Patents Assigned to Texas Instruments
  • Publication number: 20170090536
    Abstract: A system and method for controlling clock generation. A system includes a processor configured to execute instructions retrieved from memory, and a clock generation system coupled to the processor. The clock generation system is configured to generate a clock signal that the processor applies to execute the instructions. The clock generation system includes a plurality of configuration registers and selection circuitry. Each of the configuration registers includes fields that control a frequency of the clock signal. The selection circuitry selects which of the plurality of configuration registers determines the frequency at a given time.
    Type: Application
    Filed: September 30, 2015
    Publication date: March 30, 2017
    Applicant: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Joerg Harald Hans Jochen SCHREINER, Marcus HERZOG
  • Publication number: 20170091465
    Abstract: The present disclosure describes systems and methods for controlling access to secure debugging and profiling features of a computer system. Some illustrative embodiments include a system that includes a processor, and a memory coupled to the processor (the memory used to store information and an attribute associated with the stored information). At least one bit of the attribute determines a security level, selected from a plurality of security levels, of the stored information associated with the attribute. Asserting at least one other bit of the attribute enables exportation of the stored information from the computer system if the security level of the stored information is higher than at least one other security level of the plurality of security levels.
    Type: Application
    Filed: February 13, 2014
    Publication date: March 30, 2017
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Gary L. Swoboda
  • Patent number: 9608525
    Abstract: A selected-parameter adaptively switched power conversion system, for example, includes a counter for determining a period of an output oscillation a power supply switch, where the output oscillation starts when an output current generated by stored power of the power supply coil decays substantially to zero. An event generator for generating a switching delay event in response to the determined output oscillation period and generates a switching delay event in response to a determination of a phase of the output oscillation.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Subrahmanya Bharathi Akondy, Hrishikesh Nene
  • Patent number: 9608109
    Abstract: An n-channel DEMOS device a pwell finger defining a length and a width direction formed within a doped surface layer. A first nwell is on one side of the pwell finger including a source and a second nwell on an opposite side of the pwell finger includes a drain. A gate stack is over a channel region the pwell finger between the source and drain. A field dielectric layer is on the surface layer defining a first active area including a first active area boundary along the width direction (WD boundary) that has the channel region therein. A first p-type layer is outside the first active area at least a first minimum distance from the WD boundary and a second p-type layer is doped less and is closer to the WD boundary than the first minimum distance.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Chin-Yu Tsai, Imran Khan, Shaoping Tang
  • Patent number: 9609333
    Abstract: Methods and apparatus for parsing friendly and error resilient merge flag coding in video coding are provided. In some methods, in contrast to merging candidate list size dependent coding of the merge flag in the prior art, a merge flag is always encoded in the encoded bit stream for each inter-predicted prediction unit (PU) that is not encoded using skip mode. In some methods, in contrast to the prior art that allowed the merging candidate list to be empty, one or more zero motion vector merging candidates formatted according to the prediction type of the slice containing a PU are added to the merging candidate list if needed to ensure that the list is not empty and/or to ensure that the list contains a maximum number of merging candidates.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Minhua Zhou
  • Patent number: 9607847
    Abstract: A cavity is formed in a semiconductor substrate wherein the width of the cavity is greater than the depth of the cavity and wherein the depth of the cavity is non uniform across the width of the cavity. The cavity may be formed under an electronic device in the semiconductor substrate. The cavity is formed in the substrate by performing a first cavity etch followed by repeated cycles of polymer deposition, cavity etch, and polymer removal.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Brian E. Goodlin, Karen H. R. Kirmse, Iqbal R. Saraf
  • Patent number: 9607717
    Abstract: A data retention reliability screen of integrated circuits including ferroelectric random access memory (FRAM) arrays. A reference voltage level is determined for each integrated circuit being tested, corresponding to the read of a high polarization capacitance data state. A number of FRAM cells in the integrated circuit are programmed to that data state, and then read at an elevated temperature, with the number of failing cells compared against a pass/fail threshold to determine whether the integrated circuit is vulnerable to long-term data retention failure.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Richard Bailey, John A. Rodriguez
  • Patent number: 9607926
    Abstract: An integrated circuit wafer and fabrication method includes a probe pad structure in saw lanes between integrated circuits. The probe pad structure includes a probe pad with a plurality of pad segments. The pad segments are elements of an interconnect level of the wafer.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Manoj Jain
  • Patent number: 9608105
    Abstract: The density of a transistor array is increased by forming one or more deep trench isolation structures in a semiconductor material. The deep trench isolation structures laterally surround the transistors in the array. The deep trench isolation structures limit the lateral diffusion of dopants and the lateral movement of charge carriers.
