Abstract: The present invention is directed to methods of fabricating a high-K dielectric films having a high degree of crystallographic alignment at grain boundaries of the film. A disclosed method involves providing a substrate and then depositing a high-K dielectric material assisted with an ion beam to enable the preferential formation of crystal lattices having a selected crystallographic orientation. The resultant dielectric films have a high degree of crystallographic alignment at grain boundaries. Another disclosed method involves providing a substrate and then angularly depositing a material onto the substrate in order to assist in the preferential formation of crystal lattices having a selected crystallographic orientation. The result is a dielectric film having a high degree of crystallographic alignment at grain boundaries of the film.
Abstract: A transistor integration process provides a damascene method for the formation of gate electrodes and gate dielectric layers. An interlayer-dielectric film is deposited prior to the gate electrode formation to avoid the demanding gap fill requirements presented by adjacent gates. A trench is formed in the interlayer-dielectric film followed by the deposition of the gate material in the trench. This process avoids the potential for damage to high-k gate dielectric layers caused by high thermal cycles and also reduces or eliminates the problematic formation of voids in the dielectric layers filling the gaps between adjacent gates.
Type:
Grant
Filed:
December 19, 2007
Date of Patent:
June 7, 2011
Assignee:
LSI Corporation
Inventors:
David Pritchard, Hemanshu Bhatt, David T. Price
Abstract: Embodiments of the invention include a method and apparatus for managing SAS zoning using initiator isolation. The method includes assigning initiator devices in the SAS domain to a first initiator zone group, assigning target devices in the SAS domain to a second target zone group, and establishing an access control policy in which each of the initiator devices assigned to the first initiator zone group can communicate with each of the target devices assigned to the second target zone group but no initiator devices assigned to the first initiator zone group can communicate with any other initiator devices assigned to the first initiator zone group. Assignment of devices can be based on attachment information associated with each device, such as the ZPSDS entry point of the device, the SAS address of the device, and the phy of the zoning expander device in the SAS domain that is closest to the device.
Type:
Grant
Filed:
September 16, 2008
Date of Patent:
June 7, 2011
Assignee:
LSI Corporation
Inventors:
Louis Henry Odenwald, Jr., Roger Hickerson
Abstract: A digital modulation system provides enhanced multipath performance by using modified orthogonal codes with reduced autocorrelation sidelobes while maintaining the cross-correlation properties of the modified codes. For example, the modified orthogonal codes can reduce the autocorrelation level so as not to exceed one-half the length of the modified orthogonal code. In certain embodiments, an M-ary orthogonal keying (MOK) system is used which modifies orthogonal Walsh codes using a complementary code to improve the auto-correlation properties of the Walsh codes, thereby enhancing the multipath performance of the MOK system while maintaining the orthogonality and low cross-correlation characteristics of the Walsh codes.
Abstract: Various embodiments of the present invention provide systems and methods for analog to digital conversion. For example, a retimed analog to digital converter is disclosed that includes a first set of sub-level interleaves and a second set of sub-level interleaves. The first set of sub-level interleaves includes a first sub-level interleave with a first set of comparators synchronized to a first clock phase, and a second sub-level interleave with a second set of comparators synchronized to a second clock phase. The second set of sub-level interleaves includes a third sub-level interleave with a third set of comparators synchronized to a third clock phase, and a fourth sub-level interleave with a fourth set of comparators synchronized to a fourth clock phase.
Abstract: A system comprising a first expander device and a second expander device. The first expander device and the second expander device comprise a subtractive port and a table mapped port and are suitable for coupling a first serial attached SCSI controller to a second serial attached SCSI controller. The first and second expander devices are cross-coupled via a redundant physical connection.
Abstract: A method and system for performing diagnostics and validation operations on a device under test uses near natural language commands. A host machine controls the testing either locally or remotely, such as through the Internet. Various options for running a test or battery of tests on the device under test include entering commands through a prompt line on a graphical user interface, reading commands from a file, or manipulating graphical objects representing components or devices and operations on a graphical user interface. A script may serve as a metric to determine the successfulness of a test or battery of tests of the device under test.
