Patents Assigned to OSRAM
  • Patent number: 9954150
    Abstract: The invention relates to a light-emitting semiconductor component comprising a light-emitting semiconductor chip with a semiconductor layer series, a light out-coupling surface, a rear surface lying opposite said light out-coupling surface and lateral surfaces, and a support body with a shaped body that directly covers the lateral surfaces in form-locked manner, two electric contact layers and a thermal contact layer being provided on the rear surface. The thermal contact layer is electrically insulated from the electric contact layers and the semiconductor layer series, the support body has electric connection elements in direct contact with the electric contact layers and a thermal connection element in direct contact with the thermal contact layer on the rear surface and the thermal connection element at least partially forms an assembly surface of the semiconductor component facing away from the semiconductor chip. The invention further relates to a method for producing a semiconductor component.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: April 24, 2018
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Thomas Schwarz, Stefan Illek
  • Patent number: 9954147
    Abstract: An optoelectronic apparatus is disclosed. In an embodiment, the apparatus includes at least one wavelength conversion region which includes at least one dual emitter as wavelength conversion material, wherein the wavelength conversion region converts primary radiation at least in part into secondary radiation, and wherein the dual emitter includes a first electronic base state and a second electronic base state, together with a first electronically excited state and a second electronically excited state which may be reached from the first electronically excited state. The dual emitter further includes emission proceeding from the second electronically excited state into the second base state.
    Type: Grant
    Filed: November 10, 2015
    Date of Patent: April 24, 2018
    Assignee: OSRAM OLED GMBH
    Inventor: Dominik Pentlehner
  • Publication number: 20180108695
    Abstract: The invention relates to an optoelectronic semiconductor component (100) comprising the following —an optoelectronic semiconductor chip (2), the lateral surfaces (2c) and lower face (2b) of which are at least partly covered by a molded body (3) that is electrically conductive and is designed to electrically contact the optoelectronic semiconductor chip (2), —at least one via (6) which comprises an electrically conductive material and is laterally spaced from the semiconductor chip (2), said via (6) completely passing through the molded body (3), wherein the via (6) extends from an upper face (3a) of the molded body (3) to a lower face (3b) of the molded body (3), —at least one insulating element (9) which is arranged within the molded body (3) between the via (6) and the semiconductor chip (2) and extends from the upper face (3a) of the molded body (3) to the lower face (3b) of the molded body (3), and —an electrically conductive connection (7) which is connected to the semiconductor chip (2) and the via (6)
    Type: Application
    Filed: May 9, 2016
    Publication date: April 19, 2018
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventor: Markus MAUTE
  • Patent number: 9945526
    Abstract: An optoelectronic lighting module (100) is provided having at least two optoelectronic semiconductor chips (10) with a radiation outlet surface (11) and an electrically non-conductive back side (12) facing away from the radiation outlet surface,—a cooling body (20) with a cooling body top side (21) and a cooling body bottom side (22) facing away from the cooling body top side (21),—two contact strips (30) with a contact top side (31) and a contact bottom side (32) facing away from the contact top side (31), wherein—the optoelectronic semiconductor chips (10) are arranged with the electrically non-conductive back side (12) on the cooling body top side (21),—each optoelectronic semiconductor chip (10) comprises two electric contact points (13) formed in the direction of the radiation outlet surface (11), and—the optoelectronic semiconductor chips (10) are connected in series via the electric contact points (13).
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: April 17, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Frank Singer, Thomas Schwarz
  • Patent number: 9949345
    Abstract: A power supply system providing communication from a master module to at least one slave module via transients, to alter operation of a load, is provided. The master module output a supply voltage that is either a normal supply voltage or a reduced supply voltage. The outputted supply voltage depends on input corresponding to a communication to be sent to the slave module to alter operation of the load of the slave module. The slave module receives the supply voltage and interprets the received supply voltage, which may vary between the normal and reduced supply voltages, to determine what the communication from the master module is. The slave module then uses information from the communication to appropriately alter operation of its load.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: April 17, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Nicholas Lekatsas, Biju Antony, Anant Aggarwal
  • Patent number: 9945547
    Abstract: An illuminant may include at least one light-emitting element unit, which has a carrier, at least one light-emitting element arranged on the carrier and is surrounded by an encapsulating material, at least one contact area formed on the carrier, and at least one contact element arranged on the contact area, wherein the light-emitting element surrounded by the encapsulating material is electrically connected to the contact element via the contact area, and at least one mating contact element, wherein electrical contact can be made between the mating contact element and the contact element via a plug-type connection, wherein the contact element is a female connector element, and the mating contact element is a male connector element and having a plurality of pin contact elements, or the contact element is a male connector element and having a plurality of pin contact elements, and the mating contact element is a female connector element.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: April 17, 2018
    Assignee: OSRAM OLED GMBH
