thereon and an edge sealing structure within the semiconductor substrate that circumscribes the device region. In one or more embodiments, the edge sealing structure includes a conductive material that contacts a handle layer of semiconductor material, a crackstop structure is formed overlying the sealing structure, wherein the crackstop structure and the edge sealing structure provide an electrical connection between the handle layer and an active layer of semiconductor material that overlies a buried layer of dielectric material on the handle layer.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Zhihong Zhang, Hongning Yang, Jiang-Kai Zuo
  • Patent number: 8895339
    Abstract: A mechanism for reducing stiction in a MEMS device by decreasing an amount of carbon from TEOS-based silicon oxide films that can accumulate on polysilicon surfaces during fabrication is provided. A carbon barrier material film is deposited between one or more polysilicon layer in a MEMS device and the TEOS-based silicon oxide layer. This barrier material blocks diffusion of carbon into the polysilicon, thereby reducing accumulation of carbon on the polysilicon surfaces. By reducing the accumulation of carbon, the opportunity for stiction due to the presence of the carbon is similarly reduced.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ruben B. Montez, Robert F. Steimle