Patents Assigned to STMicroelectronics (Crolles 2)
  • Publication number: 20210005612
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicants: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak MARZAKI, Arnaud REGNIER, Stephan NIEL, Quentin HUBERT, Thomas CABOUT
  • Publication number: 20210006163
    Abstract: A first switch couples an input node receiving a main control signal for a main switching stage of a multi-phase converter to an output node delivering a secondary control signal for a secondary switching stage following actuation of the secondary switching stage. A second switch couples the output node to a capacitor during a time period of actuation/deactuation of the secondary switching stage. Current is sourced to the capacitor during the actuation time period or sunk from the capacitor during the deactuation time period. The sourced or sunk current may be generated proportional to the main control signal.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 7, 2021
    Applicant: STMicroelectronics S.r.l.
    Inventor: Alberto CATTANI
  • Publication number: 20210005613
    Abstract: A capacitive element includes a trench extending vertically into a well from a first side. The trench is filled with a conductive central section clad with an insulating cladding. The capacitive element further includes a first conductive layer covering a first insulating layer that is located on the first side and a second conductive layer covering a second insulating layer that is located on the first conductive layer. The conductive central section and the first conductive layer are electrically connected to form a first electrode of the capacitive element. The second conductive layer and the well are electrically connected to form a second electrode of the capacitive element. The insulating cladding, the first insulating layer and the second insulating layer form a dielectric region of the capacitive element.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicants: STMicroelectronics (Rousset) SAS, STMicroelectronics (Crolles 2) SAS
    Inventors: Abderrezak MARZAKI, Arnaud REGNIER, Stephan NIEL, Quentin HUBERT, Thomas CABOUT
  • Publication number: 20210006034
    Abstract: A level-shifter includes an input node coupled to a laser driver input receiving a trigger signal, the input node receiving a signal indicating generation of a laser drive-pulse. A p-channel transistor has a source coupled to a supply node, a drain coupled to an output node, and a gate coupled to the input node. An n-channel transistor has a drain coupled to the drain of the p-channel transistor, a source coupled to ground, and a gate coupled to the input node. A first switch couples the input node to the output node. Another p-channel transistor has a source coupled to the supply node, a drain coupled to the output node by a second switch, and a gate coupled to the input node. The first switch closes and second switch opens when the signal is low, and the first switch opens and second switch closes when the signal is high.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicants: STMicroelectronics S.r.l., Politecnico Di Milano
    Inventors: Marco ZAMPROGNO, Alireza TAJFAR
  • Patent number: 10886931
    Abstract: A circuit includes analog input nodes and switches selectively coupling each of the analog input nodes to a capacitive node. Each of the switches is controlled by a respective bit of a channel selection word. Level shifting circuits are respectively coupled in parallel with the switches. A sampling capacitor is coupled between an output node and ground, the output node being coupled to the capacitive node. An analog to digital converter operates to digitize voltages at the output node.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: January 5, 2021
    Assignee: STMicroelectronics International N.V.
    Inventors: Rajesh Narwal, Kavindu Shekhar Benjwal
  • Patent number: 10886283
    Abstract: An integrated circuit includes at least one antifuse element. The antifuse element is formed from a semiconductor substrate, a trench extending down from a first face of the semiconductor substrate into the semiconductor substrate, a first conductive layer housed in the trench and extending down from the first face of the semiconductor substrate into the semiconductor substrate, a dielectric layer on the first face of the semiconductor substrate, and a second conductive layer on the dielectric layer. A program transistor selectively electrically couples the second conductive layer to a program voltage in response to a program signal. A program/read transistor selectively electrically couples the first conductive layer to a ground voltage in response to the program signal and in response to a read signal. A read transistor selectively electrically couples the second conductive layer to a read amplifier in response to the read signal.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: January 5, 2021
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Abderrezak Marzaki, Pascal Fornara
  • Patent number: 10886240
    Abstract: An integrated circuit is protected against at attack. An electrically conductive body at floating potential is situated in the integrated circuit. The electrically conductive body has an initial amount of electric charge prior to the attack and functions to collect electric charge as a result of the attack. A detection circuit operates to detect an amount of electric charge collected on the electrically conductive body and determine whether the collected amount is different from the initial amount. If the detected amount of charge is different from the initial amount, a control circuit trigger the taking of a protective action.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: January 5, 2021
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Pascal Fornara, Fabrice Marinet
  • Patent number: 10886210