    Inventors: Joerg Farrnbacher, Stefan Gschloessl, Kilian Regau, Karsten Diekmann, Christian Kristukat
  • Patent number: 9947843
    Abstract: A method of producing a cover element for an optoelectronic component includes producing a frame having a multiplicity of openings, wherein the frame is made of a material having embedded particles of TiO2, ZrO2, Al2O3, AlN, SiO2, or another optically reflective material and/or an embedded colored pigment; introducing a material into a multiplicity of the openings; and dividing the frame.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: April 17, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Markus Burger, Tobias Gebuhr, Ion Stoll
  • Patent number: 9945989
    Abstract: Various embodiments may relate to a process for producing a scattering layer for electromagnetic radiation. The process may include applying scattering centers onto a carrier, applying glass onto the scattering centers, and liquefying of the glass so that a part of the liquefied glass flows between the scattering centers toward the surface of the carrier, in such a way that a part of the liquefied glass still remains above the scattering centers.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: April 17, 2018
    Assignee: OSRAM OLED GmbH
    Inventors: Daniel Steffen Setz, Manfred Deisenhofer, Angela Eberhardt, Christina Wille
  • Patent number: 9947847
    Abstract: An optoelectronics semiconductor chip has a substrate and a semiconductor body arranged on the substrate and has a semiconductor layer sequence. The semiconductor layer sequence includes an active region arranged between a first semiconductor layer and a second semiconductor layer and is provided to generate or to receive radiation. The first semiconductor layer is electrically conductively connected to a first contact and to a second contact. The first contact is formed on a front side of the substrate, facing the semiconductor body. The second contact is formed on a rear side of the substrate, facing away from the semiconductor body. The first contact and the second contact are electrically conductively connected to each other.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: April 17, 2018
    Assignee: OSRAM Opto Semiconductor GmbH
    Inventors: Berthold Hahn, Johannes Baur
  • Patent number: 9945530
    Abstract: Various embodiments may relate to a lighting apparatus for a headlight for generating a light emission pattern in a far field, including at least one light source for emitting primary light onto an illumination surface, at least two different phosphor surfaces which are introducible into the illumination surface, at least partly alternately by at least one translational movement, and a control device for positioning the phosphor surfaces in relation to the illumination surface. A respectively associated light emission pattern is generatable in a predetermined position of the phosphor surfaces. The control device is configured, for the purpose of setting a specific light emission pattern, to move at least one phosphor surface provided for this purpose into the illumination surface by at least one translational movement.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: April 17, 2018
    Assignee: OSRAM GmbH
    Inventors: Jürgen Hager, Stephan Schwaiger
  • Patent number: 9948391
    Abstract: Techniques are disclosed for determining a light-based communication (LCom) receiver position. The techniques can be used to determine the position of a receiver relative to a specific luminaire within the field of view (FOV) of the receiver camera. The relative position may be calculated by determining the distance and the orientation of the receiver relative to the luminaire. The distance relative to the luminaire may be calculated using the observed size of the luminaire in an image generated by the receiver camera, the image zoom factor, and actual geometry of the luminaire. The orientation relative to the luminaire may be determined using a fiducial associated with the luminaire that can be used as an orientation cue. Once the position of a receiver relative to a luminaire is determined, the absolute position of the receiver may be calculated using the absolute position of the luminaire.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: April 17, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventors: Christian Breuer, Anant Aggarwal, Barry Stout
  • Patent number: 9947838
    Abstract: A method produces a multicolor LED display, the display including an LED luminous unit having a multiplicity of pixels. First subpixels, second subpixel and third subpixels contain an LED chip that emits radiation of a first color, wherein a first conversion layer that converts the radiation into a second color is arranged at least above the second subpixels and a second conversion layer that converts the radiation into a third color is arranged above the third subpixels. At least one process step is carried out in which the first or second conversion layer is applied or removed in at least one defined region above the pixels, wherein a portion of the LED chips is electrically operated, and wherein the region is defined by the radiation generated by the operated LED chips, generated heat or a generated electric field.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 17, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Alexander F. Pfeuffer, Martin Mandl
  • Patent number: 9941486
    Abstract: Various embodiments may relate to a component. The component includes an optically active region designed for electrically controllably transmitting, reflecting, absorbing, emitting and/or converting an electromagnetic radiation, and an optically inactive region formed alongside the optically active region, wherein the optically inactive region and/or the optically active region have/has an adaptation structure designed to adapt the value of an optical variable in the optically inactive region to a value of the optical variable in the optically active region.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: April 10, 2018
    Assignee: OSRAM OLED GMBH
    Inventors: Daniel Riedel, Johannes Rosenberger, Thomas Wehlus, Nina Riegel, Silke Scharner, Arne Fleissner
  • Patent number: 9941473
