Patents Assigned to Soitec
  • Patent number: 9175419
    Abstract: This invention provides gas injector apparatus that extends into a growth chamber in order to provide more accurate delivery of thermalized precursor gases. The improved injector can distribute heated precursor gases into a growth chamber in flows that are spatially separated from each other up until they impinge on a growth substrate and that have volumes adequate for high-volume manufacture. Importantly, the improved injector is sized and configured so that it can fit into existing commercial growth chambers without hindering the operation of mechanical and robot substrate-handling equipment used with such chambers. This invention is useful for the high-volume growth of numerous elemental and compound semiconductors, and particularly useful for the high-volume growth of Group III-V compounds and GaN.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 3, 2015
    Assignee: SOITEC
    Inventors: Chantal Arena, Christiaan J. Werkhoven, Ronald Thomas Bertram, Jr., Ed Lindow, Dennis L. Goodwin
  • Patent number: 9165945
    Abstract: Methods of fabricating a semiconductor structure include implanting ion into a second region of a strained semiconductor layer on a multi-layer substrate to amorphize a portion of crystalline semiconductor material in the second region of the strained semiconductor layer without amorphizing a first region of the strained semiconductor layer. The amorphous region is recrystallized, and elements are diffused within the semiconductor layer to enrich a concentration of the diffused elements in a portion of the second region of the strained semiconductor layer and alter a strain state therein relative to a strain state of the first region of the strained semiconductor layer. A first plurality of transistor channel structures are formed that each comprise a portion of the first region of the semiconductor layer, and a second plurality of transistor channel structures are formed that each comprise a portion of the second region of the semiconductor layer.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: October 20, 2015
    Assignee: SOITEC
    Inventors: Mariam Sadaka, Bich-Yen Nguyen, Ionut Radu
  • Patent number: 9159400
    Abstract: A semiconductor memory having bit lines and wordlines crossing each other, a memory cell array formed by memory cells arranged in rows and columns on crossover points of the bit lines and wordlines, and sense amplifier banks arranged on opposite sides of the memory cell array. Each sense amplifier bank has staggered sense amplifiers connected to a bit line according to an interleaved arrangement whereby bit lines alternate in the direction of the wordlines between bit lines coupled to different sense amplifiers. This results in interconnect spaces parallel to the bit lines. Also, each sense amplifier bank includes a local column decoder for selecting a sense amplifier and which is staggered with the sense amplifiers and coupled to the sense amplifier by an output line running in an available interconnect space parallel to the bit lines.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 13, 2015
    Assignee: Soitec
    Inventors: Richard Ferrant, Gerhard Enders, Carlos Mazure
  • Patent number: 9142412
    Abstract: Embodiments relate to semiconductor structures and methods of forming semiconductor structures. The semiconductor structures include a substrate layer having a CTE that closely matches a CTE of one or more layers of semiconductor material formed over the substrate layer. In some embodiments, the substrate layers may comprise a composite substrate material including two or more elements. The substrate layers may comprise a metal material and/or a ceramic material in some embodiments.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: September 22, 2015
    Assignee: SOITEC
    Inventors: Christiaan J. Werkhoven, Chantal Arena
  • Patent number: 9138980
    Abstract: The present invention relates to an apparatus for the manufacture of semiconductor devices wherein the apparatus includes a bonding module that has a vacuum chamber to provide bonding of wafers under pressure below atmospheric pressure; and a loadlock module connected to the bonding module and configured for wafer transfer to the bonding module. The loadlock module is also connected to a first vacuum pumping device configured to reduce the pressure in the loadlock module to below atmospheric pressure. The bonding and loadlock modules remain at a pressure below atmospheric pressure while the wafer is transferred from the loadlock module into the bonding module.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: September 22, 2015
    Assignee: SOITEC
    Inventors: Marcel Broekaart, Ionut Radu
  • Patent number: 9136134
    Abstract: Methods of fabricating semiconductor devices include forming a metal silicide in a portion of a crystalline silicon layer, and etching the metal silicide using an etchant selective to the metal silicide relative to the crystalline silicon to provide a thin crystalline silicon layer. Silicon-on-insulator (SOI) substrates may be formed by providing a layer of crystalline silicon over a base substrate with a dielectric material between the layer of crystalline silicon and the base substrate, and thinning the layer of crystalline silicon by forming a metal silicide layer in a portion of the crystalline silicon, and then etching the metal silicide layer using an etchant selective to the metal silicide layer relative to the crystalline silicon.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: September 15, 2015
    Assignee: SOITEC
    Inventors: Mariam Sadaka, Ionut Radu
  • Patent number: 9135964
    Abstract: A differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line (BL) and an input connected to a second bit line complementary to the first bit line and a second CMOS inverter having an output connected to the second bit line (/BL) and an input connected to the first bit line. Each CMOS inverter includes pull-up and pull-down transistors, wherein the sources of either of the pull-up transistors or the pull-down transistors are electrically coupled and connected to a pull-up voltage source or a pull-down voltage source without an intermediate transistor between the sources of the transistors and the voltage source.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: September 15, 2015
