Abstract: An all-around gate field-effect transistor includes two drain-source areas supported by a semiconductor substrate. At least one channel region, surrounded with a gate insulated by a gate insulator, extends between the two drain-source areas. The at least one channel region is located above an insulating layer resting on the substrate and positioned between the two drain-source areas. This insulating layer has a thickness-to-permittivity ratio at least 2 times greater than that of the gate insulator. An extension of the insulating layer is positioned to insulate at least one of the channel regions from the semiconductor substrate.
Abstract: An embodiment circuit includes a first reference source configured to provide a first reference signal to an analog-to-digital convertor (ADC). The circuit also includes a filter coupled to an output of the first reference source and configured to filter the first reference signal to produce a filtered first reference signal. The circuit further includes a second reference source coupled to an output of the filter. The second reference source is configured to provide a second reference signal to the ADC, and the second reference signal is generated based on the filtered first reference signal.
Abstract: A MEMS force sensor has: a substrate; a fixed electrode coupled to the substrate; and a mobile electrode suspended above the substrate at the fixed electrode to define a sensing capacitor, the mobile electrode being designed to undergo deformation due to application of a force to be detected. A dielectric material region is set on the fixed electrode and spaced apart by an air gap from the mobile electrode, in resting conditions. The mobile electrode comes to bear upon the dielectric material region upon application of a minimum detectable value of the force, so that a contact surface between the mobile electrode and the dielectric material region increases, in particular in a substantially linear way, as the force increases.
Abstract: A circuit includes a Wheatstone bridge and a correction circuit operable to correct an output voltage offset of the Wheatstone bridge. The correction circuit includes a supply module configured to supply the Wheatstone bridge with a voltage and output a first current applied to the Wheatstone bridge and output a second current proportional to the first current. A digital/analog current converter outputs a correction current to the outputs of the Wheatstone bridge circuit in response to a digital correction signal and the second current.
Abstract: A tunneling field effect transistor is formed from a fin of semiconductor material on a support substrate. The fin of semiconductor material includes a source region, a drain region and a channel region between the source region and drain region. A gate electrode straddles over the fin at the channel region. Sidewall spacers are provided on each side of the gate electrode. The source of the transistor is made from an epitaxial germanium content source region grown from the source region of the fin and doped with a first conductivity type. The drain of the transistor is made from an epitaxial silicon content drain region grown from the drain region of the fin and doped with a second conductivity type.
Abstract: An embodiment circuit includes a first charge pump configured to generate a first current at a first node, and a second charge pump configured to generate a second current at a second node. The circuit further includes an isolation buffer coupled between the first node and the second node and an adder having a first input coupled to the second node. The circuit additionally includes an auxiliary charge pump configured to generate a third current at a second input of the adder, and an oscillator having an input coupled to an output of the adder.
Abstract: A method is for reducing pulse skipping from a characteristic affecting a modulating signal input to an integrator of a pulse width modulation (PWM) modulator, together with a square wave carrier signal for generating a triangular waveform of the PWM modulator. The method may include creating a broad synchronous peak at vertexes of the triangular waveform output by the integrator.
Abstract: An integrated circuit, comprising an electrical-switching mechanical device in a housing having at least one first thermally deformable assembly including a beam held in at least two different locations by at least two arms secured to edges of the housing, the beam and the arms being metallic and situated within the same first metallization level and an electrically conductive body, wherein the said first thermally deformable assembly has at least one first configuration at a first temperature and a second configuration when at least one is at a second temperature different from the first temperature, wherein the beam is at a distance from the body in the first configuration and in contact with the said body and immobilized by the said body in the second configuration and establishing or prohibiting an electrical link passing through the body and through the beam.
Type:
Grant
Filed:
May 29, 2014
Date of Patent:
July 17, 2018
Assignee:
STMicroelectronics (Rousset) SAS
Inventors:
Antonio Di-Giacomo, Christian Rivero, Pascal Fornara
Abstract: A method of protecting a modular exponentiation calculation on a first number and an exponent, modulo a first modulo, executed by an electronic circuit using a first register or memory location and a second register or memory location, successively including, for each bit of the exponent: generating a random number; performing a modular multiplication of the content of the first register or memory location by that of the second register or memory location, and placing the result in one of the first and second registers or memory locations selected according to the state of the bit of the exponent; performing a modular squaring of the content of one of the first and second registers or memory locations selected according to the state of the exponent, and placing the result in this selected register or memory location, the multiplication and squaring operations being performed modulo the product of the first modulo by said random number.
Abstract: Processes and overturned thin film device structures generally include a metal gate having a concave shape defined by three faces. The processes generally include forming the overturned thin film device structures such that the channel self-aligns to the metal gate and the contacts can be self-aligned to the sacrificial material.
Type:
Grant
Filed:
September 8, 2016
Date of Patent:
July 17, 2018
Assignees:
INTERNATIONAL BUSINESS MACHINES CORPORATION, STMICROELECTRONICS, INC.
