Abstract: An embodiment of a pre-emphasis circuit, an embodiment of a method for pre-emphasizing complementary single-ended signals, an embodiment of a transmitter, and an embodiment of a communication system.
Abstract: A clock and data recovery circuit includes a phase detector circuit, a charge pump circuit, and a voltage controlled oscillator. The phase detector circuit receives a data signal from an external device and a clock signal from the voltage controlled oscillator and generates a first and a second phase difference signal. The charge pump circuit includes an OR gate receiving on its inputs the first and the second phase difference signals and configured to generate a current if the first and/or second phase difference signal is high.
Abstract: A method for detecting multi-path interference in a spread-spectrum signal. A variation of a first signal and a variation of a second signal is compared. The variation of the first signal corresponds to a correlation of the spread-spectrum signal and a spreading code having a first offset. The variation of the second signal corresponds to a correlation of the spread-spectrum signal and the spreading code having a second offset. Multi-path interference is detected in dependence on the comparison.
Abstract: An adaptive temporal motion filter for a video decoder system operates in an infinite impulse response (IIR), a max or a bypass mode. The adaptive temporal motion filter includes an adaptive time constant control module and a filter gain module. A gain factor of the filter gain module is varied by the adaptive time constant control module for every pixel in a current composite video signal. The adaptive time constant control module selects a variable gain for the filter gain module based on the motion magnitude, motion polarity and chroma luma status of the pixel.
Abstract: An electronic device is described comprising at least one chip enclosed in a package, in turn provided with a metallic structure or leadframe having a plurality of connection pins, this chip having at least one first contact realized on a first face and at least one second contact realized on a second and opposite face of this chip. The chip comprises at least one through via crossing the whole section of the chip as well as a metallic layer extending from the second contact arranged on the first face, along walls of the at least one through via up to the second and opposite face in correspondence with an additional pad. The electronic device comprises at least one interconnection layer for the electrical and mechanical connection between the chip and the metallic structure having at least one portion realized in correspondence with the at least one through via so as to bring the second contact placed on the second face of the chip back on its first face.
Abstract: A device includes a first and second transistors integrated in first and second chips. Each chip has opposed rear and front surfaces, and further has a first conduction terminal and a control terminal on the front surface and a second conduction terminal on the rear surface. The first and second transistors are electrically connected in series by having the first conduction terminals of the first and second transistors be electrically connected. The device includes a common package enclosing the first and second chips, the common package having an insulating body with a mounting surface. A heat sink is also enclosed within the insulating body, the heat sink making electrical contact with the first conduction terminals of the first and second chips on the respective front surfaces, so that the first conduction terminals are electrically connected together through the heat sink.
Abstract: An optical modulator uses an optoelectronic phase comparator configured to provide, in the form of an electrical signal, a measure of a phase difference between two optical waves. The phase comparator includes an optical directional coupler having two coupled channels respectively defining two optical inputs for receiving the two optical waves to be compared. Two photodiodes are configured to respectively receive the optical output powers of the two channels of the directional coupler. An electrical circuit is configured to supply, as a measure of the optical phase shift, an electrical signal proportional to the difference between the electrical signals produced by the two photodiodes.
Abstract: A memory circuitry includes memory components operable in response to first edges of an internal clock; and internal clock generating circuitry to generate the internal clock in response to a system clock, wherein the first edges of the internal clock are generated in response to both a rising and a falling edge of the system clock.
Type:
Application
Filed:
May 6, 2014
Publication date:
August 28, 2014
Applicants:
STMicroelectronics International N.V., STMicroelectronics, SA
Abstract: A system for noise removal is coupled to a signal unit that provides a digital signal. The noise removal system includes a transformation module to transform the digital signal into an f-digital signal, a threshold filter to generate a noiseless signal from the f-digital signal based on a threshold profile, and a signal synthesizer to provide a gain to the noiseless signal and to transform the noiseless signal into an output signal.
Abstract: A modified soft output Viterbi algorithm (SOVA) detector receives a sequence of soft information values and determines a best path and an alternate path for each soft information value and further determines, when the best and alternate paths lead to the same value for a given soft information value, whether there is a third path departing from the alternate path that leads to an opposite decision with respect to the best path for a given soft information value. The SOVA detector then considers this third path when updating the reliability of the best path. The modified SOVA detector achieves max-log-map equivalence effectively through the Fossorier approach and includes modified reliability metric units for the first N stages of the SOVA detector, where N is the memory depth of a given path, and includes conventional reliability metric units for the remaining stages of the detector.
Type:
Application
Filed:
February 27, 2014
Publication date:
August 28, 2014
Applicant:
STMICROELECTRONICS INC.