    Assignee: Soitec
    Inventors: Richard Ferrant, Roland Thewes
  • Patent number: 9136113
    Abstract: A process for avoiding formation of an Si—SiO2—H2 environment during a dissolution treatment of a semiconductor-on-insulator structure that includes a carrier substrate, an oxide layer, a thin layer of a semiconductor material and a peripheral ring in which the oxide layer is exposed. This process includes encapsulating at least the exposed oxide layer of the peripheral ring with semiconductor material by performing a creep thermal treatment; and performing an oxide dissolution treatment to reduce part of the thickness of the oxide layer. In this process, the semiconductor material that encapsulates the oxide layer has a thickness before the oxide dissolution that is at least twice that of the oxide that is to be dissolved, thus avoiding formation of an Si—SiO2—H2 environment on the peripheral ring where the oxide layer would otherwise be exposed.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: September 15, 2015
    Assignee: SOITEC
    Inventors: Didier Landru, Fabrice Gritti, Eric Guiot, Oleg Kononchuk, Christelle Veytizou
  • Patent number: 9129800
    Abstract: The invention relates to a method for manufacturing a semiconductor on insulator type substrate for radio frequency applications, comprising the following steps in sequence: (a) provision of a silicon substrate with an electrical resistivity of more than 500 Ohm.cm, (b) formation of a polycrystalline silicon layer on the substrate, the method comprising a step between steps a) and b) to form a dielectric material layer, different from a native oxide layer, on the substrate, between 0.5 and 10 nm thick.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 8, 2015
    Assignees: Soitec, Commissariat A L'Energie Atomique et aux Energies Alternatives
    Inventors: Frédéric Allibert, Julie Widiez
  • Patent number: 9123631
    Abstract: A method for bonding a first wafer on a second wafer by molecular adhesion where the wafers have an initial radial misalignment between them. The method includes bringing the two wafers into contact so as to initiate the propagation of a bonding wave between the two wafers while a predefined bonding curvature is imposed on at least one of the two wafers during the contacting step as a function of the initial radial misalignment.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: September 1, 2015
    Assignee: SOITEC
    Inventor: Gweltaz Gaudin
  • Patent number: 9117686
    Abstract: The invention relates to a process for assembling a first element that includes at least one first wafer, substrate or at least one chip, and a second element of at least one second wafer or substrate, involving the formation of a surface layer, known as a bonding layer, on each substrate, at least one of the bonding layers being formed at a temperature less than or equal to 300° C.; conducting a first annealing, known as degassing annealing, of the bonding layers, before assembly, at least partly at a temperature at least equal to the subsequent bonding interface strengthening temperature but below 450° C.; forming an assembling of the substrates by bringing into contact the exposed surfaces of the bonding layers, and conducting an annealing of the assembled structure at a bonding interface strengthening temperature below 450° C.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: August 25, 2015
    Assignee: SOITEC
    Inventor: Gweltaz Gaudin
  • Patent number: 9117955
    Abstract: Semiconductor structures include an active region between a plurality of layers of InGaN. The active region may be at least substantially comprised by InGaN. The plurality of layers of InGaN include at least one well layer comprising InwGa1-wN, and at least one barrier layer comprising InbGa1-bN proximate the at least one well layer. In some embodiments, the value of w in the InwGa1-wN of the well layer may be greater than or equal to about 0.10 and less than or equal to about 0.40 in some embodiments, and the value of b in the InbGa1-bN of the at least one barrier layer may be greater than or equal to about 0.01 and less than or equal to about 0.10. Methods of fainting semiconductor structures include growing such layers of InGaN to form an active region of a light emitting device, such as an LED. Luminary devices include such LEDs.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: August 25, 2015
    Assignee: SOITEC
    Inventors: Chantal Arena, Jean-Philippe Debray, Richard Scott Kern
  • Patent number: 9111593
    Abstract: The invention relates to a differential sense amplifier for sensing data stored in a plurality of memory cells of a memory cell array, including a first CMOS inverter having an output connected to a first bit line and an input connected to a second bit line complementary to the first bit line, and a second CMOS inverter having an output connected to the second bit line and an input connected to the first bit line (BL). Each CMOS inverter includes a pull-up transistor and a pull-down transistor, with the sense amplifier having a pair of precharge transistors arranged to be respectively coupled to the first and second bit lines, to precharge the first and second bit lines to a precharge voltage. The precharge transistors are constituted by the pull-up transistors or by the pull-down transistors.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: August 18, 2015
    Assignee: Soitec
    Inventors: Richard Ferrant, Roland Thewes
  • Publication number: 20150214372
    Abstract: The present invention relates to a method for polarizing at least a first finfet transistor and a second finfet transistor, wherein the first finfet transistor has a fin width bigger than the fin width of the second finfet transistor, and both the first finfet transistor and the second finfet transistor have a back gate, and the method comprising applying the same first voltage on the back gate of the first finfet transistor and on the back gate of the second finfet transistor so as to reduce the spread between the off-current value of the first finfet transistor and the off-current value of the second finfet transistor.