Inventors:
Lawrence A. Clevenger, Carl J. Radens, Yiheng Xu, John H. Zhang
Abstract: Disclosed herein is an electronic device including a first touch circuit to be coupled to a first touch sensing unit, the first touch sensing unit having first drive lines and first sense lines intersecting the first drive lines. A second touch circuit is to be coupled to a second touch sensing unit, the second touch sensing unit having second drive lines and second sense lines intersecting the second drive lines. A touch force circuit is to be coupled to a touch force sensing unit, the touch force sensing unit having third drive lines and third sense lines intersecting the third drive lines. The first touch circuit, second touch circuit, and touch force circuit are configured to drive the first, second, and third drive lines as a function of a synchronization signal, and acquire data from the first, second, and third sense lines as a function of the synchronization signal.
Abstract: A process for manufacturing a surface-mount electronic device includes forming a plurality of preliminary contact regions of a sinterable material on a supporting structure, the supporting structure being of a soluble type. A chip including a semiconductor body is mechanically coupled to the supporting structure. The sinterable material is sintered such that each preliminary contact region forms a corresponding sintered preliminary contact, and the chip and the plurality of preliminary contact regions are coated with a dielectric coating region, and the supporting structure is removed using a jet of liquid.
Abstract: The microintegrated sensor comprises a stack formed by a sensor layer, of semiconductor material, by a cap layer, of semiconductor material, and by an insulating layer. The sensor layer and the cap layer have a respective peripheral portion surrounding a central portion, and the insulating layer extends between the peripheral portions of the sensor layer and of the cap layer. An air gap extends between the central portions of the sensor layer and of the protection layer. A through trench extends into the central portion of the sensor layer as far as the air gap and surrounds a platform housing a sensitive element. The cap layer has through holes in the insulating layer that extend from the air gap and form a fluidic path with the air gap and the through trench.
Abstract: A memory management unit (MMU) may manage address translations. The MMU may obtain a first intermediate physical address (IPA) based on a first virtual address (VA) relating to a first memory access request. The MMU may identify, based on the first IPA, a first memory page entry in a second address translation table. The MMU may store, in a second cache memory, a first IPA-to-PA translation based on the identified first memory page entry. The MMU may store, in the second cache memory and in response to the identification of the first memory page entry, one or more additional IPA-to-PA translations that are based on corresponding one or more additional memory page entries in the second address translation table. The one or more additional memory page entries may be contiguous to the first memory page entry.
Abstract: A galvanic isolation is provided between a first circuit and a second circuit. A first galvanically isolated link is configured to transfer power from a first circuit to a second circuit across the galvanic isolation. A second galvanically isolated link is configured to feed back an error signal from the second circuit to the first circuit across the galvanic isolation for use in regulating the power transfer and further configured to support bidirectional data communication between the first and second circuits across the galvanic isolation.
Abstract: An ESD protection device includes a MOS transistor connected between a first terminal and a second terminal and having a gate region, source/drain region and a well region electrically coupled by a resistive-capacitive circuit configured to control turn on of the MOS transistor in response to an ESD event. The resistive-capacitive circuit has a common part with at least one of the source, gate or drain regions of the MOS transistor and includes a capacitive element and a resistive element. A first electrode of the capacitive element is formed by the resistive element and a second electrode of the capacitive element is formed by at least a portion of a semiconductor film within which the source/drain region is formed.
Abstract: A PNP transistor is manufactured in parallel with the manufacture of NPN, NMOS, and PMOS transistors. A first semiconductor layer is deposited on a P-type doped semiconductor substrate and divided into first, second, and third regions, with the third region forming the base. An insulating well is deeply implanted into the substrate. First and second third wells, respectively of N-type and P-type are formed to extend between the second region and third region and the insulating well. A third well of P-type is formed below the third region to provide the collector. Insulating layers are deposited over the third region and patterned to form an opening. Epitaxial growth of a second P-type doped semiconductor layer is performed in the opening to provide the emitter.
Abstract: An embodiment circuit includes a first source follower configured to be controlled by a voltage at a first node, a photodiode controllably coupled to the first node, and a bias transistor configured to be controlled by a bias voltage. The bias transistor has a first terminal coupled to an output of the first source follower. The circuit additionally includes a storage node controllably coupled to the output of the first source follower, and an amplifier controllably coupled between the storage node and an output line. Also included in the circuit is a controllable switching element configured to couple a second terminal of the bias transistor to a supply voltage in response to a pixel operating in a first mode, and to couple the second terminal of the bias transistor to the output line in response to the pixel operating in a second mode.
Abstract: A circuit for generating a bandgap voltage includes a circuit module for generation of a base-emitter voltage difference, the circuit module including a pair of PNP bipolar substrate transistors which identify a first current path and a second current path. A first current mirror of an n type is connected between the first and second branches and is further connected via a resistance for adjustment of the bandgap voltage to the second bipolar transistor. A second current mirror of a p type is connected between the first and second branches, and connected so that the current mirrors repeat current of each other. In operation to generate the bandgap voltage, current flows from the supply voltage to ground only through said the first and second bipolar substrate transistors.
Type:
Grant
Filed:
January 15, 2016
Date of Patent:
July 10, 2018
Assignee:
STMicroelectronics S.r.l.
Inventors:
Calogero Marco Ippolito, Mario Chiricosta
Abstract: An audio device includes an audio amplifier configured to receive an input signal and generate a differential output signal. A first signal combiner circuit is configured to generate a time-convolution signal of an analog current signal and an analog voltage signal. The analog current signal corresponds to a current at the differential output signal, and the analog voltage signal corresponds to a voltage across the differential output signal. A second signal combiner circuit is configured to subtract the generated time-convolution signal from the input signal.