    Abstract: A cover for an electronic device includes a support body having a through-passage. An optical element which allows light to pass is mounted on said support body in a position extending across the through-passage. A surface of the optical element includes an electrically-conducting track configured as a security detection element. At least two electrical connection leads are rigidly attached to the support body and include first uncovered portions internal to the support body and electrically connected to spaced apart locations on the electrically-conducting track. The at least two electrical connection leads further including second uncovered portions external to said support body. The cover is mounted on a support plate carrying an electronic chip situated in the through-passage at a distance from the optical element.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: January 5, 2021
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventor: Romain Coffy
  • Publication number: 20200411381
    Abstract: A circuit includes at least one bipolar transistor and at least one variable capacitance diode. The circuit is fabricated using a method whereby the bipolar transistor and variable capacitance diode are jointly produced on a common substrate.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 31, 2020
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventors: Gregory AVENIER, Alexis GAUTHIER, Pascal CHEVALIER
  • Publication number: 20200411454
    Abstract: A semiconductor substrate has a back face and a front face and includes a semiconductor well that is electrically isolated from the semiconductor substrate. A device is configured to detect a thinning of the semiconductor substrate from the back face. The device includes at least one trench that extends within the semiconductor well between two peripheral locations from the front face down to a location situated at a distance from a bottom of the semiconductor well. The trench is electrically isolated from the semiconductor well. A detection circuit is configured to measure a physical quantity representative of well electrical resistance between two contact areas respectively situated on either side of the at least one first trench.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 31, 2020
    Applicant: STMicroelectronics (Rousset) SAS
    Inventor: Abderrezak MARZAKI
  • Publication number: 20200408805
    Abstract: A microelectromechanical system (MEMS) accelerometer sensor has a mobile mass and a sensing capacitor. To self-test the sensor, a test signal is applied to the sensing capacitor during a reset phase of a sensing circuit coupled to the sensing capacitor. The test signal is configured to cause an electrostatic force which produces a physical displacement of the mobile mass corresponding to a desired acceleration value. Then, during a read phase of the sensing circuit, a variation in capacitance of sensing capacitor due to the physical displacement of the mobile mass is sensed. This sensed variation in capacitance is converted to a sensed acceleration value. A comparison of the sensed acceleration value to the desired acceleration value provides an indication of an error in operation of the MEMS accelerometer sensor if the sensed acceleration value and desired acceleration value are not substantially equal.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicants: STMicroelectronics, Inc., STMicroelectronics S.r.l.
    Inventors: Yamu HU, David MCCLURE, Alessandro TOCCHIO, Naren K. SAHOO, Anthony Junior CASILLAN
  • Publication number: 20200412088
    Abstract: A pulsed signal generator generates a pulsed signal having a pulse width intended to be equal to a given fraction of a pulse width of a reference clock. A reference current source outputs current having a reference magnitude, and a comparison current source outputs current having a magnitude that is a function of the reference magnitude and the given fraction. A comparison circuit compares a total current output by one of the reference current source and the comparison current source during pulses of the reference clock to a total current output by the other of the reference current source and the comparison current source during pulses of the pulsed signal equal in number to the pulses of the reference clock in order to determine whether the pulse width of the pulse signal is less than or equal to the given fraction of the pulse width of the reference clock.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Applicants: STMicroelectronics S.r.l., Politecnico Di Milano
    Inventors: Marco ZAMPROGNO, Alireza TAJFAR
  • Publication number: 20200411657
    Abstract: A NiPt layer with a Pt atom concentration equal to 15% plus or minus 1% is deposited on a semiconductor region (which may, for example, be a source/drain region of a MOS transistor). An anneal is then performed at a temperature of 260° C. plus or minus 20° C., for a duration in the range from 20 to 60 seconds, in order to produce, from the Nickle-Platinum (NiPt) layer and the semiconductor material of said semiconductor region, an intermetallic layer. Advantageously, the intermetallic layer possesses a structure of heteroepitaxy with the semiconductor material, and includes free Pt atoms.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 31, 2020
    Applicant: STMicroelectronics (Crolles 2) SAS
    Inventor: Magali GREGOIRE
  • Publication number: 20200408523
    Abstract: A drive signal is applied to a MEMS gyroscope having several intrinsic resonant modes. Frequency and amplitude of mechanical oscillation in response to the drive signal is sensed. At startup, the drive signal frequency is set to a kicking frequency offset from a resonant frequency corresponding to a desired one of the intrinsic resonant modes. In response to sufficient sensed amplitude of mechanical oscillation at the kicking frequency, a frequency tracking process is engaged to control the frequency for the drive signal to sustain mechanical oscillation at the frequency of the desired one of the plurality of intrinsic resonant modes as the oscillation amplitude increases. When the increasing amplitude of the mechanical oscillation exceeds a threshold, a gain control process is used to exercise gain control over the applied drive signal so as to cause the amplitude of mechanical oscillation to match a further threshold. At that point start-up terminates.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicant: STMicroelectronics, Inc.
