Abstract: The invention relates to a process for treating a structure of semiconductor-on-insulator type successively comprising a support substrate, a dielectric layer and a semiconductor layer having a thickness of less than or equal to 100 nm, the semiconductor layer being covered with a sacrificial oxide layer, comprising measuring, at a plurality of points distributed over the surface of the structure, the thickness of the sacrificial oxide layer and of the semiconductor layer, so as to produce a mapping of the thickness of the semiconductor layer and to determine, from the measurements, the average thickness of the semiconductor layer, selective etching of the sacrificial oxide layer so as to expose the semiconductor layer, and carrying out a chemical etching of the semiconductor layer, the application, temperature and/or duration conditions of which are adjusted as a function of the mapping and/or of the mean thickness of the semiconductor layer, so as to thin, at least locally, the semiconductor layer by a thic
Type:
Grant
Filed:
May 1, 2013
Date of Patent:
November 17, 2015
Assignee:
SOITEC
Inventors:
Walter Schwarzenbach, Carine Duret, Francois Boedt
Abstract: A substrate is treated by means of at least one pulse of a luminous flux of determined wavelength. The substrate comprises an embedded layer that absorbs the luminous flux independently of the temperature. The embedded layer is interleaved between a first treatment layer and a second treatment layer. The first treatment layer has a coefficient of absorption of luminous flux that is low at ambient temperature and rises as the temperature rises. The luminous flux may be applied in several places of a surface of the first layer to heat regions of the embedded layer and generate a propagating thermal front in the first layer opposite the heated regions of the embedded layer, which generate constraints within the second layer.
Abstract: Methods of fabricating semiconductor structures involve the formation of fins for finFET transistors having different stress/strain states. Fins of one stress/strain state may be employed to form n-type finFETS, while fins of another stress/strain state may be employed to form p-type finFETs. The fins having different stress/strain states may be fabricated from a common layer of semiconductor material. Semiconductor structures and devices are fabricated using such methods.
Abstract: This invention provides gas injector apparatus that extends into a growth chamber in order to provide more accurate delivery of thermalized precursor gases. The improved injector can distribute heated precursor gases into a growth chamber in flows that are spatially separated from each other up until they impinge on a growth substrate and that have volumes adequate for high-volume manufacture. Importantly, the improved injector is sized and configured so that it can fit into existing commercial growth chambers without hindering the operation of mechanical and robot substrate-handling equipment used with such chambers. This invention is useful for the high-volume growth of numerous elemental and compound semiconductors, and particularly useful for the high-volume growth of Group III-V compounds and GaN.
Type:
Grant
Filed:
December 5, 2008
Date of Patent:
November 3, 2015
Assignee:
SOITEC
Inventors:
Chantal Arena, Christiaan J. Werkhoven, Ronald Thomas Bertram, Jr., Ed Lindow, Dennis L. Goodwin
Abstract: The present disclosure relates to a method for the manufacture of a wafer by providing a doped layer on a semiconductor substrate; providing a first semiconductor layer on the doped layer; providing a buried oxide layer on the first semiconductor layer; and providing a second semiconductor layer on the buried oxide layer to form a wafer having a buried oxide layer and a doped layer beneath the buried oxide layer. The disclosure also relates to the wafer that is produced by the new method.
Type:
Grant
Filed:
March 9, 2012
Date of Patent:
November 3, 2015
Assignee:
SOITEC
Inventors:
Nicolas Daval, Cécile Aulnette, Bich-Yen Nguyen
Abstract: Methods of fabricating photovoltaic devices include forming a plurality of subcells in a vertically stacked arrangement on a semiconductor material, each of the subcells being formed at a different temperature than an adjacent subcell such that the adjacent subcells have differing effective band-gaps. The methods of fabricating also include inverting the structure, attaching another substrate to a second semiconductor material, and removing the substrate. For example, each of the subcells may comprise a III-nitride material, and each subsequent subcell may include an indium content different than the adjacent subcell. Novel structures may be formed using such methods.