    Type: Application
    Filed: September 10, 2013
    Publication date: July 30, 2015
    Applicant: SOITEC
    Inventor: Franz Hofmann
  • Patent number: 9093271
    Abstract: The invention relates to a method for manufacturing, by means of epitaxy, a monocrystalline layer of GaN on a substrate, wherein the coefficient of thermal expansion is less than the coefficient of thermal expansion of GaN, comprising the following steps: (b) three-dimensional epitaxial growth of a layer of GaN relaxed at the epitaxial temperature, (c1) growth of an intermediate layer of BwAlxGayInzN, (c2) growth of a layer of BwAlxGayInzN, (c3) growth of an intermediate layer of BwAlxGayInzN, at least one of the layers formed in steps (c1) to (c3) being an at least ternary III-N alloy comprising aluminium and gallium, (d) growth of said layer of GaN.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: July 28, 2015
    Assignees: Soitec, Centre National de la Recherche Scientifique (CNRS)
    Inventors: David Schenk, Alexis Bavard, Yvon Cordier, Eric Frayssinet, Mark Kennard, Daniel Rondi
  • Patent number: 9087767
    Abstract: The invention relates to a process for manufacturing a semiconductor structure comprising a functionalized layer on a support substrate, comprising the following steps: (a) implanting ionic species in a source substrate comprising the said functionalized layer and a sacrificial buffer layer located under the functionalized layer relative to the direction of implantation, to a depth delimiting the thickness of an upper part of the source substrate comprising the functionalized layer and at least part of the buffer layer; (b) bonding the source substrate to the support substrate; (c) fracturing the source substrate and transferring the upper part of the source substrate to the support substrate; (d) removing the buffer layer by selective etching with respect to the functionalized layer.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: July 21, 2015
    Assignee: SOITEC
    Inventor: Ionut Radu
  • Patent number: 9082819
    Abstract: The invention relates to a process for thinning the active silicon layer of a substrate, which comprises an insulator layer between the active layer and a support, this process comprising one step of sacrificial thinning of active layer by formation of a sacrificial oxide layer by sacrificial thermal oxidation and deoxidation of the sacrificial oxide layer. The process is noteworthy in that it comprises: a step of forming a complementary oxide layer on the active layer, using an oxidizing plasma, this layer having a thickness profile complementary to that of oxide layer, so that the sum of the thicknesses of the oxide layer and of the sacrificial silicon oxide layer are constant over the surface of the treated substrate, a step of deoxidation of this oxide layer, so as to thin active layer by a uniform thickness.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: July 14, 2015
    Assignee: SOITEC
    Inventors: Francois Boedt, Sebastien Kerdiles
  • Patent number: 9082948
    Abstract: Methods for fabricating a semiconductor substrate include forming a first substrate layer over a surface of a first semiconductor layer, and thermally spraying a second substrate layer on a side of the first substrate layer opposite the first semiconductor layer. At least one additional semiconductor layer is epitaxially grown over the first semiconductor layer on a side thereof opposite the first substrate layer. At least one of the first substrate layer and the second substrate layer may be formulated to exhibit a Coefficient of Thermal Expansion (CTE) closely matching a CTE of at least one of the first semiconductor layer and the at least one additional semiconductor layer. Semiconductor structures are fabricated using such methods.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: July 14, 2015
    Assignee: SOITEC
    Inventors: Christiaan J. Werkhoven, Chantal Arena
  • Publication number: 20150191344
    Abstract: Methods of forming semiconductor devices comprising integrated circuits and microelectromechanical system (MEMS) devices operatively coupled with the integrated circuits involve the formation of an electrically conductive via extending at least partially through a substrate from a first major surface of the substrate toward an opposing second major surface of the substrate, and the fabrication of at least a portion of an integrated circuit on the first major surface of the substrate. A MEMS device is provided on the second major surface of the substrate, and the MEMS device is operatively coupled with the integrated circuit using the at least one electrically conductive via. Structures and devices are fabricated using such methods.
    Type: Application
    Filed: July 8, 2013
    Publication date: July 9, 2015
    Applicant: SOITEC
    Inventors: Mariam Sadaka, Bernard Aspar, Chrystelle Lagahe Blanchard
  • Patent number: 9076713
    Abstract: The invention relates to a method for fabricating a locally passivated germanium-on-insulator substrate wherein, in order to achieve good electron mobility, nitridized regions are provided at localized positions. Nitridizing is achieved using a plasma treatment. The resulting substrates also form part of the invention.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: July 7, 2015
    Assignees: Soitec, Commissariat à l'Énergie Atomique
    Inventors: Thomas Signamarcheix, Frederic Allibert, Chrystel Deguet