Abstract: A method for configuring a storage array, comprising the steps of (A) checking a syntax of an input file, (B) generating an error if a particular syntax is not met, (C) determining whether a physical hardware configuration matches a desired set of design parameters, (D) generating a script file containing a plurality of symbol commands, (E) sending the script file containing the symbol commands to the storage array and (F) verifying whether the physical hardware configuration is valid.
Type:
Grant
Filed:
June 20, 2008
Date of Patent:
June 7, 2011
Assignee:
LSI Corporation
Inventors:
Mahmoud K. Jibbe, Britto Rossario, Pavan P S
Abstract: The present invention is a method for providing address decode and Virtual Function (VF) migration support in a Peripheral Component Interconnect Express (PCIE) multi-root Input/Output Virtualization (IOV) environment. The method may include receiving a Transaction Layer Packet (TLP) from the PCIE multi-root IOV environment. The method may further include comparing a destination address of the TLP with a plurality of base address values stored in a Content Addressable Memory (CAM), each base address value being associated with a Virtual Function (VF), each VF being associated with a Physical Function (PF). The method may further include when a base address value included in the plurality of base address values matches the destination address of the TLP, providing the matching base address value to the PCIE multi-root IOV environment by outputting from the CAM the matching base address value.
Abstract: A method and a computer program for configuring an integrated circuit design for static timing analysis include receiving module data representative of a hierarchy of modules in an integrated circuit design. A configuration item is selected from a list of configuration items for at least one of the modules. The module data is configured for the module from the selected configuration item into a static timing analysis scenario for performing a static timing analysis of the configured module data.
Type:
Grant
Filed:
May 9, 2008
Date of Patent:
June 7, 2011
Assignee:
LSI Corporation
Inventors:
Juergen Dirks, Udo Elsholz, Stephan Habel, Ansgar Bambynek
Abstract: In one embodiment, a forward substitution component performs forward substitution based on a lower-triangular matrix and an input vector to generate an output vector. The forward substitution component has memory, a first permuter, an XOR gate array, and a second permuter. The memory stores output sub-vectors of the output vector. The first permuter permutates one or more previously generated output sub-vectors stored in the memory based on one or more permutation coefficients corresponding to a current block row of the lower-triangular matrix to generate one or more permuted sub-vectors. The XOR gate array performs exclusive disjunction on (i) the one or more permuted sub-vectors and (ii) a current input sub-vector of the input vector to generate an intermediate sub-vector. The second permuter permutates the intermediate sub-vector based on a permutation coefficient corresponding to another block in the current block row to generate a current output sub-vector of the output vector.
Abstract: In one embodiment, a matrix-vector multiplication (MVM) component generates a product vector based on (i) an input matrix and (ii) an input vector. The MVM component has a permuter, memory, and an XOR gate array. The permuter permutates, for each input sub-vector of the input vector, the input sub-vector based on a set of permutation coefficients to generate a set of permuted input sub-vectors. The memory stores a set of intermediate product sub-vectors corresponding to the product vector. The XOR gate array performs, for each input sub-vector, exclusive disjunction on (i) the set of permuted input sub-vectors and (ii) the set of intermediate product sub-vectors to update the set of intermediate product subvectors, such that all of the intermediate product sub-vectors in the set are updated based on a current input sub-vector before updating any of the intermediate product sub-vectors in the set based on a subsequent input sub-vector.
Abstract: A method for controlling an output phase of a phase interpolator, by forming an M bit control word, designating N bits of the control word as a fractional number portion, designating M-N bits of the control word as a whole number portion, adjusting a phase jump of the phase interpolator at a designated clock cycle by a first number of phases as designated by the whole number portion plus a second number of phases as designated by the fractional number portion. The designated clock cycle can be identified by numbering clock cycles with a count value from counter having a repeating period of 2N, and for each clock cycle identified by a multiple of the count value of 2k within the repeating period, where k is a bit-wise position within the fractional number portion having a value of 0?k?N-1, the second number of phases can equal a binary value of the fractional number portion at the kth position, for any k.