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Takehito Tamura, Binghua Hu, Sameer Pendharkar, Guru Mathur
  • Patent number: 9606193
    Abstract: A method of fabricating fluxgate devices to measure the magnetic field in two orthogonal, in plane directions, by using a composite-anisotropic magnetic core structure.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Anuraag Mohan, Dok Won Lee, William French, Erika L. Mazotti
  • Patent number: 9608429
    Abstract: An electrostatic discharge (ESD) logging system includes ESD detection circuitry having at least one input electrically connected coupled to a node of an ESD protection circuit. The ESD detection circuitry provides a detector signal in response to detecting an ESD event at the node of the ESD protection circuit. Capture circuitry is electrically connected to an output of the ESD detection circuitry. The capture circuitry asserts a capture signal to indicate the occurrence of the ESD event in response to the detector signal. A logic circuit provides a logic output in response to the capture signal.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: March 28, 2017
    Assignee: Texas Instruments Incorporated
    Inventor: Mark B. Welty
  • Patent number: 9609337
    Abstract: A method for derivation of a temporal motion data (TMD) candidate for a prediction unit (PU) in video encoding or video decoding is provided. The derived TMD candidate is for inclusion in an inter-prediction candidate list for the PU. The method includes determining a primary TMD position relative to a co-located PU in a co-located largest coding unit (LCU), wherein the co-located PU is a block in a reference picture having a same size, shape, and coordinates as the PU, and selecting at least some motion data of a secondary TMD position as the TMD candidate when the primary TMD position is in a bottom neighboring LCU or in a bottom right neighboring LCU of the co-located LCU, wherein the secondary TMD position is determined relative to the co-located PU.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Minhua Zhou
  • Patent number: 9604338
    Abstract: A microelectronic device is formed by providing a substrate having a recess at a top surface, and a liner layer formed over the top surface of the substrate, extending into the recess. A protective layer is formed over the liner layer, extending into the recess. A CMP process removes the protective layer and the liner layer from over the top surface of the substrate, leaving the protective layer and the liner layer in the recess. The protective layer is subsequently removed from the recess, leaving the liner layer in the recess. The substrate may include an interconnect region with a bond pad and a PO layer having an opening which forms the recess; the bond pad is exposed in the recess. The liner layer in the recess may be a metal liner suitable for a subsequently-formed wire bond or bump bond.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jonathan Philip Davis, Andrew Frank Burnett, Brian Edward Zinn
  • Patent number: 9609670
    Abstract: A system and method for providing wireless communications between a medical controller hub and an implant node are disclosed. The hub transmits signals to facilitate communication connections with the node. The signals include connection invitation polls with identification parameters. A node monitors the hub's transmissions for the connection invitation polls. When a poll is detected, the node compares the identification parameters to a list of preferred identification values. If the received identification parameter is on the preferred list, and the node and hub are not already connected, then the node responds to the connection invitation poll. If the received identification parameter is not on the preferred list, then the node continues to monitor hub transmissions for other connection invitation polls that include identification parameters that are on the preferred list.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jin-Meng Ho, June Chul Roh
  • Patent number: 9609306
    Abstract: A method of image processing in a structured light imaging device is provided that includes receiving a captured image of a scene, wherein the captured image is captured by a camera of a projector-camera pair in the structured light imaging system, and wherein the captured image includes a pre-determined hierarchical binary pattern projected into the scene by the projector, wherein the pre-determined hierarchical binary pattern was formed by iteratively scaling a lower resolution binary pattern to multiple successively higher resolutions, rectifying the captured image to generated a rectified captured image, extracting a binary image from the rectified captured image at full resolution and at each resolution used to generate the pre-determined hierarchical binary pattern, and using the binary images to generate a depth map of the captured image.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Vikram VijayanBabu Appia
  • Patent number: 9606796
    Abstract: Computers and methods for performing mathematical functions are disclosed. An embodiment of a computer includes an operations level and a driver level. The operations level performs mathematical operations. The driver level includes a first lookup table and a second lookup table, wherein the first lookup table includes first data for calculating at least one mathematical function using a first level of accuracy. The second lookup table includes second data for calculating the at least one mathematical function using a second level of accuracy, wherein the first level of accuracy is greater than the second level of accuracy. A driver executes either the first data or the second data depending on a selected level of accuracy.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Kyong Ho Lee, Seok-Jun Lee, Manish Goel
  • Patent number: 9608158
    Abstract: A method for fabricating a semiconductor proximity sensor includes providing a flat leadframe with a first and a second surface. The second surface is solderable. The leadframe includes a first and a second pad, a plurality of leads, and fingers framing the first pad. The fingers are spaced from the first pad by a gap which is filled with a clear molding compound. A light-emitting diode (LED) chip is assembled on the first pad and encapsulated by a first volume of the clear compound. The first volume outlined as a first lens. A sensor chip is assembled on the second pad and encapsulated by a second volume of the clear compound. The second volume outlined as a second lens. Opaque molding compound fills the space between the first and second volumes of clear compound and forms walls rising from the frame of fingers to create an enclosed cavity for the LED. The pads, leads, and fingers connected to a board using a layer of solder for attaching the proximity sensor.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Andy Quang Tran, Lance Wright
  • Patent number: 9608088
    Abstract: An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
    Type: Grant
    Filed: May 22, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sameer P. Pendharkar, John Lin
  • Patent number: 9606948
    Abstract: Structures and methods herein insert one or more parallel “recessive nulling” driver impedances across a controller area network (CAN) bus starting at the time of a dominant-to-recessive data bit transition and extending for a selected recessive nulling time period. Doing so increases a rate of decay of a CAN bus dominant-to-recessive differential signal waveform, permits a shortened recessive bit time period, and allows for increased CAN bus bandwidth. Various modes of operation are applicable to various CAN bus node topologies. Recessive nulling may be applied to only the beginning portion of a recessive bit following a dominant bit (“LRN mode”) or to the entire recessive bit time (“HRN mode”). And, some embodiments may apply LRN operations to some recessive CAN frame bits and HRN operations to others.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Scott Allen Monroe, David Wayne Stout
  • Patent number: 9606563
    Abstract: An integrated circuit is provided with a bandgap voltage reference circuit having a bandgap reference voltage output. A bandgap failure detection circuit is coupled to the bandgap reference voltage output. The bandgap failure detection forms a model value of the reference voltage from a first time, compares a present value of the reference voltage at a second time to the model value; and asserts a bandgap fail signal to indicate when the present value is less than the model value by a threshold value. The integrated circuit is reset by the bandgap fail signal. The detection circuit may be operated from a failsafe voltage domain that also allows a critical circuit to complete a pending operation during a reset.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: March 28, 2017
    Assignee: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Frank Dornseifer, Matthias Arnold, Johannes Gerber