Abstract: A semiconductor package includes an RFID chip positioned between a first die and a second die attached to a support substrate. The RFID chip is free of electrical connections to the dice and the support substrate. The RFID chip is sized to correspond to an interposer board. Data pertaining to operating characteristics of the dice are stored to and read from the RFID chip during back-end processing to determine abnormalities and improve yield. Said data may be stored to a database corresponding to the RFID chip in the package. A method of making a semiconductor package having an RFID chip positioned between dice is provided. The package is traceable by customers via the data stored to the RFID chip and the database.
Abstract: A device is provided for monitoring the total current discharged from a battery. The device includes a bridge circuit of resistors in which one of the resistors has a resistance which varies according to the current which has passed through it. Whenever the battery passes a current to a load, a small portion of the current is passed through the bridge circuit.
Abstract: A PWM receiver circuit receives and demodulates pulse width modulated (PWM) data signals without requiring synchronization such that no synchronization preamble need be provided with the PWM data signal. Embodiments may consume less power since there is no need to repeatedly synchronize a PLL, counter or other circuitry to the PWM data signal. Furthermore, the PWM receiver circuit operates in view of or is “tolerant” to jitter in the frequency of the PWM signal and also to a relatively wide range of intentional variation in the frequency. Interleaved operation of parallel PWM receiver circuits are utilized in some embodiments. In one embodiment currents are integrated during low and high portions of the duty cycle of the PWM data signal and the difference in the respective voltages generated through such integration used to demodulate the PWM data signal.
Abstract: Apparatus and methods to measure capacitance changes for a touch-sensitive capacitive matrix are described. Charge-removal circuits and measurement techniques may be employed to cancel deleterious effects of parasitic capacitances in the touch-sensitive capacitive matrix. Capacitively switching a supply during timed charge removal may be used to cancel unwanted effects due to clock jitter. The apparatus and methods can improve signal-to-noise characteristics, sensitivity, and/or dynamic range for capacitive measurements relating to touch-sensitive capacitive devices.
Type:
Application
Filed:
March 29, 2013
Publication date:
October 2, 2014
Applicant:
STMicroelectronics Asia Pacific Pte. Ltd.
Abstract: A lens mount is attached to a circuit board and covers electrical components on the circuit board. An electrically insulating device is positioned between the lens mount and the circuit board. The circuit board includes a grounding pad adjacent the electrically insulating device. The lens mount includes an aperture aligned with the grounding pad and the electrically insulating device. A conductive glue is dispensed into the aperture to electrically ground the lens mount to the grounding pad. The electrically insulating device seals the conductive glue from the electrical components. A method of grounding a lens mount to a circuit board is provided.
Abstract: Embodiments are directed to a package that includes an electric device having a recess. In one embodiment, the electric device is a sensor and the recess reduces signal drift of the sensor caused by thermal expansion of the package. In another embodiment, the recess is substantially filled with adhesive material, thus increasing adhesion between the electric device and a substrate of the package while at the same time allowing for lower adhesive fillets.
Abstract: A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measureable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
Abstract: An integrated capacitive-type humidity sensor formed in a semiconductor chip integrating a sensing capacitor and a reference capacitor. Each of the sensing and reference capacitors have at least a first electrode and at least a second electrode, the first and second electrodes of each of the sensing and reference capacitors being arranged at distance and mutually insulated. A hygroscopic layer extends on the sensing and reference capacitors and a conductive shielding region extends on the reference capacitor but not on the sensing capacitor.
Abstract: A semiconductor package includes a transmissive support plate and includes at least one elongate hole. An integrated circuit semiconductor device is mounted on a rear face of the support plate. The semiconductor device includes first and second optical elements oriented towards the rear face of the support plate, where the first and second optical elements are placed on either side of the elongate hole. An encapsulation material made of an opaque material encapsulates the semiconductor device and fills the elongate hole so as to form an optical insulation partition between the first and second optical elements. A cavity is left, however, between each optical element and a rear face of the support plate.
Abstract: A structure for storing a native binary code in an integrated circuit, including an array of planar MIM capacitors above an insulating layer formed above a copper metallization network, wherein at least one metallization portion is present under each MIM capacitor. The size of the portion(s) is selected so that from 25 to 75% of the MIM capacitors have a breakdown voltage smaller by at least 10% than that of the other MIM capacitors.
Abstract: An integrated imaging device includes a silicon layer provided over a dielectric multilayer. The dielectric multilayer includes a top silicon-dioxide layer, an intermediate silicon-nitride layer and a bottom silicon-dioxide layer. Imaging circuitry is formed at a frontside of the silicon layer. An isolating structure surrounds the imaging circuitry and extends from the frontside through the silicon layer and top silicon-dioxide layer into and terminating within the intermediate silicon-nitride layer. A filter for the imaging circuitry is mounted to a backside of the bottom silicon-dioxide layer. The isolating structure is formed by a trench filled with a dielectric material.