Abstract: Methods and apparatus to provide a high throughput pipelined data path are described. In one embodiment, an apparatus may include three stages to process inbound data packets, e.g., to align one or more bits of data. Other embodiments are also described.
Abstract: Power factor correction and driver circuits and stages are described. More particularly, power factor correction circuits are described that utilize an auxiliary inductor winding for power regulation. Driver circuits configured for electrical loads such as series arrangements of light emitting diodes are also described. An exemplary embodiment of a driver circuit can implement a comparator and/or a voltage regulator to allow for improved output current uniformity for high-voltage applications and loads, such as series configurations of LEDs. Embodiments of PFC stages and driver stages can be combined for use as a power supply, and may be configured on a common circuit board. Power factor correction and driver circuits can be combined with one or more lighting elements as a lighting apparatus.
Abstract: A call setup process (28) in a telecommunication device (10) is controlled, wherein the telecommunication device (10) receives a user command (22) to set up a call, initiates the call setup process (28), determines that the call is likely to reach a voicemail system (14), and, in response to the determination that the call is likely to reach the voicemail system (14), automatically terminates the call setup process (28). A telecommunication device (10) comprises related features. A telecommunication network (12) is adapted to support or implement a determination whether or not an incoming call is forwarded to the voicemail system (14). The invention improves the user experience if a called party does not personally answer a telephone call.
Abstract: Certain embodiments of the present invention are methods for the organization of trapping-set profiles in ROM and for the searching of those profiles during (LDPC) list decoding. Profiles are ranked by dominance, i.e., by their impact on the error-floor characteristics of a decoder. More-dominant trapping-set profiles contain information about both unsatisfied check nodes (USCs) and mis-satisfied check nodes (MSCs), while less-dominant trapping-set profiles contain information about only USCs. Trapping-set profile information is organized into a number of linked, hierarchical data tables which allow for the rapid location and retrieval of most-dominant matching trapping-set profiles using a pointer-chase search.
Abstract: Various embodiments of the present invention provide systems and methods for performing data equalization. For example, various embodiments of the present invention provide data equalization circuits that include an equalization circuit and a transition adjustment circuit. The equalization circuit receives a series of at least two original data bits and replaces at least one of the two original data bits with an equalization pattern including two or more equalization bits. The original data bits correspond to an original data clock, and the two or more equalization bits correspond to an equalization data clock. The transition adjustment circuit is operable to modify an occurrence of a transition from one logic state to another logic state within the equalization pattern on a sub-equalization data clock basis.
Abstract: A memory collar includes a first circuit, a second circuit and a third circuit. The first circuit may be configured to generate a first control signal, a second control signal and a third control signal in response to one or more test commands. The second circuit may be configured to generate a fourth control signal in response to said third control signal and the fourth control signal. The third circuit may be configured to generate one or more address sequences. The one or more address sequences are presented to a memory during a test mode.
Type:
Grant
Filed:
July 31, 2008
Date of Patent:
May 24, 2011
Assignee:
LSI Corporation
Inventors:
Alexandre Andreev, Anatoli Bolotov, Mikhail Grinchuk
Abstract: A technique to enhancing substrate bias of grounded-gate NMOS fingers (ggNMOSFET's) has been developed. By using this technique, lower triggering voltage of NMOS fingers can be achieved without degrading ESD protection in negative zapping. By introducing a simple gate-coupled effect and a PMOSFET triggering source with this technique, low-voltage triggered NMOS fingers have also been developed in power and I/O ESD protection, respectively. A semiconductor device which includes a P-well which is underneath NMOS fingers. The device includes an N-well ring which is configured so that the inner P-well underneath the NMOS fingers is separated from an outer P-well. The inner P-well and outer P-well are connected by a P-substrate resistance which is much higher than the resistance of the P-wells. A P+-diffusion ring surrounding the N-well ring is configured to connect to VSS, i.e., P-taps.