    Abstract: Various embodiments relate to a method for closely connecting an organic optoelectronic component to a connection piece, including forming a first cavity in the organic optoelectronic component, wherein the first cavity has at least a first opening, introducing a connecting structure through the first opening into the first cavity, wherein the connecting structure has a first fixing area, wherein the first fixing area is configured partially complementarily to the form of the first cavity, forming a second cavity in a connection piece, wherein the second cavity has at least a second opening, wherein the second cavity is configured partially complementarily to the form of the second fixing area, and introducing a second fixing area through the second opening into the second cavity, and forming a friction-fitting connection of the organic optoelectronic component with the connecting piece once the connecting structure has been introduced into the first and the second cavity.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: April 10, 2018
    Assignee: OSRAM OLED GmbH
    Inventor: Simon Schicktanz
  • Patent number: 9939129
    Abstract: Metalenses and technologies incorporating the same are disclosed. In some embodiments, the metalenses are in the form of a hybrid multiregion collimating metalens that includes a first region and a second region, wherein the hybrid multiregion collimating metalens is configured to collimate (e.g., visible) light incident thereon. In some instances the first region includes an array of first unit cells that contain subwavelength spaced nanostructures, such that the first region functions as a subwavelength high contrast grating (SWHCG), whereas the second region includes an array of second unit cell, wherein the array of second unit cells includes a near periodic annular arrangement of nanostructures such that the second region approximates the functionality of a locally periodic radial diffraction grating. Lighting devices including such metalenses are also disclosed.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 10, 2018
    Assignees: OSRAM SYLVANIA Inc., The President and Fellows of Harvard College
    Inventors: Steve Byrnes, Francesco Aieta, Federico Capasso, Alan Lenef
  • Patent number: 9939119
    Abstract: An accent lamp (10) having a solid state light source (4), such as LEDs, is attachable to a rear surface of an automotive headlamp (40) opposite the light-generating capsule (44). Accent lamp (10) has first retaining member (20), such as a clamp, formed above printed circuit board (8) on which LED (4) is mounted. Headlamp base (60) defines light passageway (45), formed as a light guide (42), extending from outermost peripheral surface (63) to an upper surface (61) on which lamp capsule (44) is retained. Accent lamp (10) is readily detachably mounted to headlamp (40), preferably by resilient first and second retaining members (20, 24), and, when mounted, can be biased to promote optical coupling of light source (4) to light guide (42).
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: April 10, 2018
    Assignee: OSRAM SYLVANIA Inc.
    Inventor: Jason Lessard
  • Patent number: 9941487
    Abstract: In various embodiments, glassware is provided. The glassware may include a glass matrix having a surface, a first type of particles, and at least one second type of particles, wherein the particles of the second type have a higher refractive index than the particles of the first type, wherein the particles of the first type are completely surrounded by the glass matrix, such that the surface of the glass matrix is free of particles of the first type, and the particles of the second type are arranged above and/or between the particles of the first type at least partly in the glass matrix at the surface of the glass matrix in order to increase the refractive index of the glassware.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: April 10, 2018
    Assignee: OSRAM OLED GmbH
    Inventor: Thomas Wehlus
  • Publication number: 20180098395
    Abstract: An active damping circuit is disclosed, which includes a peak current limiter, a drain source voltage limiter, a turn-on driver, a resistor shunt circuit, and a peak current sensor. The peak current sensor detects a rising edge of an input voltage from a phase cut dimmer by detecting a higher peak current. This drives a collector voltage of a second transistor of the peak current limiter low, which lowers a gate voltage of a first transistor of the peak current sensor, and forces it into a linear operating region, so it functions as a damping resistor. When the peak current sensor detects a decreased peak current, such that the turn-on edge of the input voltage is passed, the second transistor turns off, and the turn-on driver turns the first transistor on, such that the active damping circuit is waiting for a next edge of the input voltage.
    Type: Application
    Filed: February 25, 2016
    Publication date: April 5, 2018
    Applicant: OSRAM SYLVANIA Inc.
    Inventors: Jinsheng Wei, Andrew Johnsen, Ranjit Jayabalan, Nitin Kumar
  • Publication number: 20180097156
    Abstract: An optoelectronic lighting device and a method for manufacturing an optoelectronic lighting device are disclosed. In an embodiment the device includes a carrier and a light-emitting diode arranged on the carrier having a light-emitting surface. The device further includes a microlens structure including a plurality of microlenses, wherein the microlens structure is arranged on the light-emitting surface of the diode and a conversion layer arranged on the microlens structure, wherein the light-emitting surface is configured to emit light, wherein the microlens structure images, at least in part, the light, and wherein the conversion layer converts the light.
    Type: Application
    Filed: March 18, 2016
    Publication date: April 5, 2018
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Christian Leirer, Alexander Linkov, Matthias Sperl, Matthias Kiessling
  • Patent number: 9933134
    Abstract: A lighting device may include a light generating unit configured to generate at least two light beams; at least one phosphor surface which is illuminatable by the light beams; and at least one movable deflection mirror for the scanning deflection of the light beams onto the phosphor surface, such that the light beams impinge on the at least one phosphor surface in a spaced-apart fashion, and such that at least one region of the phosphor surface is illuminatable by at least two light beams in a manner spaced apart temporally.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: April 3, 2018
    Assignee: OSRAM GmbH
    Inventors: Stephan Schwaiger, Oliver Hering, Juergen Hager