Abstract: Methods of fabricating a semiconductor structure include providing a semiconductor-on-insulator (SOI) substrate including a base substrate, a strained stressor layer above the base substrate, a surface semiconductor layer, and a dielectric layer between the stressor layer and the surface semiconductor layer. Ions are implanted into or through a first region of the stressor layer, and additional semiconductor material is formed on the surface semiconductor layer above the first region of the stressor layer. The strain state in the first region of the surface semiconductor layer above the first region of the stressor layer is altered, and a trench structure is formed at least partially into the base substrate. The strain state is altered in a second region of the surface semiconductor layer above the second region of the stressor layer. Semiconductor structures are fabricated using such methods.
Type:
Grant
Filed:
November 6, 2015
Date of Patent:
February 21, 2017
Assignee:
SOITEC
Inventors:
Bich-Yen Nguyen, Walter Schwarzenbach, Christophe Maleville
Abstract: This invention concerns a semiconductor memory device comprising: at least one sense amplifier circuit for reading data sensed from selected memory cells in a memory array,—at least one reference circuit, each reference circuit being a replica of the sense amplifier circuit and having an output through which the reference circuit delivers an output physical quantity, a regulation network providing a regulation signal to each sense amplifier circuit and each reference circuit, wherein the regulation signal is derived from an averaging of the output physical quantity over time and/or space, wherein the regulation network comprises a control unit configured to sum up the physical quantities of each output of the reference circuit and a target mean value, the control unit delivering a regulation signal based on the sum, the regulation signal being fed in to each regular sense amplifier circuit and to each reference circuit.
Abstract: A substrate is treated by means of at least one pulse of a luminous flux of determined wavelength. The substrate comprises an embedded layer that absorbs the luminous flux independently of the temperature. The embedded layer is interleaved between a first treatment layer and a second treatment layer. The first treatment layer has a coefficient of absorption of luminous flux that is low at ambient temperature and rises as the temperature rises. The luminous flux may be applied in several places of a surface of the first layer to heat regions of the embedded layer and generate a propagating thermal front in the first layer opposite the heated regions of the embedded layer, which generate constraints within the second layer.
Abstract: Methods of fabricating semiconductor structures include implanting atom species into a carrier die or wafer to form a weakened region within the carrier die or wafer, and bonding the carrier die or wafer to a semiconductor structure. The semiconductor structure may be processed while using the carrier die or wafer to handle the semiconductor structure. The semiconductor structure may be bonded to another semiconductor structure, and the carrier die or wafer may be divided along the weakened region therein. Bonded semiconductor structures are fabricated using such methods.
Abstract: A method comprising the following steps: providing a support substrate and a donor substrate, forming an embrittlement region in the donor substrate so as to delimit a first portion and a second portion on either side of the embrittlement region, assembling the donor substrate on the support substrate, fracturing the donor substrate along the embrittlement region. In addition, the method comprises a step consisting of forming a compressive stress layer in the donor substrate so as to delimit a so-called confinement region interposed between the compressive stress layer and the embrittlement region.
Type:
Grant
Filed:
January 28, 2013
Date of Patent:
January 17, 2017
Assignee:
SOITEC
Inventors:
Gweltaz Gaudin, Oleg Kononchuk, Ionut Radu
Abstract: The disclosure relates to a method of bonding by molecular adhesion comprising the positioning of a first wafer and of a second wafer within a hermetically sealed vessel, the evacuation of the vessel to a first pressure lower than or equal to 400 hPa, the adjustment of the pressure in the vessel to a second pressure higher than the first pressure by introduction of a dry gas, and bringing the first and second wafers into contact, followed by the initiation of the propagation of a bonding wave between the two wafers, while maintaining the vessel at the second pressure.
Abstract: The disclosure relates to a guide system for holding and moving sunlight-absorbing devices, in particular, solar panels or concentrated photovoltaic modules, about an azimuth axis and an elevation axis, comprising a housing, at least one azimuth drive, at least one azimuth gear unit, the azimuth drive being configured for driving the azimuth gear unit for a rotational movement about the azimuth axis, at least one elevation drive, at least one elevation gear unit, the elevation drive being configured for driving the elevation gear unit for a rotational movement about the elevation axis, and wherein the elevation gear unit is connected to a first end of a torsion tube, and the torsion tube is turnably mounted inside the housing along the elevation axis, wherein the torsion tube is supported by at least two bearings, preferably one at each end of the torsion tube, and wherein the second end of the torsion tube is configured to receive and connect to a support arm for carrying/supporting one or more of the sunlig
Abstract: The invention concerns a method for fabricating a substrate in semiconductor material characterized in that it comprises the steps of: starting from a donor substrate in a first semiconductor material at an initial temperature, contacting a surface of the donor substrate with a bath of a second semiconductor material held in the liquid state at a temperature higher than the initial temperature, the second semiconductor material being chosen so that its melting point is equal to or lower than the melting point of the first semiconductor material, solidifying the bath material on the surface to thicken the donor substrate with a solidified layer. The invention also concerns a device for implementing the method.
Abstract: Methods are used to form semiconductor devices that include an integrated circuit and a microelectromechanical system (MEMS) device operatively coupled with the integrated circuit. At least a portion of an integrated circuit may be fabricated on a surface of a substrate, and a MEMS device may be formed over the at least a portion of the integrated circuit. The MEMS device may be operatively coupled with the integrated circuit. Semiconductor structures and electronic devices including such structures are formed using such methods.