    Inventors: Deyou FANG, Chao-Ming TSAI, Yamu HU
  • Publication number: 20200412124
    Abstract: Electrostatic discharge (ESD) protection is provided in using a supply clamp circuit using an ESD event actuated MOSFET device. Triggering of the MOSFET device is made at both the gate terminal and the substrate (back gate) terminal. Additionally, the MOSFET device can be formed of cascoded MOSFETs.
    Type: Application
    Filed: September 9, 2020
    Publication date: December 31, 2020
    Applicants: STMicroelectronics International N.V., STMicroelectronics SA
    Inventors: Radhakrishnan SITHANANDAM, Divya AGARWAL, Ghislain TROUSSIER, Jean JIMENEZ, Malathi KAR
  • Publication number: 20200411510
    Abstract: A substrate has an active area including first and second doped regions separated by portions of the substrate. Gates are located over the active area, each gate formed extending over a portion of the substrate separating adjacent first and second doped regions. A length of the doped regions is greater than other devices within the substrate that have a same gate oxide thickness. A first metallization layer has first electrical connectors between each of the first doped regions and a gate immediately adjacent thereto, and second electrical connectors connected to each of the second doped regions. A second metallization layer has a first electrical connector connected to each first electrical connector of the first metallization layer, and a second electrical connector connected to each second electrical connector of the first metallization layer, with the second electrical connector of the second metallization layer not overlapping the gates.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 31, 2020
    Applicant: STMicroelectronics International N.V.
    Inventor: Vishal Kumar SHARMA
  • Publication number: 20200408524
    Abstract: A microelectromechanical system (MEMS) gyroscope sensor has a sensing mass and a quadrature error compensation control loop for applying a force to the sensing mass to cancel quadrature error. To detect fault, the quadrature error compensation control loop is opened and an additional force is applied to produce a physical displacement of the sensing mass. A quadrature error resulting from the physical displacement of the sensing mass in response to the applied additional force is sensed. The sensed quadrature error is compared to an expected value corresponding to the applied additional force and a fault alert is generated if the comparison is not satisfied.
    Type: Application
    Filed: June 26, 2019
    Publication date: December 31, 2020
    Applicant: STMicroelectronics, Inc.
    Inventors: Yamu HU, Deyou FANG, David MCCLURE, Huantong ZHANG, Naren K. SAHOO
  • Publication number: 20200412241
    Abstract: A voltage doubler circuit supports operation in both a positive voltage boosting mode to positively boost voltage from a first node to a second node and a negative voltage boosting mode to negatively boost voltage from the second node to the first node. The voltage doubler circuit is formed by transistors of a same conductivity type that share a common bulk that is not tied to a source of any of the voltage doubler circuit transistors. A bias generator circuit is coupled to receive a first voltage from the first node and second voltage from the second node. The bias generator circuit operates to apply a lower one of the first and second voltages to the common bulk.
    Type: Application
    Filed: September 15, 2020
    Publication date: December 31, 2020
    Applicant: STMicroelectronics International N.V.
    Inventor: Vikas RANA
  • Publication number: 20200408819
    Abstract: An oscillatory electric signal having an oscillation frequency is processed by time-sampling to generate a sampled oscillatory electric signal. A nonlinear circuit driven by the sampled oscillatory electric signal outputs a hysteretic response signal as a function of the sampled oscillatory electric signal. The hysteretic response signal has a frequency in a first frequency range as a result of an increase in the oscillation frequency of the oscillatory electric signal, and a frequency in a second frequency range as a result of a decrease in the oscillation frequency of the oscillatory electric signal. A detection circuit processes the hysteretic response signal to compute an envelope signal of the hysteretic response signal, perform a comparison of the envelope signal with a threshold, and produce a signal indicative of an increase or a decrease in the oscillation frequency of the oscillatory electric signal as a result of the outcome of the comparison.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 31, 2020
    Applicant: STMicroelectronics S.r.l.
    Inventors: Marco Maria BRANCIFORTE, Luigi FORTUNA, Arturo BUSCARINO, Maide BUCOLO, Fernando Nuwan PORUTHOTAGE
  • Publication number: 20200412344
    Abstract: A monostable circuit includes a delay cell with a reference generator generating a reference current based upon a PVT invariant resistance and a threshold voltage, and a delay block with an output capacitor and an output circuit altering an amount of charge stored on the output capacitor as a function of the reference current, in response to an input signal. An inverter has an input coupled to the output circuit. A logic circuit logically combines output of the inverter and the input signal to generate a monostable trigger pulse. The output circuit includes a current source sourcing the reference current to the output capacitor in response to a first logic state of an input signal, and a current sink sinking current from the output capacitor to discharge the output capacitor, in response to a second logic state of the input signal.
    Type: Application
    Filed: June 27, 2019
    Publication date: December 31, 2020
    Applicants: STMicroelectronics S.r.l., Politecnico Di Milano
    Inventors: Marco ZAMPROGNO, Alireza TAJFAR