Abstract: Methods of fabricating a semiconductor structure include implanting ion into a second region of a strained semiconductor layer on a multi-layer substrate to amorphize a portion of crystalline semiconductor material in the second region of the strained semiconductor layer without amorphizing a first region of the strained semiconductor layer. The amorphous region is recrystallized, and elements are diffused within the semiconductor layer to enrich a concentration of the diffused elements in a portion of the second region of the strained semiconductor layer and alter a strain state therein relative to a strain state of the first region of the strained semiconductor layer. A first plurality of transistor channel structures are formed that each comprise a portion of the first region of the semiconductor layer, and a second plurality of transistor channel structures are formed that each comprise a portion of the second region of the semiconductor layer.
Type:
Grant
Filed:
September 18, 2014
Date of Patent:
October 20, 2015
Assignee:
SOITEC
Inventors:
Mariam Sadaka, Bich-Yen Nguyen, Ionut Radu
Abstract: A semiconductor memory having bit lines and wordlines crossing each other, a memory cell array formed by memory cells arranged in rows and columns on crossover points of the bit lines and wordlines, and sense amplifier banks arranged on opposite sides of the memory cell array. Each sense amplifier bank has staggered sense amplifiers connected to a bit line according to an interleaved arrangement whereby bit lines alternate in the direction of the wordlines between bit lines coupled to different sense amplifiers. This results in interconnect spaces parallel to the bit lines. Also, each sense amplifier bank includes a local column decoder for selecting a sense amplifier and which is staggered with the sense amplifiers and coupled to the sense amplifier by an output line running in an available interconnect space parallel to the bit lines.
Type:
Grant
Filed:
March 16, 2012
Date of Patent:
October 13, 2015
Assignee:
Soitec
Inventors:
Richard Ferrant, Gerhard Enders, Carlos Mazure
Abstract: The present invention relates to an apparatus for the manufacture of semiconductor devices wherein the apparatus includes a bonding module that has a vacuum chamber to provide bonding of wafers under pressure below atmospheric pressure; and a loadlock module connected to the bonding module and configured for wafer transfer to the bonding module. The loadlock module is also connected to a first vacuum pumping device configured to reduce the pressure in the loadlock module to below atmospheric pressure. The bonding and loadlock modules remain at a pressure below atmospheric pressure while the wafer is transferred from the loadlock module into the bonding module.
Abstract: Embodiments relate to semiconductor structures and methods of forming semiconductor structures. The semiconductor structures include a substrate layer having a CTE that closely matches a CTE of one or more layers of semiconductor material formed over the substrate layer. In some embodiments, the substrate layers may comprise a composite substrate material including two or more elements. The substrate layers may comprise a metal material and/or a ceramic material in some embodiments.
Abstract: A differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line (BL) and an input connected to a second bit line complementary to the first bit line and a second CMOS inverter having an output connected to the second bit line (/BL) and an input connected to the first bit line. Each CMOS inverter includes pull-up and pull-down transistors, wherein the sources of either of the pull-up transistors or the pull-down transistors are electrically coupled and connected to a pull-up voltage source or a pull-down voltage source without an intermediate transistor between the sources of the transistors and the voltage source.
Abstract: A process for avoiding formation of an Si—SiO2—H2 environment during a dissolution treatment of a semiconductor-on-insulator structure that includes a carrier substrate, an oxide layer, a thin layer of a semiconductor material and a peripheral ring in which the oxide layer is exposed. This process includes encapsulating at least the exposed oxide layer of the peripheral ring with semiconductor material by performing a creep thermal treatment; and performing an oxide dissolution treatment to reduce part of the thickness of the oxide layer. In this process, the semiconductor material that encapsulates the oxide layer has a thickness before the oxide dissolution that is at least twice that of the oxide that is to be dissolved, thus avoiding formation of an Si—SiO2—H2 environment on the peripheral ring where the oxide layer would otherwise be exposed.
Abstract: Methods of fabricating semiconductor devices include forming a metal silicide in a portion of a crystalline silicon layer, and etching the metal silicide using an etchant selective to the metal silicide relative to the crystalline silicon to provide a thin crystalline silicon layer. Silicon-on-insulator (SOI) substrates may be formed by providing a layer of crystalline silicon over a base substrate with a dielectric material between the layer of crystalline silicon and the base substrate, and thinning the layer of crystalline silicon by forming a metal silicide layer in a portion of the crystalline silicon, and then etching the metal silicide layer using an etchant selective to the metal silicide layer relative to the crystalline silicon.