Inventors:
Sivagnanam PARTHASARATHY, Lun Bin HUANG, Alessandro RISSO
Abstract: An energy-harvesting system includes a transducer to convert environmental energy into a harvesting electrical signal. A storage element stores electrical energy derived from conversion of the harvested environmental energy. A harvesting interface supplies an electrical charging signal to the storage element. The harvesting interface is selectively connected to the storage element in response to a control signal. The control signal causes the connection when the harvesting electrical signal exceeds a threshold. Conversely, the control signal causes the disconnection when the harvesting electrical signal is less than the threshold.
Abstract: The disclosure relates to a countermeasure method in an electronic microcircuit, comprising successive process phases executed by a circuit of the microcircuit, and adjusting a power supply voltage between power supply and ground terminals of the circuit, as a function of a random value generated for the process phase, at each process phase executed by the circuit.
Abstract: A first assembly of critical cells is to be monitored. An equivalent capacitance of output cells coupled to the critical path is determined. Logic level inputs of the critical cells for signal propagation are also determined. A second assembly of control logic cells is provided which copies the first assembly in terms of number of cells, type of cells and cell connection such that each of the control cells is a homolog of a corresponding critical cell. Charge cells are provided at the outputs of the control cells having an equivalent capacitance in accordance with the determined capacitance of the output cells. For each control cell, logic levels are asserted in accordance with the determined configuration of the critical path. A signal generator applies a signal the input of the second assembly and a signal receiver is coupled to the output of the second assembly.
Type:
Grant
Filed:
September 16, 2013
Date of Patent:
August 26, 2014
Assignee:
STMicroelectronics SA
Inventors:
Julien Le Coz, Sylvain Engels, Alain Tournier
Abstract: Display 105 is capable of rendering, or otherwise displaying, one or more of a standard definition (SD) image, a two-dimensional (2D), a three-dimensional image (3D) and a high definition (HD) image 110.
Abstract: A method for generating a digital signature includes calculating a first magnitude representative of the inverse of a random number raised to the power two; obtaining a first element of the digital signature by executing scalar multiplication between an established point of the elliptic curve and the random number; obtaining a second magnitude by executing modular multiplication, with modulus corresponding to the established elliptic curve's order between the first magnitude and the secret encryption key; obtaining a third magnitude by executing a modular multiplication, with modulus corresponding to the established elliptic curve's order between the random number and the secret encryption key; obtaining a first addend of a second element of the digital signature by executing a modular multiplication, with modulus corresponding to the established elliptic curve's order between the second magnitude and the third magnitude; and generating a second element of the digital signature based on the first addend.
Type:
Grant
Filed:
September 16, 2011
Date of Patent:
August 26, 2014
Assignee:
STMicroelectronics S.r.l.
Inventors:
Guido Marco Bertoni, Ruggero Susella, Andrea Palomba
Abstract: A level shifter includes a first terminal configured to receive a first supply voltage, a second terminal configured to receive a second supply voltage, an input terminal configured to receive an input signal and an output terminal. The level shifter is configured to shift the input signal from the level of the first supply voltage to the level of the second supply voltage in outputting the output signal. The level shifter includes a storage circuit for storing the output signal value and configured, when the first supply voltage is no longer available, to force the output terminal to assume the last output voltage value stored by the storage circuit when the first supply voltage was available and before the first supply voltage was not available.
Abstract: A method is for monitoring the electrical integrity of lines of photosites of an imaging device with matrix array of photosites. The control lines of photosites may include for each line of photosites an emission of elementary electrical control signals for the photosites of the line. The method may include diagnosis of the elementary electrical control signals emitted.
Abstract: A method of controlling a synchronous motor that may include windings and a power driving stage coupled to the windings, may include using a feedback loop including using a feedback circuit coupled to the windings to generate current feedback components, using current controllers for generating respective voltage signals, and using an anti-transform circuit for generating control signals for the power driving stage. Using the feedback loop may include generating additional compensation signals for compensating the control signals, and adding the additional compensation signals from the current controllers by one of generating the additional compensation signals as quadrature and direct voltage compensation signals and adding them to the voltage signals to generate compensated quadrature and direct signals, and supplying the compensated quadrature and direct signals to the power driving stage by providing the compensated quadrature and direct signals to the anti-transform circuit.
Abstract: The method for improving the visual perception of a digital image may comprise dividing the digital image into repetitive areas, and modifying the tone curve and/or the histogram of each area to improve the visual perception of the corresponding area. Lastly, the joins between adjacent areas may be smoothed.
Abstract: A multi-axis gyroscope includes a microelectromechanical structure configured to rotate with respective angular velocities about respective reference axes, and including detection elements, which are sensitive in respective detection directions and generate respective detection quantities as a function of projections of the angular velocities in the detection directions. The gyroscope including a reading circuit that generates electrical output signals, each correlated to a respective one of the angular velocities, as a function of the detection quantities. The reading circuit includes a combination stage that combines electrically with respect to one another electrical quantities correlated to detection quantities generated by detection elements sensitive to detection directions different from one another, so as to take into account a non-zero angle of inclination of the detection directions with respect to the reference axes.