Type:
Grant
Filed:
July 8, 2013
Date of Patent:
December 6, 2016
Assignee:
SOITEC
Inventors:
Mariam Sadaka, Bernard Aspar, Chrystelle Lagahe Blanchard
Abstract: The invention relates to a circuit including a transistor of a first type of channel in series with a transistor of a second type of channel between first and second terminals for applying a power supply potential, each of the transistors being a multiple gate transistor having at least a first (G1P, G1N) and a second (G2P, G2N) independent control gates, characterized in that at least one of the transistors is configured for operating in a depletion mode under the action of a second gate signal applied to its second control gate (G2p, G2N).
Type:
Grant
Filed:
September 30, 2011
Date of Patent:
November 15, 2016
Assignee:
Soitec
Inventors:
Carlos Mazure, Richard Ferrant, Bich-Yen Nguyen
Abstract: The invention relates to a semiconductor device produced on a semiconductor-on-insulator substrate that includes a thin layer of semiconductor material separated from a base substrate by a buried insulating layer, the device including a first conducting region in the thin layer, a second conducting region in the base substrate and a contact connecting the first region to the second region through the insulating layer. The invention also relates to a process for fabricating such semiconductor devices.
Abstract: A system for epitaxial deposition of a Group III-V semiconductor material that includes gallium. The system includes sources of the reactants, one of which is a gaseous Group III precursor having one or more gaseous gallium precursors and another of which is a gaseous Group V component, a reaction chamber wherein the reactants combine to deposit Group III-V semiconductor material, and one or more heating structures for heating the gaseous Group III precursors prior to reacting to a temperature to decompose substantially all dimers, trimers or other molecular variations of such precursors into their monomer forms.
Abstract: Methods of forming semiconductor devices comprising integrated circuits and microelectromechanical system (MEMS) devices operatively coupled with the integrated circuits involve the formation of an electrically conductive via extending at least partially through a substrate from a first major surface of the substrate toward an opposing second major surface of the substrate, and the fabrication of at least a portion of an integrated circuit on the first major surface of the substrate. A MEMS device is provided on the second major surface of the substrate, and the MEMS device is operatively coupled with the integrated circuit using the at least one electrically conductive via. Structures and devices are fabricated using such methods.
Type:
Grant
Filed:
July 8, 2013
Date of Patent:
November 1, 2016
Assignee:
SOITEC
Inventors:
Mariam Sadaka, Bernard Aspar, Chrystelle Lagahe Blanchard
Abstract: The present invention provides improved gas injectors for use with CVD (chemical vapor deposition) systems that thermalize gases prior to injection into a CVD chamber. The provided injectors are configured to increase gas flow times through heated zones and include gas-conducting conduits that lengthen gas residency times in the heated zones. The provided injectors also have outlet ports sized, shaped, and arranged to inject gases in selected flow patterns. The invention also provides CVD systems using the provided thermalizing gas injectors. The present invention has particular application to high-volume manufacturing of GaN substrates.
Type:
Grant
Filed:
March 14, 2013
Date of Patent:
November 1, 2016
Assignee:
Soitec
Inventors:
Chantal Arena, Ronald Thomas Bertram, Jr., Ed Lindow, Christiaan Werkhoven
Abstract: The disclosure relates to a manufacturing method comprising the formation of elemental LED or photovoltaic structures on a first substrate, each comprising at least one p-type layer, an active zone and an n-type layer, formation of a first planar metal layer on the elemental structures, provision of a transfer substrate comprising a second planar metal layer, assembly of the elemental structures with the transfer substrate by bonding of the first and second metal layers by molecular adhesion at room temperature, and removal of the first substrate.
Abstract: A tristate gate includes an output port and at least two transistors. Each of the transistors has at least a first and a second gate configured such that a high-impedance value (Z) on the output port is set by controlling the threshold voltage of at least one of the transistors.
Abstract: The disclosure relates to semiconductor memory devices and related methods. A semiconductor memory device comprises: a single-ended sense amplifier circuit for reading data sensed from selected memory cells in a memory array, the sense amplifier having a first node used to feed in a reference signal, a second node coupled to a bit line, and sense transistors responsible for amplifying the content of a selected memory cell during a sense operation, a reference circuit having replica transistors of the sense transistors and further comprising a regulation network designed so that each replica transistor operates in a stable operating point, and wherein the regulation network generates a control voltage that is applied to the sense amplifier circuit.
Abstract: This disclosure relates to an eDRAM memory element comprising a first storage node, a bitline node for accessing the value stored in the storage node, and a select transistor, controlling access from the bitline node to the storage node, wherein the select transistor has a front gate and a back gate.
Abstract: A process for separating at least two substrates comprising at least two separation interfaces along one of the interfaces includes, before inserting a blade between the substrate, damaging at least one portion of a peripheral region of a chosen one of the interfaces, then inserting the blade and partially parting the substrates, and applying a fluid in a space between the parted substrates while the blade remains inserted therebetween, and decreasing a rupture energy of the chosen interface by stress corrosion involving breaking of siloxane bonds present at the interface.
Abstract: The disclosure relates to a method for implantation of atomic or ionic species into a batch of substrates made of semiconductor material, in which: each substrate made of semiconductor material is positioned on a respective support of a batch implanter, each substrate comprising a thin layer of electrical insulator on its surface; and a dose of at least one ionic or atomic species is implanted over the whole surface of the substrates, through their layer of insulator, so as to form a fragilization region within each substrate and to bound there a thin layer of semiconductor material between the thin layer of insulator and the fragilization region of the substrate, the implantation method being characterized in that, during the method, each support on which a substrate is positioned has at least two separate inclinations with respect to the plane orthogonal to the direction of implantation of the species in order to improve the implantation depth of the species in the substrate.
Type:
Grant
Filed:
March 14, 2013
Date of Patent:
August 23, 2016
Assignee:
SOITEC
Inventors:
Nadia Ben Mohamed, Carole David, Camille Rigal