Abstract: The invention relates to a method for manufacturing a semiconductor on insulator type substrate for radio frequency applications, comprising the following steps in sequence: (a) provision of a silicon substrate with an electrical resistivity of more than 500 Ohm.cm, (b) formation of a polycrystalline silicon layer on the substrate, the method comprising a step between steps a) and b) to form a dielectric material layer, different from a native oxide layer, on the substrate, between 0.5 and 10 nm thick.
Type:
Grant
Filed:
March 22, 2012
Date of Patent:
September 8, 2015
Assignees:
Soitec, Commissariat A L'Energie Atomique et aux Energies Alternatives
Abstract: A method for bonding a first wafer on a second wafer by molecular adhesion where the wafers have an initial radial misalignment between them. The method includes bringing the two wafers into contact so as to initiate the propagation of a bonding wave between the two wafers while a predefined bonding curvature is imposed on at least one of the two wafers during the contacting step as a function of the initial radial misalignment.
Abstract: Semiconductor structures include an active region between a plurality of layers of InGaN. The active region may be at least substantially comprised by InGaN. The plurality of layers of InGaN include at least one well layer comprising InwGa1-wN, and at least one barrier layer comprising InbGa1-bN proximate the at least one well layer. In some embodiments, the value of w in the InwGa1-wN of the well layer may be greater than or equal to about 0.10 and less than or equal to about 0.40 in some embodiments, and the value of b in the InbGa1-bN of the at least one barrier layer may be greater than or equal to about 0.01 and less than or equal to about 0.10. Methods of fainting semiconductor structures include growing such layers of InGaN to form an active region of a light emitting device, such as an LED. Luminary devices include such LEDs.
Type:
Grant
Filed:
March 14, 2014
Date of Patent:
August 25, 2015
Assignee:
SOITEC
Inventors:
Chantal Arena, Jean-Philippe Debray, Richard Scott Kern
Abstract: The invention relates to a process for assembling a first element that includes at least one first wafer, substrate or at least one chip, and a second element of at least one second wafer or substrate, involving the formation of a surface layer, known as a bonding layer, on each substrate, at least one of the bonding layers being formed at a temperature less than or equal to 300° C.; conducting a first annealing, known as degassing annealing, of the bonding layers, before assembly, at least partly at a temperature at least equal to the subsequent bonding interface strengthening temperature but below 450° C.; forming an assembling of the substrates by bringing into contact the exposed surfaces of the bonding layers, and conducting an annealing of the assembled structure at a bonding interface strengthening temperature below 450° C.
Abstract: The invention relates to a differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line and an input connected to a second bit line complementary to the first bit line, and a second CMOS inverter having an output connected to the second bit line and an input connected to the first bit line (BL). Each CMOS inverter includes a pull-up transistor and a pull-down transistor, with the sense amplifier having a pair of precharge transistors arranged to be respectively coupled to the first and second bit lines, to precharge the first and second bit lines to a precharge voltage. The precharge transistors are constituted by the pull-up transistors or by the pull-down transistors.
Abstract: The present invention relates to a method for polarizing at least a first finfet transistor and a second finfet transistor, wherein the first finfet transistor has a fin width bigger than the fin width of the second finfet transistor, and both the first finfet transistor and the second finfet transistor have a back gate, and the method comprising applying the same first voltage on the back gate of the first finfet transistor and on the back gate of the second finfet transistor so as to reduce the spread between the off-current value of the first finfet transistor and the off-current value of the second finfet transistor.
Abstract: The invention relates to a method for manufacturing, by means of epitaxy, a monocrystalline layer of GaN on a substrate, wherein the coefficient of thermal expansion is less than the coefficient of thermal expansion of GaN, comprising the following steps: (b) three-dimensional epitaxial growth of a layer of GaN relaxed at the epitaxial temperature, (c1) growth of an intermediate layer of BwAlxGayInzN, (c2) growth of a layer of BwAlxGayInzN, (c3) growth of an intermediate layer of BwAlxGayInzN, at least one of the layers formed in steps (c1) to (c3) being an at least ternary III-N alloy comprising aluminium and gallium, (d) growth of said layer of GaN.
Type:
Grant
Filed:
June 28, 2012
Date of Patent:
July 28, 2015
Assignees:
Soitec, Centre National de la Recherche Scientifique (CNRS)
Inventors:
David Schenk, Alexis Bavard, Yvon Cordier, Eric Frayssinet, Mark Kennard, Daniel Rondi