Type:
Grant
Filed:
May 30, 2012
Date of Patent:
September 30, 2014
Assignee:
STMicroelectronics (Croles 2) SAS
Inventors:
Francois Roy, Francois Leverd, Jens Prima
Abstract: A semiconductor thermoelectric cooler includes P-type and N-type thermoelectric cooling elements. The P-type and N-type thermoelectric elements have a first portion having a first cross-sectional area and a second portion having a second cross-sectional area larger than the first cross-sectional area. The P-type and N-type thermoelectric cooling elements may, for example, be T-shaped or L-shaped. In another example, the thermoelectric cooling elements have a first surface having a first shape configured to couple to a first electrical conductor and a second surface opposite the first surface and having a second shape, different from the first shape, and configured to couple to a second electrical conductor. For example, the first surface may have a rectilinear shape of a first area and the second surface may have a rectilinear shape of a second area different from the first area. The semiconductor thermoelectric cooler may be manufactured using thin film technology.
Abstract: The component incorporates, in topological terms, a scalable number of triac structures in a concentric annular arrangement. The component can be used with an electronic device to protect against electrostatic discharges. For example, the components can be used to protect the input/output pad, the first power supply terminal, and the second power supply terminal of an integrated circuit against electrostatic discharges.
Type:
Grant
Filed:
March 12, 2013
Date of Patent:
September 30, 2014
Assignee:
STMicroelectronics S.A.
Inventors:
Jean Jimenez, Philippe Galy, Boris Heitz
Abstract: A memory circuit for an Aho-Corasick type character recognition automaton uses a node tree for recognizing predetermined strings of characters in an incoming data stream. The recognization is based upon successive transitions in the node tree stored in memory in which each node corresponds to a recognized sequence of a character string. At least part of the nodes are related to a consecutive node by a valid transition, from an initial state to terminal states, with each one corresponding to a recognized character string This memory circuit includes first sets of consecutive memory addresses defining respectively strings of consecutive nodes accessible sequentially during successive transitions to a terminal state, and second sets of memory addresses defining multiple nodes each pointing to several states.
Abstract: Electronic device including a substrate provided with at least one passing opening, a MEMS device with a differential sensor provided with a first and a second surface having at least one portion sensitive to chemical and/or physical variations of fluids present in correspondence with a first and a second opposed active surface thereof. The first surface of the MEMS device leaves the first active surface exposed and the second surface being provided with a further opening which exposes said second opposed active surface, the electronic device being characterized in that the first surface of the MEMS device faces the substrate and is spaced therefrom by a predetermined distance, the sensitive portion being aligned to the passing opening of the substrate, and in that it also comprises a protective package, which incorporates at least partially the MEMS device and the substrate.
Type:
Grant
Filed:
May 31, 2013
Date of Patent:
September 30, 2014
Assignee:
STMicroelectronics S.r.l.
Inventors:
Lorenzo Baldo, Chantal Combi, Mario Francesco Cortese
Abstract: A method for verifying the integrity of a key implemented in a symmetrical ciphering or deciphering algorithm, including the steps of complementing to one at least the key; and verifying the coherence between two executions of the algorithm, respectively with the key and with the key complemented to one.
Abstract: A micro-electrochemical sensor contains magnetic compounds inserted within a substrate that exert a magnetic force of attraction on paramagnetic beads held in contact with an electrode. The magnetic compounds can be contained within a fluid that is introduced into a void in the substrate. The electrode can be spaced apart from the magnetic compounds by a dielectric multi-layer membrane. During the fabrication process, different layers within the membrane-electrode structure can be tuned to have compressive or tensile stress so as to maintain structural integrity of the membrane, which is thin compared with the size of the void beneath it. During a process of forming the structure of the sensor, the tensile stress in a TiW adhesion layer can be adjusted to offset a composite net compressive stress associated with the dielectric layers of the membrane. The membrane can also be used in forming both the electrode and the void.
Abstract: Electrical energy is generated in a device that includes an integrated circuit which produces thermal flux when operated. A substrate supports the integrated circuit. A structure is formed in the substrate, that structure having a semiconductor p-n junction thermally coupled to the integrated circuit. Responsive to the thermal flux produced by the integrated circuit, the structure generates electrical energy. The generated electrical energy may be stored for use by the integrated circuit.
Abstract: A video compression framework based on parametric object and background compression is proposed. At the encoder, an embodiment detects objects and segments frames into regions corresponding to the foreground object and the background. The object and the background are individually encoded using separate parametric coding techniques. While the object is encoded using the projection coefficients to the orthonormal basis of the learnt subspace (used for appearance based object tracking), the background is characterized using an auto-regressive (AR) process model. An advantage of the proposed schemes is that the decoder structure allows for simultaneous reconstruction of object and background, thus making it amenable to the new multi-thread/multi-processor architectures.
Abstract: A supervisor module manages multiple user selected applications. A first one of the multiple applications is launched in a first container. Allocation of a first process identifier by the first one of the multiple applications in the first container is detected. The first process identifier is unique within the first container. A first unique identifier is allocated to the first one of the multiple applications. The launch of a second one of the multiple applications is delayed but subsequently launched if the first unique identifier has been allocated to the first one of the multiple applications. A second unique identifier is allocated to the second one of the multiple applications. The first and second unique identifiers uniquely identify the respective first and second ones of the multiple applications within the supervisor module.
Type:
Application
Filed:
March 18, 2014
Publication date:
September 25, 2014
Applicants:
STMicroelectronics Asia Pacific Pte Ltd, STMicroelectronics (Grenoble 2) SAS